1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 28 #include <linux/atomic.h> 29 #include <asm/smp.h> 30 #include <asm/cacheflush.h> 31 #include <asm/cpu.h> 32 #include <asm/cputype.h> 33 #include <asm/exception.h> 34 #include <asm/idmap.h> 35 #include <asm/topology.h> 36 #include <asm/mmu_context.h> 37 #include <asm/pgtable.h> 38 #include <asm/pgalloc.h> 39 #include <asm/processor.h> 40 #include <asm/sections.h> 41 #include <asm/tlbflush.h> 42 #include <asm/ptrace.h> 43 #include <asm/localtimer.h> 44 #include <asm/smp_plat.h> 45 #include <asm/mach/arch.h> 46 47 /* 48 * as from 2.5, kernels no longer have an init_tasks structure 49 * so we need some other way of telling a new secondary core 50 * where to place its SVC stack 51 */ 52 struct secondary_data secondary_data; 53 54 /* 55 * control for which core is the next to come out of the secondary 56 * boot "holding pen" 57 */ 58 volatile int __cpuinitdata pen_release = -1; 59 60 enum ipi_msg_type { 61 IPI_TIMER = 2, 62 IPI_RESCHEDULE, 63 IPI_CALL_FUNC, 64 IPI_CALL_FUNC_SINGLE, 65 IPI_CPU_STOP, 66 }; 67 68 static DECLARE_COMPLETION(cpu_running); 69 70 static struct smp_operations smp_ops; 71 72 void __init smp_set_ops(struct smp_operations *ops) 73 { 74 if (ops) 75 smp_ops = *ops; 76 }; 77 78 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) 79 { 80 int ret; 81 82 /* 83 * We need to tell the secondary core where to find 84 * its stack and the page tables. 85 */ 86 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 87 secondary_data.pgdir = virt_to_phys(idmap_pgd); 88 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 89 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 90 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 91 92 /* 93 * Now bring the CPU into our world. 94 */ 95 ret = boot_secondary(cpu, idle); 96 if (ret == 0) { 97 /* 98 * CPU was successfully started, wait for it 99 * to come online or time out. 100 */ 101 wait_for_completion_timeout(&cpu_running, 102 msecs_to_jiffies(1000)); 103 104 if (!cpu_online(cpu)) { 105 pr_crit("CPU%u: failed to come online\n", cpu); 106 ret = -EIO; 107 } 108 } else { 109 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 110 } 111 112 secondary_data.stack = NULL; 113 secondary_data.pgdir = 0; 114 115 return ret; 116 } 117 118 /* platform specific SMP operations */ 119 void __init smp_init_cpus(void) 120 { 121 if (smp_ops.smp_init_cpus) 122 smp_ops.smp_init_cpus(); 123 } 124 125 static void __init platform_smp_prepare_cpus(unsigned int max_cpus) 126 { 127 if (smp_ops.smp_prepare_cpus) 128 smp_ops.smp_prepare_cpus(max_cpus); 129 } 130 131 static void __cpuinit platform_secondary_init(unsigned int cpu) 132 { 133 if (smp_ops.smp_secondary_init) 134 smp_ops.smp_secondary_init(cpu); 135 } 136 137 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 138 { 139 if (smp_ops.smp_boot_secondary) 140 return smp_ops.smp_boot_secondary(cpu, idle); 141 return -ENOSYS; 142 } 143 144 #ifdef CONFIG_HOTPLUG_CPU 145 static void percpu_timer_stop(void); 146 147 static int platform_cpu_kill(unsigned int cpu) 148 { 149 if (smp_ops.cpu_kill) 150 return smp_ops.cpu_kill(cpu); 151 return 1; 152 } 153 154 static void platform_cpu_die(unsigned int cpu) 155 { 156 if (smp_ops.cpu_die) 157 smp_ops.cpu_die(cpu); 158 } 159 160 static int platform_cpu_disable(unsigned int cpu) 161 { 162 if (smp_ops.cpu_disable) 163 return smp_ops.cpu_disable(cpu); 164 165 /* 166 * By default, allow disabling all CPUs except the first one, 167 * since this is special on a lot of platforms, e.g. because 168 * of clock tick interrupts. 169 */ 170 return cpu == 0 ? -EPERM : 0; 171 } 172 /* 173 * __cpu_disable runs on the processor to be shutdown. 