xref: /linux/arch/arm/kernel/smp.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 
26 #include <asm/atomic.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cpu.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/processor.h>
33 #include <asm/tlbflush.h>
34 #include <asm/ptrace.h>
35 
36 /*
37  * bitmask of present and online CPUs.
38  * The present bitmask indicates that the CPU is physically present.
39  * The online bitmask indicates that the CPU is up and running.
40  */
41 cpumask_t cpu_possible_map;
42 EXPORT_SYMBOL(cpu_possible_map);
43 cpumask_t cpu_online_map;
44 EXPORT_SYMBOL(cpu_online_map);
45 
46 /*
47  * as from 2.5, kernels no longer have an init_tasks structure
48  * so we need some other way of telling a new secondary core
49  * where to place its SVC stack
50  */
51 struct secondary_data secondary_data;
52 
53 /*
54  * structures for inter-processor calls
55  * - A collection of single bit ipi messages.
56  */
57 struct ipi_data {
58 	spinlock_t lock;
59 	unsigned long ipi_count;
60 	unsigned long bits;
61 };
62 
63 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
64 	.lock	= SPIN_LOCK_UNLOCKED,
65 };
66 
67 enum ipi_msg_type {
68 	IPI_TIMER,
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CALL_FUNC_SINGLE,
72 	IPI_CPU_STOP,
73 };
74 
75 int __cpuinit __cpu_up(unsigned int cpu)
76 {
77 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
78 	struct task_struct *idle = ci->idle;
79 	pgd_t *pgd;
80 	pmd_t *pmd;
81 	int ret;
82 
83 	/*
84 	 * Spawn a new process manually, if not already done.
85 	 * Grab a pointer to its task struct so we can mess with it
86 	 */
87 	if (!idle) {
88 		idle = fork_idle(cpu);
89 		if (IS_ERR(idle)) {
90 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
91 			return PTR_ERR(idle);
92 		}
93 		ci->idle = idle;
94 	}
95 
96 	/*
97 	 * Allocate initial page tables to allow the new CPU to
98 	 * enable the MMU safely.  This essentially means a set
99 	 * of our "standard" page tables, with the addition of
100 	 * a 1:1 mapping for the physical address of the kernel.
101 	 */
102 	pgd = pgd_alloc(&init_mm);
103 	pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
104 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
105 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
106 
107 	/*
108 	 * We need to tell the secondary core where to find
109 	 * its stack and the page tables.
110 	 */
111 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
112 	secondary_data.pgdir = virt_to_phys(pgd);
113 	wmb();
114 
115 	/*
116 	 * Now bring the CPU into our world.
117 	 */
118 	ret = boot_secondary(cpu, idle);
119 	if (ret == 0) {
120 		unsigned long timeout;
121 
122 		/*
123 		 * CPU was successfully started, wait for it
124 		 * to come online or time out.
125 		 */
126 		timeout = jiffies + HZ;
127 		while (time_before(jiffies, timeout)) {
128 			if (cpu_online(cpu))
129 				break;
130 
131 			udelay(10);
132 			barrier();
133 		}
134 
135 		if (!cpu_online(cpu))
136 			ret = -EIO;
137 	}
138 
139 	secondary_data.stack = NULL;
140 	secondary_data.pgdir = 0;
141 
142 	*pmd = __pmd(0);
143 	pgd_free(&init_mm, pgd);
144 
145 	if (ret) {
146 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
147 
148 		/*
149 		 * FIXME: We need to clean up the new idle thread. --rmk
150 		 */
151 	}
152 
153 	return ret;
154 }
155 
156 #ifdef CONFIG_HOTPLUG_CPU
157 /*
158  * __cpu_disable runs on the processor to be shutdown.
159  */
160 int __cpuexit __cpu_disable(void)
161 {
162 	unsigned int cpu = smp_processor_id();
163 	struct task_struct *p;
164 	int ret;
165 
166 	ret = mach_cpu_disable(cpu);
167 	if (ret)
168 		return ret;
169 
170 	/*
171 	 * Take this CPU offline.  Once we clear this, we can't return,
172 	 * and we must not schedule until we're ready to give up the cpu.
173 	 */
174 	cpu_clear(cpu, cpu_online_map);
175 
176 	/*
177 	 * OK - migrate IRQs away from this CPU
178 	 */
179 	migrate_irqs();
180 
181 	/*
182 	 * Stop the local timer for this CPU.
