xref: /linux/arch/arm/kernel/smp.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cpu.h>
32 #include <asm/cputype.h>
33 #include <asm/exception.h>
34 #include <asm/idmap.h>
35 #include <asm/topology.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sections.h>
41 #include <asm/tlbflush.h>
42 #include <asm/ptrace.h>
43 #include <asm/localtimer.h>
44 #include <asm/smp_plat.h>
45 
46 /*
47  * as from 2.5, kernels no longer have an init_tasks structure
48  * so we need some other way of telling a new secondary core
49  * where to place its SVC stack
50  */
51 struct secondary_data secondary_data;
52 
53 enum ipi_msg_type {
54 	IPI_TIMER = 2,
55 	IPI_RESCHEDULE,
56 	IPI_CALL_FUNC,
57 	IPI_CALL_FUNC_SINGLE,
58 	IPI_CPU_STOP,
59 };
60 
61 int __cpuinit __cpu_up(unsigned int cpu)
62 {
63 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
64 	struct task_struct *idle = ci->idle;
65 	int ret;
66 
67 	/*
68 	 * Spawn a new process manually, if not already done.
69 	 * Grab a pointer to its task struct so we can mess with it
70 	 */
71 	if (!idle) {
72 		idle = fork_idle(cpu);
73 		if (IS_ERR(idle)) {
74 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
75 			return PTR_ERR(idle);
76 		}
77 		ci->idle = idle;
78 	} else {
79 		/*
80 		 * Since this idle thread is being re-used, call
81 		 * init_idle() to reinitialize the thread structure.
82 		 */
83 		init_idle(idle, cpu);
84 	}
85 
86 	/*
87 	 * We need to tell the secondary core where to find
88 	 * its stack and the page tables.
89 	 */
90 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
91 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
92 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
93 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
94 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
95 
96 	/*
97 	 * Now bring the CPU into our world.
98 	 */
99 	ret = boot_secondary(cpu, idle);
100 	if (ret == 0) {
101 		unsigned long timeout;
102 
103 		/*
104 		 * CPU was successfully started, wait for it
105 		 * to come online or time out.
106 		 */
107 		timeout = jiffies + HZ;
108 		while (time_before(jiffies, timeout)) {
109 			if (cpu_online(cpu))
110 				break;
111 
112 			udelay(10);
113 			barrier();
114 		}
115 
116 		if (!cpu_online(cpu)) {
117 			pr_crit("CPU%u: failed to come online\n", cpu);
118 			ret = -EIO;
119 		}
120 	} else {
121 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
122 	}
123 
124 	secondary_data.stack = NULL;
125 	secondary_data.pgdir = 0;
126 
127 	return ret;
128 }
129 
130 #ifdef CONFIG_HOTPLUG_CPU
131 static void percpu_timer_stop(void);
132 
133 /*
134  * __cpu_disable runs on the processor to be shutdown.
135  */
136 int __cpu_disable(void)
137 {
138 	unsigned int cpu = smp_processor_id();
139 	struct task_struct *p;
140 	int ret;
141 
142 	ret = platform_cpu_disable(cpu);
143 	if (ret)
144 		return ret;
145 
146 	/*
147 	 * Take this CPU offline.  Once we clear this, we can't return,
148 	 * and we must not schedule until we're ready to give up the cpu.
149 	 */
150 	set_cpu_online(cpu, false);
151 
152 	/*
153 	 * OK - migrate IRQs away from this CPU
154 	 */
155 	migrate_irqs();
156 
157 	/*
158 	 * Stop the local timer for this CPU.
159 	 */
160 	percpu_timer_stop();
161 
162 	/*
163 	 * Flush user cache and TLB mappings, and then remove this CPU
164 	 * from the vm mask set of all processes.
165 	 */
166 	flush_cache_all();
167 	local_flush_tlb_all();
168 
169 	read_lock(&tasklist_lock);
170 	for_each_process(p) {
171 		if (p->mm)
172 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
173 	}
174 	read_unlock(&tasklist_lock);
175 
176 	return 0;
177 }
178 
179 static DECLARE_COMPLETION(cpu_died);
180 
181 /*
182  * called on the thread which is asking for a CPU to be shutdown -
183  * waits until shutdown has completed, or it is timed out.
