1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/smp.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpu.h> 34 #include <asm/cputype.h> 35 #include <asm/exception.h> 36 #include <asm/idmap.h> 37 #include <asm/topology.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/processor.h> 42 #include <asm/sections.h> 43 #include <asm/tlbflush.h> 44 #include <asm/ptrace.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ipi.h> 52 53 /* 54 * as from 2.5, kernels no longer have an init_tasks structure 55 * so we need some other way of telling a new secondary core 56 * where to place its SVC stack 57 */ 58 struct secondary_data secondary_data; 59 60 /* 61 * control for which core is the next to come out of the secondary 62 * boot "holding pen" 63 */ 64 volatile int pen_release = -1; 65 66 enum ipi_msg_type { 67 IPI_WAKEUP, 68 IPI_TIMER, 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CALL_FUNC_SINGLE, 72 IPI_CPU_STOP, 73 IPI_IRQ_WORK, 74 IPI_COMPLETION, 75 }; 76 77 static DECLARE_COMPLETION(cpu_running); 78 79 static struct smp_operations smp_ops; 80 81 void __init smp_set_ops(struct smp_operations *ops) 82 { 83 if (ops) 84 smp_ops = *ops; 85 }; 86 87 static unsigned long get_arch_pgd(pgd_t *pgd) 88 { 89 #ifdef CONFIG_ARM_LPAE 90 return __phys_to_pfn(virt_to_phys(pgd)); 91 #else 92 return virt_to_phys(pgd); 93 #endif 94 } 95 96 int __cpu_up(unsigned int cpu, struct task_struct *idle) 97 { 98 int ret; 99 100 if (!smp_ops.smp_boot_secondary) 101 return -ENOSYS; 102 103 /* 104 * We need to tell the secondary core where to find 105 * its stack and the page tables. 106 */ 107 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 108 #ifdef CONFIG_ARM_MPU 109 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 110 #endif 111 112 #ifdef CONFIG_MMU 113 secondary_data.pgdir = virt_to_phys(idmap_pgd); 114 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 115 #endif 116 sync_cache_w(&secondary_data); 117 118 /* 119 * Now bring the CPU into our world. 120 */ 121 ret = smp_ops.smp_boot_secondary(cpu, idle); 122 if (ret == 0) { 123 /* 124 * CPU was successfully started, wait for it 125 * to come online or time out. 126 */ 127 wait_for_completion_timeout(&cpu_running, 128 msecs_to_jiffies(1000)); 129 130 if (!cpu_online(cpu)) { 131 pr_crit("CPU%u: failed to come online\n", cpu); 132 ret = -EIO; 133 } 134 } else { 135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 136 } 137 138 139 memset(&secondary_data, 0, sizeof(secondary_data)); 140 return ret; 141 } 142 143 /* platform specific SMP operations */ 144 void __init smp_init_cpus(void) 145 { 146 if (smp_ops.smp_init_cpus) 147 smp_ops.smp_init_cpus(); 148 } 149 150 int platform_can_secondary_boot(void) 151 { 152 return !!smp_ops.smp_boot_secondary; 153 } 154 155 int platform_can_cpu_hotplug(void) 156 { 157 #ifdef CONFIG_HOTPLUG_CPU 158 if (smp_ops.cpu_kill) 159 return 1; 160 #endif 161 162 return 0; 163 } 164 165 #ifdef CONFIG_HOTPLUG_CPU 166 static int platform_cpu_kill(unsigned int cpu) 167 { 168 if (smp_ops.cpu_kill) 169 return smp_ops.cpu_kill(cpu); 170 return 1; 171 } 172 173 static int platform_cpu_disable(unsigned int cpu) 174 { 175 if (smp_ops.cpu_disable) 176 return smp_ops.cpu_disable(cpu); 177 178 return 0; 179 } 180 181 int platform_can_hotplug_cpu(unsigned int cpu) 182 { 183 /* cpu_die must be specified to support hotplug */ 184 if (!smp_ops.cpu_die) 185 return 0; 186 187 if (smp_ops.cpu_can_disable) 188 return smp_ops.cpu_can_disable(cpu); 189 190 /* 191 * By default, allow disabling all CPUs except the first one, 192 * since this is special on a lot of platforms, e.g. because 193 * of clock tick interrupts. 