183 	 */
184 	local_timer_stop(cpu);
185 
186 	/*
187 	 * Flush user cache and TLB mappings, and then remove this CPU
188 	 * from the vm mask set of all processes.
189 	 */
190 	flush_cache_all();
191 	local_flush_tlb_all();
192 
193 	read_lock(&tasklist_lock);
194 	for_each_process(p) {
195 		if (p->mm)
196 			cpu_clear(cpu, p->mm->cpu_vm_mask);
197 	}
198 	read_unlock(&tasklist_lock);
199 
200 	return 0;
201 }
202 
203 /*
204  * called on the thread which is asking for a CPU to be shutdown -
205  * waits until shutdown has completed, or it is timed out.
206  */
207 void __cpuexit __cpu_die(unsigned int cpu)
208 {
209 	if (!platform_cpu_kill(cpu))
210 		printk("CPU%u: unable to kill\n", cpu);
211 }
212 
213 /*
214  * Called from the idle thread for the CPU which has been shutdown.
215  *
216  * Note that we disable IRQs here, but do not re-enable them
217  * before returning to the caller. This is also the behaviour
218  * of the other hotplug-cpu capable cores, so presumably coming
219  * out of idle fixes this.
220  */
221 void __cpuexit cpu_die(void)
222 {
223 	unsigned int cpu = smp_processor_id();
224 
225 	local_irq_disable();
226 	idle_task_exit();
227 
228 	/*
229 	 * actual CPU shutdown procedure is at least platform (if not
230 	 * CPU) specific
231 	 */
232 	platform_cpu_die(cpu);
233 
234 	/*
235 	 * Do not return to the idle loop - jump back to the secondary
236 	 * cpu initialisation.  There's some initialisation which needs
237 	 * to be repeated to undo the effects of taking the CPU offline.
238 	 */
239 	__asm__("mov	sp, %0\n"
240 	"	b	secondary_start_kernel"
241 		:
242 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
243 }
244 #endif /* CONFIG_HOTPLUG_CPU */
245 
246 /*
247  * This is the secondary CPU boot entry.  We're using this CPUs
248  * idle thread stack, but a set of temporary page tables.
249  */
250 asmlinkage void __cpuinit secondary_start_kernel(void)
251 {
252 	struct mm_struct *mm = &init_mm;
253 	unsigned int cpu = smp_processor_id();
254 
255 	printk("CPU%u: Booted secondary processor\n", cpu);
256 
257 	/*
258 	 * All kernel threads share the same mm context; grab a
259 	 * reference and switch to it.
260 	 */
261 	atomic_inc(&mm->mm_users);
262 	atomic_inc(&mm->mm_count);
263 	current->active_mm = mm;
264 	cpu_set(cpu, mm->cpu_vm_mask);
265 	cpu_switch_mm(mm->pgd, mm);
266 	enter_lazy_tlb(mm, current);
267 	local_flush_tlb_all();
268 
269 	cpu_init();
270 	preempt_disable();
271 
272 	/*
273 	 * Give the platform a chance to do its own initialisation.
274 	 */
275 	platform_secondary_init(cpu);
276 
277 	/*
278 	 * Enable local interrupts.
279 	 */
280 	notify_cpu_starting(cpu);
281 	local_irq_enable();
282 	local_fiq_enable();
283 
284 	/*
285 	 * Setup local timer for this CPU.
286 	 */
287 	local_timer_setup(cpu);
288 
289 	calibrate_delay();
290 
291 	smp_store_cpu_info(cpu);
292 
293 	/*
294 	 * OK, now it's safe to let the boot CPU continue
295 	 */
296 	cpu_set(cpu, cpu_online_map);
297 
298 	/*
299 	 * OK, it's off to the idle thread for us
300 	 */
301 	cpu_idle();
302 }
303 
304 /*
305  * Called by both boot and secondaries to move global data into
306  * per-processor storage.
