xref: /linux/arch/arm/kernel/smp.c (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23 
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
33 
34 /*
35  * bitmask of present and online CPUs.
36  * The present bitmask indicates that the CPU is physically present.
37  * The online bitmask indicates that the CPU is up and running.
38  */
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
41 
42 /*
43  * as from 2.5, kernels no longer have an init_tasks structure
44  * so we need some other way of telling a new secondary core
45  * where to place its SVC stack
46  */
47 struct secondary_data secondary_data;
48 
49 /*
50  * structures for inter-processor calls
51  * - A collection of single bit ipi messages.
52  */
53 struct ipi_data {
54 	spinlock_t lock;
55 	unsigned long ipi_count;
56 	unsigned long bits;
57 };
58 
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 	.lock	= SPIN_LOCK_UNLOCKED,
61 };
62 
63 enum ipi_msg_type {
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 };
69 
70 struct smp_call_struct {
71 	void (*func)(void *info);
72 	void *info;
73 	int wait;
74 	cpumask_t pending;
75 	cpumask_t unfinished;
76 };
77 
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
80 
81 int __init __cpu_up(unsigned int cpu)
82 {
83 	struct task_struct *idle;
84 	pgd_t *pgd;
85 	pmd_t *pmd;
86 	int ret;
87 
88 	/*
89 	 * Spawn a new process manually.  Grab a pointer to
90 	 * its task struct so we can mess with it
91 	 */
92 	idle = fork_idle(cpu);
93 	if (IS_ERR(idle)) {
94 		printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
95 		return PTR_ERR(idle);
96 	}
97 
98 	/*
99 	 * Allocate initial page tables to allow the new CPU to
100 	 * enable the MMU safely.  This essentially means a set
101 	 * of our "standard" page tables, with the addition of
102 	 * a 1:1 mapping for the physical address of the kernel.
103 	 */
104 	pgd = pgd_alloc(&init_mm);
105 	pmd = pmd_offset(pgd, PHYS_OFFSET);
106 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
107 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
108 
109 	/*
110 	 * We need to tell the secondary core where to find
111 	 * its stack and the page tables.
112 	 */
113 	secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8;
114 	secondary_data.pgdir = virt_to_phys(pgd);
115 	wmb();
116 
117 	/*
118 	 * Now bring the CPU into our world.
119 	 */
120 	ret = boot_secondary(cpu, idle);
121 	if (ret == 0) {
122 		unsigned long timeout;
123 
124 		/*
125 		 * CPU was successfully started, wait for it
126 		 * to come online or time out.
127 		 */
128 		timeout = jiffies + HZ;
129 		while (time_before(jiffies, timeout)) {
130 			if (cpu_online(cpu))
131 				break;
132 
133 			udelay(10);
134 			barrier();
135 		}
136 
137 		if (!cpu_online(cpu))
138 			ret = -EIO;
139 	}
140 
141 	secondary_data.stack = 0;
142 	secondary_data.pgdir = 0;
143 
144 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
145 	pgd_free(pgd);
146 
147 	if (ret) {
148 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
149 
150 		/*
151 		 * FIXME: We need to clean up the new idle thread. --rmk
152 		 */
153 	}
154 
155 	return ret;
156 }
157 
158 /*
159  * This is the secondary CPU boot entry.  We're using this CPUs
160  * idle thread stack, but a set of temporary page tables.
161  */
162 asmlinkage void __init secondary_start_kernel(void)
163 {
164 	struct mm_struct *mm = &init_mm;
165 	unsigned int cpu = smp_processor_id();
166 
167 	printk("CPU%u: Booted secondary processor\n", cpu);
168 
169 	/*
170 	 * All kernel threads share the same mm context; grab a
171 	 * reference and switch to it.
172 	 */
173 	atomic_inc(&mm->mm_users);
174 	atomic_inc(&mm->mm_count);
175 	current->active_mm = mm;
176 	cpu_set(cpu, mm->cpu_vm_mask);
177 	cpu_switch_mm(mm->pgd, mm);
178 	enter_lazy_tlb(mm, current);
179 
180 	cpu_init();
181 
182 	/*
183 	 * Give the platform a chance to do its own initialisation.