194 */ 195 return cpu != 0; 196 } 197 198 /* 199 * __cpu_disable runs on the processor to be shutdown. 200 */ 201 int __cpu_disable(void) 202 { 203 unsigned int cpu = smp_processor_id(); 204 int ret; 205 206 ret = platform_cpu_disable(cpu); 207 if (ret) 208 return ret; 209 210 /* 211 * Take this CPU offline. Once we clear this, we can't return, 212 * and we must not schedule until we're ready to give up the cpu. 213 */ 214 set_cpu_online(cpu, false); 215 216 /* 217 * OK - migrate IRQs away from this CPU 218 */ 219 migrate_irqs(); 220 221 /* 222 * Flush user cache and TLB mappings, and then remove this CPU 223 * from the vm mask set of all processes. 224 * 225 * Caches are flushed to the Level of Unification Inner Shareable 226 * to write-back dirty lines to unified caches shared by all CPUs. 227 */ 228 flush_cache_louis(); 229 local_flush_tlb_all(); 230 231 clear_tasks_mm_cpumask(cpu); 232 233 return 0; 234 } 235 236 static DECLARE_COMPLETION(cpu_died); 237 238 /* 239 * called on the thread which is asking for a CPU to be shutdown - 240 * waits until shutdown has completed, or it is timed out. 241 */ 242 void __cpu_die(unsigned int cpu) 243 { 244 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 245 pr_err("CPU%u: cpu didn't die\n", cpu); 246 return; 247 } 248 pr_notice("CPU%u: shutdown\n", cpu); 249 250 /* 251 * platform_cpu_kill() is generally expected to do the powering off 252 * and/or cutting of clocks to the dying CPU. Optionally, this may 253 * be done by the CPU which is dying in preference to supporting 254 * this call, but that means there is _no_ synchronisation between 255 * the requesting CPU and the dying CPU actually losing power. 256 */ 257 if (!platform_cpu_kill(cpu)) 258 pr_err("CPU%u: unable to kill\n", cpu); 259 } 260 261 /* 262 * Called from the idle thread for the CPU which has been shutdown. 263 * 264 * Note that we disable IRQs here, but do not re-enable them 265 * before returning to the caller. This is also the behaviour 266 * of the other hotplug-cpu capable cores, so presumably coming 267 * out of idle fixes this. 268 */ 269 void __ref cpu_die(void) 270 { 271 unsigned int cpu = smp_processor_id(); 272 273 idle_task_exit(); 274 275 local_irq_disable(); 276 277 /* 278 * Flush the data out of the L1 cache for this CPU. This must be 279 * before the completion to ensure that data is safely written out 280 * before platform_cpu_kill() gets called - which may disable 281 * *this* CPU and power down its cache. 282 */ 283 flush_cache_louis(); 284 285 /* 286 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 287 * this returns, power and/or clocks can be removed at any point 288 * from this CPU and its cache by platform_cpu_kill(). 289 */ 290 complete(&cpu_died); 291 292 /* 293 * Ensure that the cache lines associated with that completion are 294 * written out. This covers the case where _this_ CPU is doing the 295 * powering down, to ensure that the completion is visible to the 296 * CPU waiting for this one. 297 */ 298 flush_cache_louis(); 299 300 /* 301 * The actual CPU shutdown procedure is at least platform (if not 302 * CPU) specific. This may remove power, or it may simply spin. 303 * 304 * Platforms are generally expected *NOT* to return from this call, 305 * although there are some which do because they have no way to 306 * power down the CPU. These platforms are the _only_ reason we 307 * have a return path which uses the fragment of assembly below. 