307  */
308 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
309 {
310 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
311 
312 	cpu_info->loops_per_jiffy = loops_per_jiffy;
313 }
314 
315 void __init smp_cpus_done(unsigned int max_cpus)
316 {
317 	int cpu;
318 	unsigned long bogosum = 0;
319 
320 	for_each_online_cpu(cpu)
321 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
322 
323 	printk(KERN_INFO "SMP: Total of %d processors activated "
324 	       "(%lu.%02lu BogoMIPS).\n",
325 	       num_online_cpus(),
326 	       bogosum / (500000/HZ),
327 	       (bogosum / (5000/HZ)) % 100);
328 }
329 
330 void __init smp_prepare_boot_cpu(void)
331 {
332 	unsigned int cpu = smp_processor_id();
333 
334 	per_cpu(cpu_data, cpu).idle = current;
335 }
336 
337 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
338 {
339 	unsigned long flags;
340 	unsigned int cpu;
341 
342 	local_irq_save(flags);
343 
344 	for_each_cpu_mask(cpu, callmap) {
345 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
346 
347 		spin_lock(&ipi->lock);
348 		ipi->bits |= 1 << msg;
349 		spin_unlock(&ipi->lock);
350 	}
351 
352 	/*
353 	 * Call the platform specific cross-CPU call function.
354 	 */
355 	smp_cross_call(callmap);
356 
357 	local_irq_restore(flags);
358 }
359 
360 void arch_send_call_function_ipi(cpumask_t mask)
361 {
362 	send_ipi_message(mask, IPI_CALL_FUNC);
363 }
364 
365 void arch_send_call_function_single_ipi(int cpu)
366 {
367 	send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE);
368 }
369 
370 void show_ipi_list(struct seq_file *p)
371 {
372 	unsigned int cpu;
373 
374 	seq_puts(p, "IPI:");
375 
376 	for_each_present_cpu(cpu)
377 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
378 
379 	seq_putc(p, '\n');
380 }
381 
382 void show_local_irqs(struct seq_file *p)
383 {
384 	unsigned int cpu;
385 
386 	seq_printf(p, "LOC: ");
387 
388 	for_each_present_cpu(cpu)
389 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
390 
391 	seq_putc(p, '\n');
392 }
393 
394 static void ipi_timer(void)
395 {
396 	irq_enter();
397 	local_timer_interrupt();
398 	irq_exit();
399 }
400 
401 #ifdef CONFIG_LOCAL_TIMERS
402 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
403 {
404 	struct pt_regs *old_regs = set_irq_regs(regs);
405 	int cpu = smp_processor_id();
406 
407 	if (local_timer_ack()) {
408 		irq_stat[cpu].local_timer_irqs++;
409 		ipi_timer();
410 	}
411 
412 	set_irq_regs(old_regs);
413 }
414 #endif
415 
416 static DEFINE_SPINLOCK(stop_lock);
417 
418 /*
419  * ipi_cpu_stop - handle IPI from smp_send_stop()
420  */
421 static void ipi_cpu_stop(unsigned int cpu)
422 {
423 	spin_lock(&stop_lock);
424 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
425 	dump_stack();
426 	spin_unlock(&stop_lock);
427 
428 	cpu_clear(cpu, cpu_online_map);
429 
430 	local_fiq_disable();
431 	local_irq_disable();
432 
433 	while (1)
434 		cpu_relax();
435 }
436 
437 /*
438  * Main handler for inter-processor interrupts
439  *
440  * For ARM, the ipimask now only identifies a single
441  * category of IPI (Bit 1 IPIs have been replaced by a
442  * different mechanism):
443  *
444  *  Bit 0 - Inter-processor function call
445  */
446 asmlinkage void __exception do_IPI(struct pt_regs *regs)
447 {
448 	unsigned int cpu = smp_processor_id();
449 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
450 	struct pt_regs *old_regs = set_irq_regs(regs);
451 
452 	ipi->ipi_count++;
453 
454 	for (;;) {
455 		unsigned long msgs;
456 
457 		spin_lock(&ipi->lock);
458 		msgs = ipi->bits;
459 		ipi->bits = 0;
460 		spin_unlock(&ipi->lock);
461 
462 		if (!msgs)
463 			break;
464 
465 		do {
466 			unsigned nextmsg;
467 
468 			nextmsg = msgs & -msgs;
469 			msgs &= ~nextmsg;
470 			nextmsg = ffz(~nextmsg);
471 
472 			switch (nextmsg) {
473 			case IPI_TIMER:
474 				ipi_timer();
475 				break;
476 
477 			case IPI_RESCHEDULE:
478 				/*
479 				 * nothing more to do - eveything is
480 				 * done on the interrupt return path
481 				 */
482 				break;
483 
484 			case IPI_CALL_FUNC:
