1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 26 #include <asm/atomic.h> 27 #include <asm/cacheflush.h> 28 #include <asm/cpu.h> 29 #include <asm/mmu_context.h> 30 #include <asm/pgtable.h> 31 #include <asm/pgalloc.h> 32 #include <asm/processor.h> 33 #include <asm/tlbflush.h> 34 #include <asm/ptrace.h> 35 36 /* 37 * as from 2.5, kernels no longer have an init_tasks structure 38 * so we need some other way of telling a new secondary core 39 * where to place its SVC stack 40 */ 41 struct secondary_data secondary_data; 42 43 /* 44 * structures for inter-processor calls 45 * - A collection of single bit ipi messages. 46 */ 47 struct ipi_data { 48 spinlock_t lock; 49 unsigned long ipi_count; 50 unsigned long bits; 51 }; 52 53 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 54 .lock = SPIN_LOCK_UNLOCKED, 55 }; 56 57 enum ipi_msg_type { 58 IPI_TIMER, 59 IPI_RESCHEDULE, 60 IPI_CALL_FUNC, 61 IPI_CALL_FUNC_SINGLE, 62 IPI_CPU_STOP, 63 }; 64 65 int __cpuinit __cpu_up(unsigned int cpu) 66 { 67 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 68 struct task_struct *idle = ci->idle; 69 pgd_t *pgd; 70 pmd_t *pmd; 71 int ret; 72 73 /* 74 * Spawn a new process manually, if not already done. 75 * Grab a pointer to its task struct so we can mess with it 76 */ 77 if (!idle) { 78 idle = fork_idle(cpu); 79 if (IS_ERR(idle)) { 80 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 81 return PTR_ERR(idle); 82 } 83 ci->idle = idle; 84 } 85 86 /* 87 * Allocate initial page tables to allow the new CPU to 88 * enable the MMU safely. This essentially means a set 89 * of our "standard" page tables, with the addition of 90 * a 1:1 mapping for the physical address of the kernel. 91 */ 92 pgd = pgd_alloc(&init_mm); 93 pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET); 94 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 95 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 96 97 /* 98 * We need to tell the secondary core where to find 99 * its stack and the page tables. 100 */ 101 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 102 secondary_data.pgdir = virt_to_phys(pgd); 103 wmb(); 104 105 /* 106 * Now bring the CPU into our world. 107 */ 108 ret = boot_secondary(cpu, idle); 109 if (ret == 0) { 110 unsigned long timeout; 111 112 /* 113 * CPU was successfully started, wait for it 114 * to come online or time out. 115 */ 116 timeout = jiffies + HZ; 117 while (time_before(jiffies, timeout)) { 118 if (cpu_online(cpu)) 119 break; 120 121 udelay(10); 122 barrier(); 123 } 124 125 if (!cpu_online(cpu)) 126 ret = -EIO; 127 } 128 129 secondary_data.stack = NULL; 130 secondary_data.pgdir = 0; 131 132 *pmd = __pmd(0); 133 pgd_free(&init_mm, pgd); 134 135 if (ret) { 136 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 137 138 /* 139 * FIXME: We need to clean up the new idle thread. --rmk 140 */ 141 } 142 143 return ret; 144 } 145 146 #ifdef CONFIG_HOTPLUG_CPU 147 /* 148 * __cpu_disable runs on the processor to be shutdown. 149 */ 150 int __cpuexit __cpu_disable(void) 151 { 152 unsigned int cpu = smp_processor_id(); 153 struct task_struct *p; 154 int ret; 155 156 ret = mach_cpu_disable(cpu); 157 if (ret) 158 return ret; 159 160 /* 161 * Take this CPU offline. Once we clear this, we can't return, 162 * and we must not schedule until we're ready to give up the cpu. 163 */ 164 cpu_clear(cpu, cpu_online_map); 165 166 /* 167 * OK - migrate IRQs away from this CPU 168 */ 169 migrate_irqs(); 170 171 /* 172 * Stop the local timer for this CPU. 173 */ 174 local_timer_stop(); 175 176 /* 177 * Flush user cache and TLB mappings, and then remove this CPU 178 * from the vm mask set of all processes. 