174 */ 175 int __cpuinit __cpu_disable(void) 176 { 177 unsigned int cpu = smp_processor_id(); 178 int ret; 179 180 ret = platform_cpu_disable(cpu); 181 if (ret) 182 return ret; 183 184 /* 185 * Take this CPU offline. Once we clear this, we can't return, 186 * and we must not schedule until we're ready to give up the cpu. 187 */ 188 set_cpu_online(cpu, false); 189 190 /* 191 * OK - migrate IRQs away from this CPU 192 */ 193 migrate_irqs(); 194 195 /* 196 * Stop the local timer for this CPU. 197 */ 198 percpu_timer_stop(); 199 200 /* 201 * Flush user cache and TLB mappings, and then remove this CPU 202 * from the vm mask set of all processes. 203 */ 204 flush_cache_all(); 205 local_flush_tlb_all(); 206 207 clear_tasks_mm_cpumask(cpu); 208 209 return 0; 210 } 211 212 static DECLARE_COMPLETION(cpu_died); 213 214 /* 215 * called on the thread which is asking for a CPU to be shutdown - 216 * waits until shutdown has completed, or it is timed out. 217 */ 218 void __cpuinit __cpu_die(unsigned int cpu) 219 { 220 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 221 pr_err("CPU%u: cpu didn't die\n", cpu); 222 return; 223 } 224 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 225 226 if (!platform_cpu_kill(cpu)) 227 printk("CPU%u: unable to kill\n", cpu); 228 } 229 230 /* 231 * Called from the idle thread for the CPU which has been shutdown. 232 * 233 * Note that we disable IRQs here, but do not re-enable them 234 * before returning to the caller. This is also the behaviour 235 * of the other hotplug-cpu capable cores, so presumably coming 236 * out of idle fixes this. 237 */ 238 void __ref cpu_die(void) 239 { 240 unsigned int cpu = smp_processor_id(); 241 242 idle_task_exit(); 243 244 local_irq_disable(); 245 mb(); 246 247 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 248 RCU_NONIDLE(complete(&cpu_died)); 249 250 /* 251 * actual CPU shutdown procedure is at least platform (if not 252 * CPU) specific. 253 */ 254 platform_cpu_die(cpu); 255 256 /* 257 * Do not return to the idle loop - jump back to the secondary 258 * cpu initialisation. There's some initialisation which needs 259 * to be repeated to undo the effects of taking the CPU offline. 260 */ 261 __asm__("mov sp, %0\n" 262 " mov fp, #0\n" 263 " b secondary_start_kernel" 264 : 265 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 266 } 267 #endif /* CONFIG_HOTPLUG_CPU */ 268 269 /* 270 * Called by both boot and secondaries to move global data into 271 * per-processor storage. 272 */ 273 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 274 { 275 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 276 277 cpu_info->loops_per_jiffy = loops_per_jiffy; 278 279 store_cpu_topology(cpuid); 280 } 281 282 static void percpu_timer_setup(void); 283 284 /* 285 * This is the secondary CPU boot entry. We're using this CPUs 286 * idle thread stack, but a set of temporary page tables. 287 */ 288 asmlinkage void __cpuinit secondary_start_kernel(void) 289 { 290 struct mm_struct *mm = &init_mm; 291 unsigned int cpu = smp_processor_id(); 292 293 /* 294 * All kernel threads share the same mm context; grab a 295 * reference and switch to it. 296 */ 297 atomic_inc(&mm->mm_count); 298 current->active_mm = mm; 299 cpumask_set_cpu(cpu, mm_cpumask(mm)); 300 cpu_switch_mm(mm->pgd, mm); 301 enter_lazy_tlb(mm, current); 302 local_flush_tlb_all(); 303 304 printk("CPU%u: Booted secondary processor\n", cpu); 305 306 cpu_init(); 307 preempt_disable(); 308 trace_hardirqs_off(); 309 310 /* 311 * Give the platform a chance to do its own initialisation. 312 */ 313 platform_secondary_init(cpu); 314 315 notify_cpu_starting(cpu); 316 317 calibrate_delay(); 318 319 smp_store_cpu_info(cpu); 320 321 /* 322 * OK, now it's safe to let the boot CPU continue. Wait for 323 * the CPU migration code to notice that the CPU is online 324 * before we continue - which happens after __cpu_up returns. 