1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/ftrace.h> 20 #include <linux/mm.h> 21 #include <linux/err.h> 22 #include <linux/cpu.h> 23 #include <linux/smp.h> 24 #include <linux/seq_file.h> 25 #include <linux/irq.h> 26 #include <linux/percpu.h> 27 #include <linux/clockchips.h> 28 #include <linux/completion.h> 29 30 #include <linux/atomic.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/mmu_context.h> 35 #include <asm/pgtable.h> 36 #include <asm/pgalloc.h> 37 #include <asm/processor.h> 38 #include <asm/sections.h> 39 #include <asm/tlbflush.h> 40 #include <asm/ptrace.h> 41 #include <asm/localtimer.h> 42 43 /* 44 * as from 2.5, kernels no longer have an init_tasks structure 45 * so we need some other way of telling a new secondary core 46 * where to place its SVC stack 47 */ 48 struct secondary_data secondary_data; 49 50 enum ipi_msg_type { 51 IPI_TIMER = 2, 52 IPI_RESCHEDULE, 53 IPI_CALL_FUNC, 54 IPI_CALL_FUNC_SINGLE, 55 IPI_CPU_STOP, 56 }; 57 58 int __cpuinit __cpu_up(unsigned int cpu) 59 { 60 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 61 struct task_struct *idle = ci->idle; 62 pgd_t *pgd; 63 int ret; 64 65 /* 66 * Spawn a new process manually, if not already done. 67 * Grab a pointer to its task struct so we can mess with it 68 */ 69 if (!idle) { 70 idle = fork_idle(cpu); 71 if (IS_ERR(idle)) { 72 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 73 return PTR_ERR(idle); 74 } 75 ci->idle = idle; 76 } else { 77 /* 78 * Since this idle thread is being re-used, call 79 * init_idle() to reinitialize the thread structure. 80 */ 81 init_idle(idle, cpu); 82 } 83 84 /* 85 * Allocate initial page tables to allow the new CPU to 86 * enable the MMU safely. This essentially means a set 87 * of our "standard" page tables, with the addition of 88 * a 1:1 mapping for the physical address of the kernel. 89 */ 90 pgd = pgd_alloc(&init_mm); 91 if (!pgd) 92 return -ENOMEM; 93 94 if (PHYS_OFFSET != PAGE_OFFSET) { 95 #ifndef CONFIG_HOTPLUG_CPU 96 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end)); 97 #endif 98 identity_mapping_add(pgd, __pa(_stext), __pa(_etext)); 99 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata)); 100 } 101 102 /* 103 * We need to tell the secondary core where to find 104 * its stack and the page tables. 105 */ 106 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 107 secondary_data.pgdir = virt_to_phys(pgd); 108 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 109 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 110 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 111 112 /* 113 * Now bring the CPU into our world. 114 */ 115 ret = boot_secondary(cpu, idle); 116 if (ret == 0) { 117 unsigned long timeout; 118 119 /* 120 * CPU was successfully started, wait for it 121 * to come online or time out. 122 */ 123 timeout = jiffies + HZ; 124 while (time_before(jiffies, timeout)) { 125 if (cpu_online(cpu)) 126 break; 127 128 udelay(10); 129 barrier(); 130 } 131 132 if (!cpu_online(cpu)) { 133 pr_crit("CPU%u: failed to come online\n", cpu); 134 ret = -EIO; 135 } 136 } else { 137 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 138 } 139 140 secondary_data.stack = NULL; 141 secondary_data.pgdir = 0; 142 143 if (PHYS_OFFSET != PAGE_OFFSET) { 144 #ifndef CONFIG_HOTPLUG_CPU 145 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end)); 146 #endif 147 identity_mapping_del(pgd, __pa(_stext), __pa(_etext)); 148 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata)); 149 } 150 151 pgd_free(&init_mm, pgd); 152 153 return ret; 154 } 155 156 #ifdef CONFIG_HOTPLUG_CPU 157 static void percpu_timer_stop(void); 158 159 /* 160 * __cpu_disable runs on the processor to be shutdown. 