179 */ 180 flush_cache_all(); 181 local_flush_tlb_all(); 182 183 read_lock(&tasklist_lock); 184 for_each_process(p) { 185 if (p->mm) 186 cpu_clear(cpu, p->mm->cpu_vm_mask); 187 } 188 read_unlock(&tasklist_lock); 189 190 return 0; 191 } 192 193 /* 194 * called on the thread which is asking for a CPU to be shutdown - 195 * waits until shutdown has completed, or it is timed out. 196 */ 197 void __cpuexit __cpu_die(unsigned int cpu) 198 { 199 if (!platform_cpu_kill(cpu)) 200 printk("CPU%u: unable to kill\n", cpu); 201 } 202 203 /* 204 * Called from the idle thread for the CPU which has been shutdown. 205 * 206 * Note that we disable IRQs here, but do not re-enable them 207 * before returning to the caller. This is also the behaviour 208 * of the other hotplug-cpu capable cores, so presumably coming 209 * out of idle fixes this. 210 */ 211 void __cpuexit cpu_die(void) 212 { 213 unsigned int cpu = smp_processor_id(); 214 215 local_irq_disable(); 216 idle_task_exit(); 217 218 /* 219 * actual CPU shutdown procedure is at least platform (if not 220 * CPU) specific 221 */ 222 platform_cpu_die(cpu); 223 224 /* 225 * Do not return to the idle loop - jump back to the secondary 226 * cpu initialisation. There's some initialisation which needs 227 * to be repeated to undo the effects of taking the CPU offline. 228 */ 229 __asm__("mov sp, %0\n" 230 " b secondary_start_kernel" 231 : 232 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 233 } 234 #endif /* CONFIG_HOTPLUG_CPU */ 235 236 /* 237 * This is the secondary CPU boot entry. We're using this CPUs 238 * idle thread stack, but a set of temporary page tables. 239 */ 240 asmlinkage void __cpuinit secondary_start_kernel(void) 241 { 242 struct mm_struct *mm = &init_mm; 243 unsigned int cpu = smp_processor_id(); 244 245 printk("CPU%u: Booted secondary processor\n", cpu); 246 247 /* 248 * All kernel threads share the same mm context; grab a 249 * reference and switch to it. 250 */ 251 atomic_inc(&mm->mm_users); 252 atomic_inc(&mm->mm_count); 253 current->active_mm = mm; 254 cpu_set(cpu, mm->cpu_vm_mask); 255 cpu_switch_mm(mm->pgd, mm); 256 enter_lazy_tlb(mm, current); 257 local_flush_tlb_all(); 258 259 cpu_init(); 260 preempt_disable(); 261 262 /* 263 * Give the platform a chance to do its own initialisation. 264 */ 265 platform_secondary_init(cpu); 266 267 /* 268 * Enable local interrupts. 269 */ 270 notify_cpu_starting(cpu); 271 local_irq_enable(); 272 local_fiq_enable(); 273 274 /* 275 * Setup local timer for this CPU. 276 */ 277 local_timer_setup(); 278 279 calibrate_delay(); 280 281 smp_store_cpu_info(cpu); 282 283 /* 284 * OK, now it's safe to let the boot CPU continue 285 */ 286 cpu_set(cpu, cpu_online_map); 287 288 /* 289 * OK, it's off to the idle thread for us 290 */ 291 cpu_idle(); 292 } 293 294 /* 295 * Called by both boot and secondaries to move global data into 296 * per-processor storage. 297 */ 298 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 299 { 300 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 301 302 cpu_info->loops_per_jiffy = loops_per_jiffy; 303 } 304 305 void __init smp_cpus_done(unsigned int max_cpus) 306 { 307 int cpu; 308 unsigned long bogosum = 0; 309 310 for_each_online_cpu(cpu) 311 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 312 313 printk(KERN_INFO "SMP: Total of %d processors activated " 314 "(%lu.%02lu BogoMIPS).