308 * 309 * The return path should not be used for platforms which can 310 * power off the CPU. 311 */ 312 if (smp_ops.cpu_die) 313 smp_ops.cpu_die(cpu); 314 315 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 316 cpu); 317 318 /* 319 * Do not return to the idle loop - jump back to the secondary 320 * cpu initialisation. There's some initialisation which needs 321 * to be repeated to undo the effects of taking the CPU offline. 322 */ 323 __asm__("mov sp, %0\n" 324 " mov fp, #0\n" 325 " b secondary_start_kernel" 326 : 327 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 328 } 329 #endif /* CONFIG_HOTPLUG_CPU */ 330 331 /* 332 * Called by both boot and secondaries to move global data into 333 * per-processor storage. 334 */ 335 static void smp_store_cpu_info(unsigned int cpuid) 336 { 337 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 338 339 cpu_info->loops_per_jiffy = loops_per_jiffy; 340 cpu_info->cpuid = read_cpuid_id(); 341 342 store_cpu_topology(cpuid); 343 } 344 345 /* 346 * This is the secondary CPU boot entry. We're using this CPUs 347 * idle thread stack, but a set of temporary page tables. 348 */ 349 asmlinkage void secondary_start_kernel(void) 350 { 351 struct mm_struct *mm = &init_mm; 352 unsigned int cpu; 353 354 /* 355 * The identity mapping is uncached (strongly ordered), so 356 * switch away from it before attempting any exclusive accesses. 357 */ 358 cpu_switch_mm(mm->pgd, mm); 359 local_flush_bp_all(); 360 enter_lazy_tlb(mm, current); 361 local_flush_tlb_all(); 362 363 /* 364 * All kernel threads share the same mm context; grab a 365 * reference and switch to it. 366 */ 367 cpu = smp_processor_id(); 368 atomic_inc(&mm->mm_count); 369 current->active_mm = mm; 370 cpumask_set_cpu(cpu, mm_cpumask(mm)); 371 372 cpu_init(); 373 374 pr_debug("CPU%u: Booted secondary processor\n", cpu); 375 376 preempt_disable(); 377 trace_hardirqs_off(); 378 379 /* 380 * Give the platform a chance to do its own initialisation. 381 */ 382 if (smp_ops.smp_secondary_init) 383 smp_ops.smp_secondary_init(cpu); 384 385 notify_cpu_starting(cpu); 386 387 calibrate_delay(); 388 389 smp_store_cpu_info(cpu); 390 391 /* 392 * OK, now it's safe to let the boot CPU continue. Wait for 393 * the CPU migration code to notice that the CPU is online 394 * before we continue - which happens after __cpu_up returns. 395 */ 396 set_cpu_online(cpu, true); 397 complete(&cpu_running); 398 399 local_irq_enable(); 400 local_fiq_enable(); 401 402 /* 403 * OK, it's off to the idle thread for us 404 */ 405 cpu_startup_entry(CPUHP_ONLINE); 406 } 407 408 void __init smp_cpus_done(unsigned int max_cpus) 409 { 410 int cpu; 411 unsigned long bogosum = 0; 412 413 for_each_online_cpu(cpu) 414 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 415 416 printk(KERN_INFO "SMP: Total of %d processors activated " 417 "(%lu.%02lu BogoMIPS).\n", 418 num_online_cpus(), 419 bogosum / (500000/HZ), 420 (bogosum / (5000/HZ)) % 100); 421 422 hyp_mode_check(); 423 } 424 425 void __init smp_prepare_boot_cpu(void) 426 { 427 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 428 } 429 430 void __init smp_prepare_cpus(unsigned int max_cpus) 431 { 432 unsigned int ncores = num_possible_cpus(); 433 434 init_cpu_topology(); 435 436 smp_store_cpu_info(smp_processor_id()); 437 438 /* 439 * are we trying to boot more cores than exist? 440 */ 441 if (max_cpus > ncores) 442 max_cpus = ncores; 443 if (ncores > 1 && max_cpus) { 444 /* 445 * Initialise the present map, which describes the set of CPUs 446 * actually populated at the present time. A platform should 447 * re-initialize the map in the platforms smp_prepare_cpus() 448 * if present != possible (e.g. physical hotplug). 