161 */ 162 int __cpu_disable(void) 163 { 164 unsigned int cpu = smp_processor_id(); 165 struct task_struct *p; 166 int ret; 167 168 ret = platform_cpu_disable(cpu); 169 if (ret) 170 return ret; 171 172 /* 173 * Take this CPU offline. Once we clear this, we can't return, 174 * and we must not schedule until we're ready to give up the cpu. 175 */ 176 set_cpu_online(cpu, false); 177 178 /* 179 * OK - migrate IRQs away from this CPU 180 */ 181 migrate_irqs(); 182 183 /* 184 * Stop the local timer for this CPU. 185 */ 186 percpu_timer_stop(); 187 188 /* 189 * Flush user cache and TLB mappings, and then remove this CPU 190 * from the vm mask set of all processes. 191 */ 192 flush_cache_all(); 193 local_flush_tlb_all(); 194 195 read_lock(&tasklist_lock); 196 for_each_process(p) { 197 if (p->mm) 198 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 199 } 200 read_unlock(&tasklist_lock); 201 202 return 0; 203 } 204 205 static DECLARE_COMPLETION(cpu_died); 206 207 /* 208 * called on the thread which is asking for a CPU to be shutdown - 209 * waits until shutdown has completed, or it is timed out. 210 */ 211 void __cpu_die(unsigned int cpu) 212 { 213 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 214 pr_err("CPU%u: cpu didn't die\n", cpu); 215 return; 216 } 217 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 218 219 if (!platform_cpu_kill(cpu)) 220 printk("CPU%u: unable to kill\n", cpu); 221 } 222 223 /* 224 * Called from the idle thread for the CPU which has been shutdown. 225 * 226 * Note that we disable IRQs here, but do not re-enable them 227 * before returning to the caller. This is also the behaviour 228 * of the other hotplug-cpu capable cores, so presumably coming 229 * out of idle fixes this. 230 */ 231 void __ref cpu_die(void) 232 { 233 unsigned int cpu = smp_processor_id(); 234 235 idle_task_exit(); 236 237 local_irq_disable(); 238 mb(); 239 240 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 241 complete(&cpu_died); 242 243 /* 244 * actual CPU shutdown procedure is at least platform (if not 245 * CPU) specific. 246 */ 247 platform_cpu_die(cpu); 248 249 /* 250 * Do not return to the idle loop - jump back to the secondary 251 * cpu initialisation. There's some initialisation which needs 252 * to be repeated to undo the effects of taking the CPU offline. 253 */ 254 __asm__("mov sp, %0\n" 255 " mov fp, #0\n" 256 " b secondary_start_kernel" 257 : 258 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 259 } 260 #endif /* CONFIG_HOTPLUG_CPU */ 261 262 /* 263 * Called by both boot and secondaries to move global data into 264 * per-processor storage. 265 */ 266 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 267 { 268 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 269 270 cpu_info->loops_per_jiffy = loops_per_jiffy; 271 } 272 273 /* 274 * This is the secondary CPU boot entry. We're using this CPUs 275 * idle thread stack, but a set of temporary page tables. 276 */ 277 asmlinkage void __cpuinit secondary_start_kernel(void) 278 { 279 struct mm_struct *mm = &init_mm; 280 unsigned int cpu = smp_processor_id(); 281 282 printk("CPU%u: Booted secondary processor\n", cpu); 283 284 /* 285 * All kernel threads share the same mm context; grab a 286 * reference and switch to it. 287 */ 288 atomic_inc(&mm->mm_count); 289 current->active_mm = mm; 290 cpumask_set_cpu(cpu, mm_cpumask(mm)); 291 cpu_switch_mm(mm->pgd, mm); 292 enter_lazy_tlb(mm, current); 293 local_flush_tlb_all(); 294 295 cpu_init(); 296 preempt_disable(); 297 trace_hardirqs_off(); 298 299 /* 300 * Give the platform a chance to do its own initialisation. 301 */ 302 platform_secondary_init(cpu); 303 304 /* 305 * Enable local interrupts. 306 */ 307 notify_cpu_starting(cpu); 308 local_irq_enable(); 309 local_fiq_enable(); 310 311 /* 312 * Setup the percpu timer for this CPU. 313 */ 314 percpu_timer_setup(); 315 316 calibrate_delay(); 317 318 smp_store_cpu_info(cpu); 319 320 /* 321 * OK, now it's safe to let the boot CPU continue. Wait for 322 * the CPU migration code to notice that the CPU is online 323 * before we continue. 