\n", 315 num_online_cpus(), 316 bogosum / (500000/HZ), 317 (bogosum / (5000/HZ)) % 100); 318 } 319 320 void __init smp_prepare_boot_cpu(void) 321 { 322 unsigned int cpu = smp_processor_id(); 323 324 per_cpu(cpu_data, cpu).idle = current; 325 } 326 327 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 328 { 329 unsigned long flags; 330 unsigned int cpu; 331 332 local_irq_save(flags); 333 334 for_each_cpu_mask(cpu, callmap) { 335 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 336 337 spin_lock(&ipi->lock); 338 ipi->bits |= 1 << msg; 339 spin_unlock(&ipi->lock); 340 } 341 342 /* 343 * Call the platform specific cross-CPU call function. 344 */ 345 smp_cross_call(callmap); 346 347 local_irq_restore(flags); 348 } 349 350 void arch_send_call_function_ipi(cpumask_t mask) 351 { 352 send_ipi_message(mask, IPI_CALL_FUNC); 353 } 354 355 void arch_send_call_function_single_ipi(int cpu) 356 { 357 send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE); 358 } 359 360 void show_ipi_list(struct seq_file *p) 361 { 362 unsigned int cpu; 363 364 seq_puts(p, "IPI:"); 365 366 for_each_present_cpu(cpu) 367 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 368 369 seq_putc(p, '\n'); 370 } 371 372 void show_local_irqs(struct seq_file *p) 373 { 374 unsigned int cpu; 375 376 seq_printf(p, "LOC: "); 377 378 for_each_present_cpu(cpu) 379 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 380 381 seq_putc(p, '\n'); 382 } 383 384 static void ipi_timer(void) 385 { 386 irq_enter(); 387 local_timer_interrupt(); 388 irq_exit(); 389 } 390 391 #ifdef CONFIG_LOCAL_TIMERS 392 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 393 { 394 struct pt_regs *old_regs = set_irq_regs(regs); 395 int cpu = smp_processor_id(); 396 397 if (local_timer_ack()) { 398 irq_stat[cpu].local_timer_irqs++; 399 ipi_timer(); 400 } 401 402 set_irq_regs(old_regs); 403 } 404 #endif 405 406 static DEFINE_SPINLOCK(stop_lock); 407 408 /* 409 * ipi_cpu_stop - handle IPI from smp_send_stop() 410 */ 411 static void ipi_cpu_stop(unsigned int cpu) 412 { 413 spin_lock(&stop_lock); 414 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 415 dump_stack(); 416 spin_unlock(&stop_lock); 417 418 cpu_clear(cpu, cpu_online_map); 419 420 local_fiq_disable(); 421 local_irq_disable(); 422 423 while (1) 424 cpu_relax(); 425 } 426 427 /* 428 * Main handler for inter-processor interrupts 429 * 430 * For ARM, the ipimask now only identifies a single 431 * category of IPI (Bit 1 IPIs have been replaced by a 432 * different mechanism): 433 * 434 * Bit 0 - Inter-processor function call 435 */ 436 asmlinkage void __exception do_IPI(struct pt_regs *regs) 437 { 438 unsigned int cpu = smp_processor_id(); 439 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 440 struct pt_regs *old_regs = set_irq_regs(regs); 441 442 ipi->ipi_count++; 443 444 for (;;) { 445 unsigned long msgs; 446 447 spin_lock(&ipi->lock); 448 msgs = ipi->bits; 449 ipi->bits = 0; 450 spin_unlock(&ipi->lock); 451 452 if (!msgs) 453 break; 454 455 do { 456 unsigned nextmsg; 457 458 nextmsg = msgs & -msgs; 459 msgs &= ~nextmsg; 460 nextmsg = ffz(~nextmsg); 461 462 switch (nextmsg) { 463 case IPI_TIMER: 464 ipi_timer(); 465 break; 466 467 case IPI_RESCHEDULE: 468 /* 469 * nothing more to do - eveything is 470 * done on the interrupt return path 471 */ 472 break; 473 474 case IPI_CALL_FUNC: 475 generic_smp_call_function_interrupt(); 476 break; 477 478 case IPI_CALL_FUNC_SINGLE: 479 generic_smp_call_function_single_interrupt(); 480 break; 481 482 case IPI_CPU_STOP: 483 ipi_cpu_stop(cpu); 484 break; 485 486 default: 487 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 488 cpu, nextmsg); 