449 */ 450 init_cpu_present(cpu_possible_mask); 451 452 /* 453 * Initialise the SCU if there are more than one CPU 454 * and let them know where to start. 455 */ 456 if (smp_ops.smp_prepare_cpus) 457 smp_ops.smp_prepare_cpus(max_cpus); 458 } 459 } 460 461 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 462 463 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 464 { 465 if (!__smp_cross_call) 466 __smp_cross_call = fn; 467 } 468 469 static const char *ipi_types[NR_IPI] __tracepoint_string = { 470 #define S(x,s) [x] = s 471 S(IPI_WAKEUP, "CPU wakeup interrupts"), 472 S(IPI_TIMER, "Timer broadcast interrupts"), 473 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 474 S(IPI_CALL_FUNC, "Function call interrupts"), 475 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 476 S(IPI_CPU_STOP, "CPU stop interrupts"), 477 S(IPI_IRQ_WORK, "IRQ work interrupts"), 478 S(IPI_COMPLETION, "completion interrupts"), 479 }; 480 481 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 482 { 483 trace_ipi_raise(target, ipi_types[ipinr]); 484 __smp_cross_call(target, ipinr); 485 } 486 487 void show_ipi_list(struct seq_file *p, int prec) 488 { 489 unsigned int cpu, i; 490 491 for (i = 0; i < NR_IPI; i++) { 492 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 493 494 for_each_online_cpu(cpu) 495 seq_printf(p, "%10u ", 496 __get_irq_stat(cpu, ipi_irqs[i])); 497 498 seq_printf(p, " %s\n", ipi_types[i]); 499 } 500 } 501 502 u64 smp_irq_stat_cpu(unsigned int cpu) 503 { 504 u64 sum = 0; 505 int i; 506 507 for (i = 0; i < NR_IPI; i++) 508 sum += __get_irq_stat(cpu, ipi_irqs[i]); 509 510 return sum; 511 } 512 513 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 514 { 515 smp_cross_call(mask, IPI_CALL_FUNC); 516 } 517 518 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 519 { 520 smp_cross_call(mask, IPI_WAKEUP); 521 } 522 523 void arch_send_call_function_single_ipi(int cpu) 524 { 525 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 526 } 527 528 #ifdef CONFIG_IRQ_WORK 529 void arch_irq_work_raise(void) 530 { 531 if (arch_irq_work_has_interrupt()) 532 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 533 } 534 #endif 535 536 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 537 void tick_broadcast(const struct cpumask *mask) 538 { 539 smp_cross_call(mask, IPI_TIMER); 540 } 541 #endif 542 543 static DEFINE_RAW_SPINLOCK(stop_lock); 544 545 /* 546 * ipi_cpu_stop - handle IPI from smp_send_stop() 547 */ 548 static void ipi_cpu_stop(unsigned int cpu) 549 { 550 if (system_state == SYSTEM_BOOTING || 551 system_state == SYSTEM_RUNNING) { 552 raw_spin_lock(&stop_lock); 553 pr_crit("CPU%u: stopping\n", cpu); 554 dump_stack(); 555 raw_spin_unlock(&stop_lock); 556 } 557 558 set_cpu_online(cpu, false); 559 560 local_fiq_disable(); 561 local_irq_disable(); 562 563 while (1) 564 cpu_relax(); 565 } 566 567 static DEFINE_PER_CPU(struct completion *, cpu_completion); 568 569 int register_ipi_completion(struct completion *completion, int cpu) 570 { 571 per_cpu(cpu_completion, cpu) = completion; 572 return IPI_COMPLETION; 573 } 574 575 static void ipi_complete(unsigned int cpu) 576 { 577 complete(per_cpu(cpu_completion, cpu)); 578 } 579 580 /* 581 * Main handler for inter-processor interrupts 582 */ 583 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 584 { 585 handle_IPI(ipinr, regs); 586 } 587 588 void handle_IPI(int ipinr, struct pt_regs *regs) 589 { 590 