1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 26 #include <asm/atomic.h> 27 #include <asm/cacheflush.h> 28 #include <asm/cpu.h> 29 #include <asm/mmu_context.h> 30 #include <asm/pgtable.h> 31 #include <asm/pgalloc.h> 32 #include <asm/processor.h> 33 #include <asm/tlbflush.h> 34 #include <asm/ptrace.h> 35 36 /* 37 * bitmask of present and online CPUs. 38 * The present bitmask indicates that the CPU is physically present. 39 * The online bitmask indicates that the CPU is up and running. 40 */ 41 cpumask_t cpu_possible_map; 42 EXPORT_SYMBOL(cpu_possible_map); 43 cpumask_t cpu_online_map; 44 EXPORT_SYMBOL(cpu_online_map); 45 46 /* 47 * as from 2.5, kernels no longer have an init_tasks structure 48 * so we need some other way of telling a new secondary core 49 * where to place its SVC stack 50 */ 51 struct secondary_data secondary_data; 52 53 /* 54 * structures for inter-processor calls 55 * - A collection of single bit ipi messages. 56 */ 57 struct ipi_data { 58 spinlock_t lock; 59 unsigned long ipi_count; 60 unsigned long bits; 61 }; 62 63 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 64 .lock = SPIN_LOCK_UNLOCKED, 65 }; 66 67 enum ipi_msg_type { 68 IPI_TIMER, 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CALL_FUNC_SINGLE, 72 IPI_CPU_STOP, 73 }; 74 75 int __cpuinit __cpu_up(unsigned int cpu) 76 { 77 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 78 struct task_struct *idle = ci->idle; 79 pgd_t *pgd; 80 pmd_t *pmd; 81 int ret; 82 83 /* 84 * Spawn a new process manually, if not already done. 85 * Grab a pointer to its task struct so we can mess with it 86 */ 87 if (!idle) { 88 idle = fork_idle(cpu); 89 if (IS_ERR(idle)) { 90 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 91 return PTR_ERR(idle); 92 } 93 ci->idle = idle; 94 } 95 96 /* 97 * Allocate initial page tables to allow the new CPU to 98 * enable the MMU safely. This essentially means a set 99 * of our "standard" page tables, with the addition of 100 * a 1:1 mapping for the physical address of the kernel. 101 */ 102 pgd = pgd_alloc(&init_mm); 103 pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET); 104 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 105 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 106 107 /* 108 * We need to tell the secondary core where to find 109 * its stack and the page tables. 110 */ 111 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 112 secondary_data.pgdir = virt_to_phys(pgd); 113 wmb(); 114 115 /* 116 * Now bring the CPU into our world. 117 */ 118 ret = boot_secondary(cpu, idle); 119 if (ret == 0) { 120 unsigned long timeout; 121 122 /* 123 * CPU was successfully started, wait for it 124 * to come online or time out. 125 */ 126 timeout = jiffies + HZ; 127 while (time_before(jiffies, timeout)) { 128 if (cpu_online(cpu)) 129 break; 130 131 udelay(10); 132 barrier(); 133 } 134 135 if (!cpu_online(cpu)) 136 ret = -EIO; 137 } 138 139 secondary_data.stack = NULL; 140 secondary_data.pgdir = 0; 141 142 *pmd = __pmd(0); 143 pgd_free(&init_mm, pgd); 144 145 if (ret) { 146 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 147 148 /* 149 * FIXME: We need to clean up the new idle thread. --rmk 150 */ 151 } 152 153 return ret; 154 } 155 156 #ifdef CONFIG_HOTPLUG_CPU 157 /* 158 * __cpu_disable runs on the processor to be shutdown. 