324 */ 325 set_cpu_online(cpu, true); 326 while (!cpu_active(cpu)) 327 cpu_relax(); 328 329 /* 330 * OK, it's off to the idle thread for us 331 */ 332 cpu_idle(); 333 } 334 335 void __init smp_cpus_done(unsigned int max_cpus) 336 { 337 int cpu; 338 unsigned long bogosum = 0; 339 340 for_each_online_cpu(cpu) 341 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 342 343 printk(KERN_INFO "SMP: Total of %d processors activated " 344 "(%lu.%02lu BogoMIPS).\n", 345 num_online_cpus(), 346 bogosum / (500000/HZ), 347 (bogosum / (5000/HZ)) % 100); 348 } 349 350 void __init smp_prepare_boot_cpu(void) 351 { 352 unsigned int cpu = smp_processor_id(); 353 354 per_cpu(cpu_data, cpu).idle = current; 355 } 356 357 void __init smp_prepare_cpus(unsigned int max_cpus) 358 { 359 unsigned int ncores = num_possible_cpus(); 360 361 smp_store_cpu_info(smp_processor_id()); 362 363 /* 364 * are we trying to boot more cores than exist? 365 */ 366 if (max_cpus > ncores) 367 max_cpus = ncores; 368 if (ncores > 1 && max_cpus) { 369 /* 370 * Enable the local timer or broadcast device for the 371 * boot CPU, but only if we have more than one CPU. 372 */ 373 percpu_timer_setup(); 374 375 /* 376 * Initialise the present map, which describes the set of CPUs 377 * actually populated at the present time. A platform should 378 * re-initialize the map in platform_smp_prepare_cpus() if 379 * present != possible (e.g. physical hotplug). 380 */ 381 init_cpu_present(&cpu_possible_map); 382 383 /* 384 * Initialise the SCU if there are more than one CPU 385 * and let them know where to start. 386 */ 387 platform_smp_prepare_cpus(max_cpus); 388 } 389 } 390 391 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 392 393 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 394 { 395 smp_cross_call = fn; 396 } 397 398 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 399 { 400 smp_cross_call(mask, IPI_CALL_FUNC); 401 } 402 403 void arch_send_call_function_single_ipi(int cpu) 404 { 405 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 406 } 407 408 static const char *ipi_types[NR_IPI] = { 409 #define S(x,s) [x - IPI_TIMER] = s 410 S(IPI_TIMER, "Timer broadcast interrupts"), 411 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 412 S(IPI_CALL_FUNC, "Function call interrupts"), 413 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 414 S(IPI_CPU_STOP, "CPU stop interrupts"), 415 }; 416 417 void show_ipi_list(struct seq_file *p, int prec) 418 { 419 unsigned int cpu, i; 420 421 for (i = 0; i < NR_IPI; i++) { 422 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 423 424 for_each_present_cpu(cpu) 425 seq_printf(p, "%10u ", 426 __get_irq_stat(cpu, ipi_irqs[i])); 427 428 seq_printf(p, " %s\n", ipi_types[i]); 429 } 430 } 431 432 u64 smp_irq_stat_cpu(unsigned int cpu) 433 { 434 u64 sum = 0; 435 int i; 436 437 for (i = 0; i < NR_IPI; i++) 438 sum += __get_irq_stat(cpu, ipi_irqs[i]); 439 440 #ifdef CONFIG_LOCAL_TIMERS 441 sum += __get_irq_stat(cpu, local_timer_irqs); 442 #endif 443 444 return sum; 445 } 446 447 /* 448 * Timer (local or broadcast) support 449 */ 450 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 451 452 static void ipi_timer(void) 453 { 454 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 455 irq_enter(); 456 evt->event_handler(evt); 457 irq_exit(); 458 } 459 460 #ifdef CONFIG_LOCAL_TIMERS 461 asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs) 462 { 463 struct pt_regs *old_regs = set_irq_regs(regs); 464 int cpu = smp_processor_id(); 465 466 if (local_timer_ack()) { 467 __inc_irq_stat(cpu, local_timer_irqs); 468 ipi_timer(); 469 } 470 471 set_irq_regs(old_regs); 472 } 473 474 void