184  */
185 void __cpu_die(unsigned int cpu)
186 {
187 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
188 		pr_err("CPU%u: cpu didn't die\n", cpu);
189 		return;
190 	}
191 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
192 
193 	if (!platform_cpu_kill(cpu))
194 		printk("CPU%u: unable to kill\n", cpu);
195 }
196 
197 /*
198  * Called from the idle thread for the CPU which has been shutdown.
199  *
200  * Note that we disable IRQs here, but do not re-enable them
201  * before returning to the caller. This is also the behaviour
202  * of the other hotplug-cpu capable cores, so presumably coming
203  * out of idle fixes this.
204  */
205 void __ref cpu_die(void)
206 {
207 	unsigned int cpu = smp_processor_id();
208 
209 	idle_task_exit();
210 
211 	local_irq_disable();
212 	mb();
213 
214 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
215 	complete(&cpu_died);
216 
217 	/*
218 	 * actual CPU shutdown procedure is at least platform (if not
219 	 * CPU) specific.
220 	 */
221 	platform_cpu_die(cpu);
222 
223 	/*
224 	 * Do not return to the idle loop - jump back to the secondary
225 	 * cpu initialisation.  There's some initialisation which needs
226 	 * to be repeated to undo the effects of taking the CPU offline.
227 	 */
228 	__asm__("mov	sp, %0\n"
229 	"	mov	fp, #0\n"
230 	"	b	secondary_start_kernel"
231 		:
232 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
233 }
234 #endif /* CONFIG_HOTPLUG_CPU */
235 
236 int __cpu_logical_map[NR_CPUS];
237 
238 void __init smp_setup_processor_id(void)
239 {
240 	int i;
241 	u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
242 
243 	cpu_logical_map(0) = cpu;
244 	for (i = 1; i < NR_CPUS; ++i)
245 		cpu_logical_map(i) = i == cpu ? 0 : i;
246 
247 	printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
248 }
249 
250 /*
251  * Called by both boot and secondaries to move global data into
252  * per-processor storage.
253  */
254 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
255 {
256 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
257 
258 	cpu_info->loops_per_jiffy = loops_per_jiffy;
259 
260 	store_cpu_topology(cpuid);
261 }
262 
263 /*
264  * This is the secondary CPU boot entry.  We're using this CPUs
265  * idle thread stack, but a set of temporary page tables.
266  */
267 asmlinkage void __cpuinit secondary_start_kernel(void)
268 {
269 	struct mm_struct *mm = &init_mm;
270 	unsigned int cpu = smp_processor_id();
271 
272 	printk("CPU%u: Booted secondary processor\n", cpu);
273 
274 	/*
275 	 * All kernel threads share the same mm context; grab a
276 	 * reference and switch to it.
277 	 */
278 	atomic_inc(&mm->mm_count);
279 	current->active_mm = mm;
280 	cpumask_set_cpu(cpu, mm_cpumask(mm));
281 	cpu_switch_mm(mm->pgd, mm);
282 	enter_lazy_tlb(mm, current);
283 	local_flush_tlb_all();
284 
285 	cpu_init();
286 	preempt_disable();
287 	trace_hardirqs_off();
288 
289 	/*
290 	 * Give the platform a chance to do its own initialisation.
291 	 */
292 	platform_secondary_init(cpu);
293 
294 	notify_cpu_starting(cpu);
295 
296 	calibrate_delay();
297 
298 	smp_store_cpu_info(cpu);
299 
300 	/*
301 	 * OK, now it's safe to let the boot CPU continue.  Wait for
302 	 * the CPU migration code to notice that the CPU is online
303 	 * before we continue.
304 	 */
305 	set_cpu_online(cpu, true);
306 
307 	/*
308 	 * Setup the percpu timer for this CPU.
309 	 */
310 	percpu_timer_setup();
311 
312 	while (!cpu_active(cpu))
313 		cpu_relax();
314 
315 	/*
316 	 * cpu_active bit is set, so it's safe to enalbe interrupts
317 	 * now.