159 */ 160 int __cpuexit __cpu_disable(void) 161 { 162 unsigned int cpu = smp_processor_id(); 163 struct task_struct *p; 164 int ret; 165 166 ret = mach_cpu_disable(cpu); 167 if (ret) 168 return ret; 169 170 /* 171 * Take this CPU offline. Once we clear this, we can't return, 172 * and we must not schedule until we're ready to give up the cpu. 173 */ 174 cpu_clear(cpu, cpu_online_map); 175 176 /* 177 * OK - migrate IRQs away from this CPU 178 */ 179 migrate_irqs(); 180 181 /* 182 * Stop the local timer for this CPU. 183 */ 184 local_timer_stop(cpu); 185 186 /* 187 * Flush user cache and TLB mappings, and then remove this CPU 188 * from the vm mask set of all processes. 189 */ 190 flush_cache_all(); 191 local_flush_tlb_all(); 192 193 read_lock(&tasklist_lock); 194 for_each_process(p) { 195 if (p->mm) 196 cpu_clear(cpu, p->mm->cpu_vm_mask); 197 } 198 read_unlock(&tasklist_lock); 199 200 return 0; 201 } 202 203 /* 204 * called on the thread which is asking for a CPU to be shutdown - 205 * waits until shutdown has completed, or it is timed out. 206 */ 207 void __cpuexit __cpu_die(unsigned int cpu) 208 { 209 if (!platform_cpu_kill(cpu)) 210 printk("CPU%u: unable to kill\n", cpu); 211 } 212 213 /* 214 * Called from the idle thread for the CPU which has been shutdown. 215 * 216 * Note that we disable IRQs here, but do not re-enable them 217 * before returning to the caller. This is also the behaviour 218 * of the other hotplug-cpu capable cores, so presumably coming 219 * out of idle fixes this. 220 */ 221 void __cpuexit cpu_die(void) 222 { 223 unsigned int cpu = smp_processor_id(); 224 225 local_irq_disable(); 226 idle_task_exit(); 227 228 /* 229 * actual CPU shutdown procedure is at least platform (if not 230 * CPU) specific 231 */ 232 platform_cpu_die(cpu); 233 234 /* 235 * Do not return to the idle loop - jump back to the secondary 236 * cpu initialisation. There's some initialisation which needs 237 * to be repeated to undo the effects of taking the CPU offline. 238 */ 239 __asm__("mov sp, %0\n" 240 " b secondary_start_kernel" 241 : 242 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 243 } 244 #endif /* CONFIG_HOTPLUG_CPU */ 245 246 /* 247 * This is the secondary CPU boot entry. We're using this CPUs 248 * idle thread stack, but a set of temporary page tables. 249 */ 250 asmlinkage void __cpuinit secondary_start_kernel(void) 251 { 252 struct mm_struct *mm = &init_mm; 253 unsigned int cpu = smp_processor_id(); 254 255 printk("CPU%u: Booted secondary processor\n", cpu); 256 257 /* 258 * All kernel threads share the same mm context; grab a 259 * reference and switch to it. 260 */ 261 atomic_inc(&mm->mm_users); 262 atomic_inc(&mm->mm_count); 263 current->active_mm = mm; 264 cpu_set(cpu, mm->cpu_vm_mask); 265 cpu_switch_mm(mm->pgd, mm); 266 enter_lazy_tlb(mm, current); 267 local_flush_tlb_all(); 268 269 cpu_init(); 270 preempt_disable(); 271 272 /* 273 * Give the platform a chance to do its own initialisation. 274 */ 275 platform_secondary_init(cpu); 276 277 /* 278 * Enable local interrupts. 279 */ 280 notify_cpu_starting(cpu); 281 local_irq_enable(); 282 local_fiq_enable(); 283 284 /* 285 * Setup local timer for this CPU. 286 */ 287 local_timer_setup(cpu); 288 289 calibrate_delay(); 290 291 smp_store_cpu_info(cpu); 292 293 /* 294 * OK, now it's safe to let the boot CPU continue 295 */ 296 cpu_set(cpu, cpu_online_map); 297 298 /* 299 * OK, it's off to the idle thread for us 300 */ 301 cpu_idle(); 302 } 303 304 /* 305 * Called by both boot and secondaries to move global data into 306 * per-processor storage. 307 */ 308 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 309 { 310 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 311 312 cpu_info->loops_per_jiffy = loops_per_jiffy; 313 } 314 315 void __init smp_cpus_done(unsigned int max_cpus) 316 { 317 int cpu; 318 unsigned long bogosum = 0; 319 320 for_each_online_cpu(cpu) 321 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 322 323 printk(KERN_INFO "SMP: Total of %d processors activated " 324 "(%lu.