show_local_irqs(struct seq_file *p, int prec) 475 { 476 unsigned int cpu; 477 478 seq_printf(p, "%*s: ", prec, "LOC"); 479 480 for_each_present_cpu(cpu) 481 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs)); 482 483 seq_printf(p, " Local timer interrupts\n"); 484 } 485 #endif 486 487 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 488 static void smp_timer_broadcast(const struct cpumask *mask) 489 { 490 smp_cross_call(mask, IPI_TIMER); 491 } 492 #else 493 #define smp_timer_broadcast NULL 494 #endif 495 496 static void broadcast_timer_set_mode(enum clock_event_mode mode, 497 struct clock_event_device *evt) 498 { 499 } 500 501 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 502 { 503 evt->name = "dummy_timer"; 504 evt->features = CLOCK_EVT_FEAT_ONESHOT | 505 CLOCK_EVT_FEAT_PERIODIC | 506 CLOCK_EVT_FEAT_DUMMY; 507 evt->rating = 400; 508 evt->mult = 1; 509 evt->set_mode = broadcast_timer_set_mode; 510 511 clockevents_register_device(evt); 512 } 513 514 void __cpuinit percpu_timer_setup(void) 515 { 516 unsigned int cpu = smp_processor_id(); 517 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 518 519 evt->cpumask = cpumask_of(cpu); 520 evt->broadcast = smp_timer_broadcast; 521 522 if (local_timer_setup(evt)) 523 broadcast_timer_setup(evt); 524 } 525 526 #ifdef CONFIG_HOTPLUG_CPU 527 /* 528 * The generic clock events code purposely does not stop the local timer 529 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 530 * manually here. 531 */ 532 static void percpu_timer_stop(void) 533 { 534 unsigned int cpu = smp_processor_id(); 535 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 536 537 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); 538 } 539 #endif 540 541 static DEFINE_SPINLOCK(stop_lock); 542 543 /* 544 * ipi_cpu_stop - handle IPI from smp_send_stop() 545 */ 546 static void ipi_cpu_stop(unsigned int cpu) 547 { 548 if (system_state == SYSTEM_BOOTING || 549 system_state == SYSTEM_RUNNING) { 550 spin_lock(&stop_lock); 551 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 552 dump_stack(); 553 spin_unlock(&stop_lock); 554 } 555 556 set_cpu_online(cpu, false); 557 558 local_fiq_disable(); 559 local_irq_disable(); 560 561 while (1) 562 cpu_relax(); 563 } 564 565 /* 566 * Main handler for inter-processor interrupts 567 */ 568 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 569 { 570 unsigned int cpu = smp_processor_id(); 571 struct pt_regs *old_regs = set_irq_regs(regs); 572 573 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) 574 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); 575 576 switch (ipinr) { 577 case IPI_TIMER: 578 ipi_timer(); 579 break; 580 581 case IPI_RESCHEDULE: 582 scheduler_ipi(); 583 break; 584 585 case IPI_CALL_FUNC: 586 generic_smp_call_function_interrupt(); 587 break; 588 589 case IPI_CALL_FUNC_SINGLE: 590 generic_smp_call_function_single_interrupt(); 591 break; 592 593 case IPI_CPU_STOP: 594 ipi_cpu_stop(cpu); 595 break; 596 597 default: 598 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 599 cpu, ipinr); 600 break; 601 } 602 set_irq_regs(old_regs); 603 } 604 605 void smp_send_reschedule(int cpu) 606 { 607 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 608 } 609 610 void smp_send_stop(void) 611 { 612 unsigned long timeout; 613 614 if (num_online_cpus() > 1) { 615 cpumask_t mask = cpu_online_map; 616 cpu_clear(smp_processor_id(), mask); 617 618 smp_cross_call(&mask, IPI_CPU_STOP); 619 } 620 621 /* Wait up to one second for other CPUs to stop */ 622 timeout = USEC_PER_SEC; 623 while (num_online_cpus() > 1 && timeout--) 624 udelay(1); 625 626 if (num_online_cpus() > 1) 627 pr_warning("SMP: failed to stop secondary CPUs\n"); 628 } 629 630 /* 631 * not supported here 632 */ 633 int setup_profiling_timer(unsigned int multiplier) 634 { 635 return -EINVAL; 636 } 637