318 	 */
319 	local_irq_enable();
320 	local_fiq_enable();
321 
322 	/*
323 	 * OK, it's off to the idle thread for us
324 	 */
325 	cpu_idle();
326 }
327 
328 void __init smp_cpus_done(unsigned int max_cpus)
329 {
330 	int cpu;
331 	unsigned long bogosum = 0;
332 
333 	for_each_online_cpu(cpu)
334 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
335 
336 	printk(KERN_INFO "SMP: Total of %d processors activated "
337 	       "(%lu.%02lu BogoMIPS).\n",
338 	       num_online_cpus(),
339 	       bogosum / (500000/HZ),
340 	       (bogosum / (5000/HZ)) % 100);
341 }
342 
343 void __init smp_prepare_boot_cpu(void)
344 {
345 	unsigned int cpu = smp_processor_id();
346 
347 	per_cpu(cpu_data, cpu).idle = current;
348 }
349 
350 void __init smp_prepare_cpus(unsigned int max_cpus)
351 {
352 	unsigned int ncores = num_possible_cpus();
353 
354 	init_cpu_topology();
355 
356 	smp_store_cpu_info(smp_processor_id());
357 
358 	/*
359 	 * are we trying to boot more cores than exist?
360 	 */
361 	if (max_cpus > ncores)
362 		max_cpus = ncores;
363 	if (ncores > 1 && max_cpus) {
364 		/*
365 		 * Enable the local timer or broadcast device for the
366 		 * boot CPU, but only if we have more than one CPU.
367 		 */
368 		percpu_timer_setup();
369 
370 		/*
371 		 * Initialise the present map, which describes the set of CPUs
372 		 * actually populated at the present time. A platform should
373 		 * re-initialize the map in platform_smp_prepare_cpus() if
374 		 * present != possible (e.g. physical hotplug).
375 		 */
376 		init_cpu_present(&cpu_possible_map);
377 
378 		/*
379 		 * Initialise the SCU if there are more than one CPU
380 		 * and let them know where to start.
381 		 */
382 		platform_smp_prepare_cpus(max_cpus);
383 	}
384 }
385 
386 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
387 
388 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
389 {
390 	smp_cross_call = fn;
391 }
392 
393 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
394 {
395 	smp_cross_call(mask, IPI_CALL_FUNC);
396 }
397 
398 void arch_send_call_function_single_ipi(int cpu)
399 {
400 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
401 }
402 
403 static const char *ipi_types[NR_IPI] = {
404 #define S(x,s)	[x - IPI_TIMER] = s
405 	S(IPI_TIMER, "Timer broadcast interrupts"),
406 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
407 	S(IPI_CALL_FUNC, "Function call interrupts"),
408 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
409 	S(IPI_CPU_STOP, "CPU stop interrupts"),
410 };
411 
412 void show_ipi_list(struct seq_file *p, int prec)
413 {
414 	unsigned int cpu, i;
415 
416 	for (i = 0; i < NR_IPI; i++) {
417 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
418 
419 		for_each_present_cpu(cpu)
420 			seq_printf(p, "%10u ",
421 				   __get_irq_stat(cpu, ipi_irqs[i]));
422 
423 		seq_printf(p, " %s\n", ipi_types[i]);
424 	}
425 }
426 
427 u64 smp_irq_stat_cpu(unsigned int cpu)
428 {
429 	u64 sum = 0;
430 	int i;
431 
432 	for (i = 0; i < NR_IPI; i++)
433 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
434 
435 	return sum;
436 }
437 
438 /*
439  * Timer (local or broadcast) support
440  */
441 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
442 
443 static void ipi_timer(void)
444 {
445 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
446 	irq_enter();
447 	evt->event_handler(evt);
448 	irq_exit();
449 }
450 
451 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
452 static void smp_timer_broadcast(const struct cpumask *mask)
453 {
454 	smp_cross_call(mask, IPI_TIMER);
455 }
456 #else
457 #define smp_timer_broadcast	NULL
458 #endif
459 
460 static void broadcast_timer_set_mode(enum clock_event_mode mode,
461 	struct clock_event_device *evt)
462 {
463 }
464 
465 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
466 {
467 	evt->name	= "dummy_timer";
468 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
469 			  CLOCK_EVT_FEAT_PERIODIC |
470 			  CLOCK_EVT_FEAT_DUMMY;
471 	evt->rating	= 400;
472 	evt->mult	= 1;
473 	evt->set_mode	= broadcast_timer_set_mode;
474 
475 	clockevents_register_device(evt);
476 }
477 
478 void __cpuinit percpu_timer_setup(void)
479 {
480 	unsigned int cpu = smp_processor_id();
481 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
482 
483 	evt->cpumask = cpumask_of(cpu);
484 	evt->broadcast = smp_timer_broadcast;
485 
486 	if (local_timer_setup(evt))
487 		broadcast_timer_setup(evt);
488 }
489 
490 #ifdef CONFIG_HOTPLUG_CPU
491 /*
492  * The generic clock events code purposely does not stop the local timer
493  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
494  * manually here.