485 				generic_smp_call_function_interrupt();
486 				break;
487 
488 			case IPI_CALL_FUNC_SINGLE:
489 				generic_smp_call_function_single_interrupt();
490 				break;
491 
492 			case IPI_CPU_STOP:
493 				ipi_cpu_stop(cpu);
494 				break;
495 
496 			default:
497 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
498 				       cpu, nextmsg);
499 				break;
500 			}
501 		} while (msgs);
502 	}
503 
504 	set_irq_regs(old_regs);
505 }
506 
507 void smp_send_reschedule(int cpu)
508 {
509 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
510 }
511 
512 void smp_send_timer(void)
513 {
514 	cpumask_t mask = cpu_online_map;
515 	cpu_clear(smp_processor_id(), mask);
516 	send_ipi_message(mask, IPI_TIMER);
517 }
518 
519 void smp_timer_broadcast(cpumask_t mask)
520 {
521 	send_ipi_message(mask, IPI_TIMER);
522 }
523 
524 void smp_send_stop(void)
525 {
526 	cpumask_t mask = cpu_online_map;
527 	cpu_clear(smp_processor_id(), mask);
528 	send_ipi_message(mask, IPI_CPU_STOP);
529 }
530 
531 /*
532  * not supported here
533  */
534 int setup_profiling_timer(unsigned int multiplier)
535 {
536 	return -EINVAL;
537 }
538 
539 static int
540 on_each_cpu_mask(void (*func)(void *), void *info, int wait, cpumask_t mask)
541 {
542 	int ret = 0;
543 
544 	preempt_disable();
545 
546 	ret = smp_call_function_mask(mask, func, info, wait);
547 	if (cpu_isset(smp_processor_id(), mask))
548 		func(info);
549 
550 	preempt_enable();
551 
552 	return ret;
553 }
554 
555 /**********************************************************************/
556 
557 /*
558  * TLB operations
559  */
560 struct tlb_args {
561 	struct vm_area_struct *ta_vma;
562 	unsigned long ta_start;
563 	unsigned long ta_end;
564 };
565 
566 static inline void ipi_flush_tlb_all(void *ignored)
567 {
568 	local_flush_tlb_all();
569 }
570 
571 static inline void ipi_flush_tlb_mm(void *arg)
572 {
573 	struct mm_struct *mm = (struct mm_struct *)arg;
574 
575 	local_flush_tlb_mm(mm);
576 }
577 
578 static inline void ipi_flush_tlb_page(void *arg)
579 {
580 	struct tlb_args *ta = (struct tlb_args *)arg;
581 
582 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
583 }
584 
585 static inline void ipi_flush_tlb_kernel_page(void *arg)
586 {
587 	struct tlb_args *ta = (struct tlb_args *)arg;
588 
589 	local_flush_tlb_kernel_page(ta->ta_start);
590 }
591 
592 static inline void ipi_flush_tlb_range(void *arg)
593 {
594 	struct tlb_args *ta = (struct tlb_args *)arg;
595 
596 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
597 }
598 
599 static inline void ipi_flush_tlb_kernel_range(void *arg)
600 {
601 	struct tlb_args *ta = (struct tlb_args *)arg;
602 
603 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
604 }
605 
606 void flush_tlb_all(void)
607 {
608 	on_each_cpu(ipi_flush_tlb_all, NULL, 1);
609 }
610 
611 void flush_tlb_mm(struct mm_struct *mm)
612 {
613 	cpumask_t mask = mm->cpu_vm_mask;
614 
615 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mask);
616 }
617 
618 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
619 {
620 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
621 	struct tlb_args ta;
622 
623 	ta.ta_vma = vma;
624 	ta.ta_start = uaddr;
625 
626 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mask);
627 }
628 
629 void flush_tlb_kernel_page(unsigned long kaddr)
630 {
631 	struct tlb_args ta;
632 
633 	ta.ta_start = kaddr;
634 
635 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
636 }
637 
638 void flush_tlb_range(struct vm_area_struct *vma,
639                      unsigned long start, unsigned long end)
640 {
641 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
642 	struct tlb_args ta;
643 
644 	ta.ta_vma = vma;
645 	ta.ta_start = start;
646 	ta.ta_end = end;
647 
648 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mask);
649 }
650 
651 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
652 {
653 	struct tlb_args ta;
654 
655 	ta.ta_start = start;
656 	ta.ta_end = end;
657 
658 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
659 }
660