unsigned int cpu = smp_processor_id(); 591 struct pt_regs *old_regs = set_irq_regs(regs); 592 593 if ((unsigned)ipinr < NR_IPI) { 594 trace_ipi_entry(ipi_types[ipinr]); 595 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 596 } 597 598 switch (ipinr) { 599 case IPI_WAKEUP: 600 break; 601 602 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 603 case IPI_TIMER: 604 irq_enter(); 605 tick_receive_broadcast(); 606 irq_exit(); 607 break; 608 #endif 609 610 case IPI_RESCHEDULE: 611 scheduler_ipi(); 612 break; 613 614 case IPI_CALL_FUNC: 615 irq_enter(); 616 generic_smp_call_function_interrupt(); 617 irq_exit(); 618 break; 619 620 case IPI_CALL_FUNC_SINGLE: 621 irq_enter(); 622 generic_smp_call_function_single_interrupt(); 623 irq_exit(); 624 break; 625 626 case IPI_CPU_STOP: 627 irq_enter(); 628 ipi_cpu_stop(cpu); 629 irq_exit(); 630 break; 631 632 #ifdef CONFIG_IRQ_WORK 633 case IPI_IRQ_WORK: 634 irq_enter(); 635 irq_work_run(); 636 irq_exit(); 637 break; 638 #endif 639 640 case IPI_COMPLETION: 641 irq_enter(); 642 ipi_complete(cpu); 643 irq_exit(); 644 break; 645 646 default: 647 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 648 cpu, ipinr); 649 break; 650 } 651 652 if ((unsigned)ipinr < NR_IPI) 653 trace_ipi_exit(ipi_types[ipinr]); 654 set_irq_regs(old_regs); 655 } 656 657 void smp_send_reschedule(int cpu) 658 { 659 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 660 } 661 662 void smp_send_stop(void) 663 { 664 unsigned long timeout; 665 struct cpumask mask; 666 667 cpumask_copy(&mask, cpu_online_mask); 668 cpumask_clear_cpu(smp_processor_id(), &mask); 669 if (!cpumask_empty(&mask)) 670 smp_cross_call(&mask, IPI_CPU_STOP); 671 672 /* Wait up to one second for other CPUs to stop */ 673 timeout = USEC_PER_SEC; 674 while (num_online_cpus() > 1 && timeout--) 675 udelay(1); 676 677 if (num_online_cpus() > 1) 678 pr_warn("SMP: failed to stop secondary CPUs\n"); 679 } 680 681 /* 682 * not supported here 683 */ 684 int setup_profiling_timer(unsigned int multiplier) 685 { 686 return -EINVAL; 687 } 688 689 #ifdef CONFIG_CPU_FREQ 690 691 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 692 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 693 static unsigned long global_l_p_j_ref; 694 static unsigned long global_l_p_j_ref_freq; 695 696 static int cpufreq_callback(struct notifier_block *nb, 697 unsigned long val, void *data) 698 { 699 struct cpufreq_freqs *freq = data; 700 int cpu = freq->cpu; 701 702 if (freq->flags & CPUFREQ_CONST_LOOPS) 703 return NOTIFY_OK; 704 705 if (!per_cpu(l_p_j_ref, cpu)) { 706 per_cpu(l_p_j_ref, cpu) = 707 per_cpu(cpu_data, cpu).loops_per_jiffy; 708 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 709 if (!global_l_p_j_ref) { 710 global_l_p_j_ref = loops_per_jiffy; 711 global_l_p_j_ref_freq = freq->old; 712 } 713 } 714 715 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 716 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 717 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 718 global_l_p_j_ref_freq, 719 freq->new); 720 per_cpu(cpu_data, cpu).loops_per_jiffy = 721 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 722 per_cpu(l_p_j_ref_freq, cpu), 723 freq->new); 724 } 725 return NOTIFY_OK; 726 } 727 728 static struct notifier_block cpufreq_notifier = { 729 .notifier_call = cpufreq_callback, 730 }; 731 732 static int __init register_cpufreq_notifier(void) 733 { 734 return cpufreq_register_notifier(&cpufreq_notifier, 735 CPUFREQ_TRANSITION_NOTIFIER); 736 } 737 core_initcall(register_cpufreq_notifier); 738 739 #endif 740