495  */
496 static void percpu_timer_stop(void)
497 {
498 	unsigned int cpu = smp_processor_id();
499 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
500 
501 	local_timer_stop(evt);
502 }
503 #endif
504 
505 static DEFINE_RAW_SPINLOCK(stop_lock);
506 
507 /*
508  * ipi_cpu_stop - handle IPI from smp_send_stop()
509  */
510 static void ipi_cpu_stop(unsigned int cpu)
511 {
512 	if (system_state == SYSTEM_BOOTING ||
513 	    system_state == SYSTEM_RUNNING) {
514 		raw_spin_lock(&stop_lock);
515 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
516 		dump_stack();
517 		raw_spin_unlock(&stop_lock);
518 	}
519 
520 	set_cpu_online(cpu, false);
521 
522 	local_fiq_disable();
523 	local_irq_disable();
524 
525 #ifdef CONFIG_HOTPLUG_CPU
526 	platform_cpu_kill(cpu);
527 #endif
528 
529 	while (1)
530 		cpu_relax();
531 }
532 
533 /*
534  * Main handler for inter-processor interrupts
535  */
536 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
537 {
538 	handle_IPI(ipinr, regs);
539 }
540 
541 void handle_IPI(int ipinr, struct pt_regs *regs)
542 {
543 	unsigned int cpu = smp_processor_id();
544 	struct pt_regs *old_regs = set_irq_regs(regs);
545 
546 	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
547 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
548 
549 	switch (ipinr) {
550 	case IPI_TIMER:
551 		ipi_timer();
552 		break;
553 
554 	case IPI_RESCHEDULE:
555 		scheduler_ipi();
556 		break;
557 
558 	case IPI_CALL_FUNC:
559 		generic_smp_call_function_interrupt();
560 		break;
561 
562 	case IPI_CALL_FUNC_SINGLE:
563 		generic_smp_call_function_single_interrupt();
564 		break;
565 
566 	case IPI_CPU_STOP:
567 		ipi_cpu_stop(cpu);
568 		break;
569 
570 	default:
571 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
572 		       cpu, ipinr);
573 		break;
574 	}
575 	set_irq_regs(old_regs);
576 }
577 
578 void smp_send_reschedule(int cpu)
579 {
580 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
581 }
582 
583 void smp_send_stop(void)
584 {
585 	unsigned long timeout;
586 
587 	if (num_online_cpus() > 1) {
588 		cpumask_t mask = cpu_online_map;
589 		cpu_clear(smp_processor_id(), mask);
590 
591 		smp_cross_call(&mask, IPI_CPU_STOP);
592 	}
593 
594 	/* Wait up to one second for other CPUs to stop */
595 	timeout = USEC_PER_SEC;
596 	while (num_online_cpus() > 1 && timeout--)
597 		udelay(1);
598 
599 	if (num_online_cpus() > 1)
600 		pr_warning("SMP: failed to stop secondary CPUs\n");
601 }
602 
603 /*
604  * not supported here
605  */
606 int setup_profiling_timer(unsigned int multiplier)
607 {
608 	return -EINVAL;
609 }
610