489 break; 490 } 491 } while (msgs); 492 } 493 494 set_irq_regs(old_regs); 495 } 496 497 void smp_send_reschedule(int cpu) 498 { 499 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 500 } 501 502 void smp_send_timer(void) 503 { 504 cpumask_t mask = cpu_online_map; 505 cpu_clear(smp_processor_id(), mask); 506 send_ipi_message(mask, IPI_TIMER); 507 } 508 509 void smp_timer_broadcast(cpumask_t mask) 510 { 511 send_ipi_message(mask, IPI_TIMER); 512 } 513 514 void smp_send_stop(void) 515 { 516 cpumask_t mask = cpu_online_map; 517 cpu_clear(smp_processor_id(), mask); 518 send_ipi_message(mask, IPI_CPU_STOP); 519 } 520 521 /* 522 * not supported here 523 */ 524 int setup_profiling_timer(unsigned int multiplier) 525 { 526 return -EINVAL; 527 } 528 529 static int 530 on_each_cpu_mask(void (*func)(void *), void *info, int wait, cpumask_t mask) 531 { 532 int ret = 0; 533 534 preempt_disable(); 535 536 ret = smp_call_function_mask(mask, func, info, wait); 537 if (cpu_isset(smp_processor_id(), mask)) 538 func(info); 539 540 preempt_enable(); 541 542 return ret; 543 } 544 545 /**********************************************************************/ 546 547 /* 548 * TLB operations 549 */ 550 struct tlb_args { 551 struct vm_area_struct *ta_vma; 552 unsigned long ta_start; 553 unsigned long ta_end; 554 }; 555 556 static inline void ipi_flush_tlb_all(void *ignored) 557 { 558 local_flush_tlb_all(); 559 } 560 561 static inline void ipi_flush_tlb_mm(void *arg) 562 { 563 struct mm_struct *mm = (struct mm_struct *)arg; 564 565 local_flush_tlb_mm(mm); 566 } 567 568 static inline void ipi_flush_tlb_page(void *arg) 569 { 570 struct tlb_args *ta = (struct tlb_args *)arg; 571 572 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 573 } 574 575 static inline void ipi_flush_tlb_kernel_page(void *arg) 576 { 577 struct tlb_args *ta = (struct tlb_args *)arg; 578 579 local_flush_tlb_kernel_page(ta->ta_start); 580 } 581 582 static inline void ipi_flush_tlb_range(void *arg) 583 { 584 struct tlb_args *ta = (struct tlb_args *)arg; 585 586 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 587 } 588 589 static inline void ipi_flush_tlb_kernel_range(void *arg) 590 { 591 struct tlb_args *ta = (struct tlb_args *)arg; 592 593 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 594 } 595 596 void flush_tlb_all(void) 597 { 598 on_each_cpu(ipi_flush_tlb_all, NULL, 1); 599 } 600 601 void flush_tlb_mm(struct mm_struct *mm) 602 { 603 cpumask_t mask = mm->cpu_vm_mask; 604 605 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mask); 606 } 607 608 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 609 { 610 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 611 struct tlb_args ta; 612 613 ta.ta_vma = vma; 614 ta.ta_start = uaddr; 615 616 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mask); 617 } 618 619 void flush_tlb_kernel_page(unsigned long kaddr) 620 { 621 struct tlb_args ta; 622 623 ta.ta_start = kaddr; 624 625 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1); 626 } 627 628 void flush_tlb_range(struct vm_area_struct *vma, 629 unsigned long start, unsigned long end) 630 { 631 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 632 struct tlb_args ta; 633 634 ta.ta_vma = vma; 635 ta.ta_start = start; 636 ta.ta_end = end; 637 638 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mask); 639 } 640 641 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 642 { 643 struct tlb_args ta; 644 645 ta.ta_start = start; 646 ta.ta_end = end; 647 648 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 649 } 650