325 */ 326 set_cpu_online(cpu, true); 327 complete(&cpu_running); 328 329 /* 330 * Setup the percpu timer for this CPU. 331 */ 332 percpu_timer_setup(); 333 334 local_irq_enable(); 335 local_fiq_enable(); 336 337 /* 338 * OK, it's off to the idle thread for us 339 */ 340 cpu_idle(); 341 } 342 343 void __init smp_cpus_done(unsigned int max_cpus) 344 { 345 int cpu; 346 unsigned long bogosum = 0; 347 348 for_each_online_cpu(cpu) 349 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 350 351 printk(KERN_INFO "SMP: Total of %d processors activated " 352 "(%lu.%02lu BogoMIPS).\n", 353 num_online_cpus(), 354 bogosum / (500000/HZ), 355 (bogosum / (5000/HZ)) % 100); 356 } 357 358 void __init smp_prepare_boot_cpu(void) 359 { 360 } 361 362 void __init smp_prepare_cpus(unsigned int max_cpus) 363 { 364 unsigned int ncores = num_possible_cpus(); 365 366 init_cpu_topology(); 367 368 smp_store_cpu_info(smp_processor_id()); 369 370 /* 371 * are we trying to boot more cores than exist? 372 */ 373 if (max_cpus > ncores) 374 max_cpus = ncores; 375 if (ncores > 1 && max_cpus) { 376 /* 377 * Enable the local timer or broadcast device for the 378 * boot CPU, but only if we have more than one CPU. 379 */ 380 percpu_timer_setup(); 381 382 /* 383 * Initialise the present map, which describes the set of CPUs 384 * actually populated at the present time. A platform should 385 * re-initialize the map in platform_smp_prepare_cpus() if 386 * present != possible (e.g. physical hotplug). 387 */ 388 init_cpu_present(cpu_possible_mask); 389 390 /* 391 * Initialise the SCU if there are more than one CPU 392 * and let them know where to start. 393 */ 394 platform_smp_prepare_cpus(max_cpus); 395 } 396 } 397 398 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 399 400 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 401 { 402 smp_cross_call = fn; 403 } 404 405 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 406 { 407 smp_cross_call(mask, IPI_CALL_FUNC); 408 } 409 410 void arch_send_call_function_single_ipi(int cpu) 411 { 412 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 413 } 414 415 static const char *ipi_types[NR_IPI] = { 416 #define S(x,s) [x - IPI_TIMER] = s 417 S(IPI_TIMER, "Timer broadcast interrupts"), 418 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 419 S(IPI_CALL_FUNC, "Function call interrupts"), 420 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 421 S(IPI_CPU_STOP, "CPU stop interrupts"), 422 }; 423 424 void show_ipi_list(struct seq_file *p, int prec) 425 { 426 unsigned int cpu, i; 427 428 for (i = 0; i < NR_IPI; i++) { 429 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 430 431 for_each_present_cpu(cpu) 432 seq_printf(p, "%10u ", 433 __get_irq_stat(cpu, ipi_irqs[i])); 434 435 seq_printf(p, " %s\n", ipi_types[i]); 436 } 437 } 438 439 u64 smp_irq_stat_cpu(unsigned int cpu) 440 { 441 u64 sum = 0; 442 int i; 443 444 for (i = 0; i < NR_IPI; i++) 445 sum += __get_irq_stat(cpu, ipi_irqs[i]); 446 447 return sum; 448 } 449 450 /* 451 * Timer (local or broadcast) support 452 */ 453 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 454 455 static void ipi_timer(void) 456 { 457 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 458 evt->event_handler(evt); 459 } 460 461 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 462 static void smp_timer_broadcast(const struct cpumask *mask) 463 { 464 smp_cross_call(mask, IPI_TIMER); 465 } 466 #else 467 #define smp_timer_broadcast NULL 468 #endif 469 470 static void broadcast_timer_set_mode(enum clock_event_mode mode, 471 struct clock_event_device *evt) 472 { 473 } 474 475 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 476 { 477 evt->name = "dummy_timer"; 478 evt->features = CLOCK_EVT_FEAT_ONESHOT | 479 CLOCK_EVT_FEAT_PERIODIC | 480 CLOCK_EVT_FEAT_DUMMY; 481 evt->rating = 