%02lu BogoMIPS).\n", 325 num_online_cpus(), 326 bogosum / (500000/HZ), 327 (bogosum / (5000/HZ)) % 100); 328 } 329 330 void __init smp_prepare_boot_cpu(void) 331 { 332 unsigned int cpu = smp_processor_id(); 333 334 per_cpu(cpu_data, cpu).idle = current; 335 } 336 337 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 338 { 339 unsigned long flags; 340 unsigned int cpu; 341 342 local_irq_save(flags); 343 344 for_each_cpu_mask(cpu, callmap) { 345 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 346 347 spin_lock(&ipi->lock); 348 ipi->bits |= 1 << msg; 349 spin_unlock(&ipi->lock); 350 } 351 352 /* 353 * Call the platform specific cross-CPU call function. 354 */ 355 smp_cross_call(callmap); 356 357 local_irq_restore(flags); 358 } 359 360 void arch_send_call_function_ipi(cpumask_t mask) 361 { 362 send_ipi_message(mask, IPI_CALL_FUNC); 363 } 364 365 void arch_send_call_function_single_ipi(int cpu) 366 { 367 send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE); 368 } 369 370 void show_ipi_list(struct seq_file *p) 371 { 372 unsigned int cpu; 373 374 seq_puts(p, "IPI:"); 375 376 for_each_present_cpu(cpu) 377 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 378 379 seq_putc(p, '\n'); 380 } 381 382 void show_local_irqs(struct seq_file *p) 383 { 384 unsigned int cpu; 385 386 seq_printf(p, "LOC: "); 387 388 for_each_present_cpu(cpu) 389 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 390 391 seq_putc(p, '\n'); 392 } 393 394 static void ipi_timer(void) 395 { 396 irq_enter(); 397 local_timer_interrupt(); 398 irq_exit(); 399 } 400 401 #ifdef CONFIG_LOCAL_TIMERS 402 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 403 { 404 struct pt_regs *old_regs = set_irq_regs(regs); 405 int cpu = smp_processor_id(); 406 407 if (local_timer_ack()) { 408 irq_stat[cpu].local_timer_irqs++; 409 ipi_timer(); 410 } 411 412 set_irq_regs(old_regs); 413 } 414 #endif 415 416 static DEFINE_SPINLOCK(stop_lock); 417 418 /* 419 * ipi_cpu_stop - handle IPI from smp_send_stop() 420 */ 421 static void ipi_cpu_stop(unsigned int cpu) 422 { 423 spin_lock(&stop_lock); 424 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 425 dump_stack(); 426 spin_unlock(&stop_lock); 427 428 cpu_clear(cpu, cpu_online_map); 429 430 local_fiq_disable(); 431 local_irq_disable(); 432 433 while (1) 434 cpu_relax(); 435 } 436 437 /* 438 * Main handler for inter-processor interrupts 439 * 440 * For ARM, the ipimask now only identifies a single 441 * category of IPI (Bit 1 IPIs have been replaced by a 442 * different mechanism): 443 * 444 * Bit 0 - Inter-processor function call 445 */ 446 asmlinkage void __exception do_IPI(struct pt_regs *regs) 447 { 448 unsigned int cpu = smp_processor_id(); 449 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 450 struct pt_regs *old_regs = set_irq_regs(regs); 451 452 ipi->ipi_count++; 453 454 for (;;) { 455 unsigned long msgs; 456 457 spin_lock(&ipi->lock); 458 msgs = ipi->bits; 459 ipi->bits = 0; 460 spin_unlock(&ipi->lock); 461 462 if (!msgs) 463 break; 464 465 do { 466 unsigned nextmsg; 467 468 nextmsg = msgs & -msgs; 469 msgs &= ~nextmsg; 470 nextmsg = ffz(~nextmsg); 471 472 switch (nextmsg) { 473 case IPI_TIMER: 474 ipi_timer(); 475 break; 476 477 case IPI_RESCHEDULE: 478 /* 479 * nothing more to do - eveything is 480 * done on the interrupt return path 481 */ 482 break; 483 484 case IPI_CALL_FUNC: 485 generic_smp_call_function_interrupt(); 486 break; 487 488 case IPI_CALL_FUNC_SINGLE: 489 generic_smp_call_function_single_interrupt(); 490 break; 491 492 case IPI_CPU_STOP: 493 ipi_cpu_stop(cpu); 494 break; 495 496 default: 497 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 498 cpu, nextmsg); 499 break; 500 } 501 } while (msgs); 502 } 503 504 set_irq_regs(old_regs); 505 } 506 507 void smp_send_reschedule(int cpu) 508 { 509 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 510 } 511 512 void smp_send_timer(void) 513 { 514 cpumask_t mask = cpu_online_map; 515 cpu_clear(smp_processor_id(), mask); 516 send_ipi_message(mask, IPI_TIMER); 517 } 518 519 void smp_timer_broadcast(cpumask_t mask) 520 { 521 send_ipi_message(mask, IPI_TIMER); 522 } 523 524 void smp_send_stop(void) 525 { 526 cpumask_t mask = cpu_online_map; 527 cpu_clear(smp_processor_id(), mask); 528 send_ipi_message(mask, IPI_CPU_STOP); 529 } 530 531 /* 532 * not supported here 533 */ 534 int setup_profiling_timer(unsigned int multiplier) 535 { 536 return -EINVAL; 537 } 538 539 static int 540 on_each_cpu_mask(void (*func)(void *), void *info, int wait, cpumask_t mask) 541 { 542 int ret = 0; 543 544 preempt_disable(); 545 546 ret = smp_call_function_mask(mask, func, info, wait); 547 if (cpu_isset(smp_processor_id(), mask)) 548 func(info); 549 550 preempt_enable(); 551 552 return ret; 553 } 554 555 /**********************************************************************/ 556 557 /* 558 * TLB operations 559 */ 560 struct tlb_args { 561 struct vm_area_struct *ta_vma; 562 unsigned long ta_start; 563 unsigned long ta_end; 564 }; 565 566 static inline void ipi_flush_tlb_all(void *ignored) 567 { 568 local_flush_tlb_all(); 569 } 570 571 static inline void ipi_flush_tlb_mm(void *arg) 572 { 573 struct mm_struct *mm = (struct mm_struct *)arg; 574 575 local_flush_tlb_mm(mm); 576 } 577 578 static inline void ipi_flush_tlb_page(void *arg) 579 { 580 struct tlb_args *ta = (struct tlb_args *)arg; 581 582 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 583 } 584 585 static inline void ipi_flush_tlb_kernel_page(void *arg) 586 { 587 struct tlb_args *ta = (struct tlb_args *)arg; 588 589 local_flush_tlb_kernel_page(ta->ta_start); 590 } 591 592 static inline void ipi_flush_tlb_range(void *arg) 593 { 594 struct tlb_args *ta = (struct tlb_args *)arg; 595 596 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 597 } 598 599 static inline void ipi_flush_tlb_kernel_range(void *arg) 600 { 601 struct tlb_args *ta = (struct tlb_args *)arg; 602 603 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 604 } 605 606 void flush_tlb_all(void) 607 { 608 on_each_cpu(ipi_flush_tlb_all, NULL, 1); 609 } 610 611 void flush_tlb_mm(struct mm_struct *mm) 612 { 613 cpumask_t mask = mm->cpu_vm_mask; 614 615 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mask); 616 } 617 618 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 619 { 620 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 621 struct tlb_args ta; 622 623 ta.ta_vma = vma; 624 ta.ta_start = uaddr; 625 626 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mask); 627 } 628 629 void flush_tlb_kernel_page(unsigned long kaddr) 630 { 631 struct tlb_args ta; 632 633 ta.ta_start = kaddr; 634 635 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1); 636 } 637 638 void flush_tlb_range(struct vm_area_struct *vma, 639 unsigned long start, unsigned long end) 640 { 641 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 642 struct tlb_args ta; 643 644 ta.ta_vma = vma; 645 ta.ta_start = start; 646 ta.ta_end = end; 647 648 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mask); 649 } 650 651 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 652 { 653 struct tlb_args ta; 654 655 ta.ta_start = start; 656 ta.ta_end = end; 657 658 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 659 } 660