400; 482 evt->mult = 1; 483 evt->set_mode = broadcast_timer_set_mode; 484 485 clockevents_register_device(evt); 486 } 487 488 static struct local_timer_ops *lt_ops; 489 490 #ifdef CONFIG_LOCAL_TIMERS 491 int local_timer_register(struct local_timer_ops *ops) 492 { 493 if (!is_smp() || !setup_max_cpus) 494 return -ENXIO; 495 496 if (lt_ops) 497 return -EBUSY; 498 499 lt_ops = ops; 500 return 0; 501 } 502 #endif 503 504 static void __cpuinit percpu_timer_setup(void) 505 { 506 unsigned int cpu = smp_processor_id(); 507 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 508 509 evt->cpumask = cpumask_of(cpu); 510 evt->broadcast = smp_timer_broadcast; 511 512 if (!lt_ops || lt_ops->setup(evt)) 513 broadcast_timer_setup(evt); 514 } 515 516 #ifdef CONFIG_HOTPLUG_CPU 517 /* 518 * The generic clock events code purposely does not stop the local timer 519 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 520 * manually here. 521 */ 522 static void percpu_timer_stop(void) 523 { 524 unsigned int cpu = smp_processor_id(); 525 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 526 527 if (lt_ops) 528 lt_ops->stop(evt); 529 } 530 #endif 531 532 static DEFINE_RAW_SPINLOCK(stop_lock); 533 534 /* 535 * ipi_cpu_stop - handle IPI from smp_send_stop() 536 */ 537 static void ipi_cpu_stop(unsigned int cpu) 538 { 539 if (system_state == SYSTEM_BOOTING || 540 system_state == SYSTEM_RUNNING) { 541 raw_spin_lock(&stop_lock); 542 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 543 dump_stack(); 544 raw_spin_unlock(&stop_lock); 545 } 546 547 set_cpu_online(cpu, false); 548 549 local_fiq_disable(); 550 local_irq_disable(); 551 552 while (1) 553 cpu_relax(); 554 } 555 556 /* 557 * Main handler for inter-processor interrupts 558 */ 559 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 560 { 561 handle_IPI(ipinr, regs); 562 } 563 564 void handle_IPI(int ipinr, struct pt_regs *regs) 565 { 566 unsigned int cpu = smp_processor_id(); 567 struct pt_regs *old_regs = set_irq_regs(regs); 568 569 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) 570 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); 571 572 switch (ipinr) { 573 case IPI_TIMER: 574 irq_enter(); 575 ipi_timer(); 576 irq_exit(); 577 break; 578 579 case IPI_RESCHEDULE: 580 scheduler_ipi(); 581 break; 582 583 case IPI_CALL_FUNC: 584 irq_enter(); 585 generic_smp_call_function_interrupt(); 586 irq_exit(); 587 break; 588 589 case IPI_CALL_FUNC_SINGLE: 590 irq_enter(); 591 generic_smp_call_function_single_interrupt(); 592 irq_exit(); 593 break; 594 595 case IPI_CPU_STOP: 596 irq_enter(); 597 ipi_cpu_stop(cpu); 598 irq_exit(); 599 break; 600 601 default: 602 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 603 cpu, ipinr); 604 break; 605 } 606 set_irq_regs(old_regs); 607 } 608 609 void smp_send_reschedule(int cpu) 610 { 611 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 612 } 613 614 #ifdef CONFIG_HOTPLUG_CPU 615 static void smp_kill_cpus(cpumask_t *mask) 616 { 617 unsigned int cpu; 618 for_each_cpu(cpu, mask) 619 platform_cpu_kill(cpu); 620 } 621 #else 622 static void smp_kill_cpus(cpumask_t *mask) { } 623 #endif 624 625 void smp_send_stop(void) 626 { 627 unsigned long timeout; 628 struct cpumask mask; 629 630 cpumask_copy(&mask, cpu_online_mask); 631 cpumask_clear_cpu(smp_processor_id(), &mask); 632 if (!cpumask_empty(&mask)) 633 smp_cross_call(&mask, IPI_CPU_STOP); 634 635 /* Wait up to one second for other CPUs to stop */ 636 timeout = USEC_PER_SEC; 637 while (num_online_cpus() > 1 && timeout--) 638 udelay(1); 639 640 if (num_online_cpus() > 1) 641 pr_warning("SMP: failed to stop secondary CPUs\n"); 642 643 smp_kill_cpus(&mask); 644 } 645 646 /* 647 * not supported here 648 */ 649 int setup_profiling_timer(unsigned int multiplier) 650 { 651 return -EINVAL; 652 } 653