184 	 */
185 	platform_secondary_init(cpu);
186 
187 	/*
188 	 * Enable local interrupts.
189 	 */
190 	local_irq_enable();
191 	local_fiq_enable();
192 
193 	calibrate_delay();
194 
195 	smp_store_cpu_info(cpu);
196 
197 	/*
198 	 * OK, now it's safe to let the boot CPU continue
199 	 */
200 	cpu_set(cpu, cpu_online_map);
201 
202 	/*
203 	 * OK, it's off to the idle thread for us
204 	 */
205 	cpu_idle();
206 }
207 
208 /*
209  * Called by both boot and secondaries to move global data into
210  * per-processor storage.
211  */
212 void __init smp_store_cpu_info(unsigned int cpuid)
213 {
214 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
215 
216 	cpu_info->loops_per_jiffy = loops_per_jiffy;
217 }
218 
219 void __init smp_cpus_done(unsigned int max_cpus)
220 {
221 	int cpu;
222 	unsigned long bogosum = 0;
223 
224 	for_each_online_cpu(cpu)
225 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
226 
227 	printk(KERN_INFO "SMP: Total of %d processors activated "
228 	       "(%lu.%02lu BogoMIPS).\n",
229 	       num_online_cpus(),
230 	       bogosum / (500000/HZ),
231 	       (bogosum / (5000/HZ)) % 100);
232 }
233 
234 void __init smp_prepare_boot_cpu(void)
235 {
236 	unsigned int cpu = smp_processor_id();
237 
238 	cpu_set(cpu, cpu_possible_map);
239 	cpu_set(cpu, cpu_present_map);
240 	cpu_set(cpu, cpu_online_map);
241 }
242 
243 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
244 {
245 	unsigned long flags;
246 	unsigned int cpu;
247 
248 	local_irq_save(flags);
249 
250 	for_each_cpu_mask(cpu, callmap) {
251 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
252 
253 		spin_lock(&ipi->lock);
254 		ipi->bits |= 1 << msg;
255 		spin_unlock(&ipi->lock);
256 	}
257 
258 	/*
259 	 * Call the platform specific cross-CPU call function.
260 	 */
261 	smp_cross_call(callmap);
262 
263 	local_irq_restore(flags);
264 }
265 
266 /*
267  * You must not call this function with disabled interrupts, from a
268  * hardware interrupt handler, nor from a bottom half handler.
269  */
270 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
271                              int wait, cpumask_t callmap)
272 {
273 	struct smp_call_struct data;
274 	unsigned long timeout;
275 	int ret = 0;
276 
277 	data.func = func;
278 	data.info = info;
279 	data.wait = wait;
280 
281 	cpu_clear(smp_processor_id(), callmap);
282 	if (cpus_empty(callmap))
283 		goto out;
284 
285 	data.pending = callmap;
286 	if (wait)
287 		data.unfinished = callmap;
288 
289 	/*
290 	 * try to get the mutex on smp_call_function_data
291 	 */
292 	spin_lock(&smp_call_function_lock);
293 	smp_call_function_data = &data;
294 
295 	send_ipi_message(callmap, IPI_CALL_FUNC);
296 
297 	timeout = jiffies + HZ;
298 	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
299 		barrier();
300 
301 	/*
302 	 * did we time out?
303 	 */
304 	if (!cpus_empty(data.pending)) {
305 		/*
306 		 * this may be causing our panic - report it
307 		 */
308 		printk(KERN_CRIT
309 		       "CPU%u: smp_call_function timeout for %p(%p)\n"
310 		       "      callmap %lx pending %lx, %swait\n",
311 		       smp_processor_id(), func, info, callmap, data.pending,
312 		       wait ? "" : "no ");
313 
314 		/*
315 		 * TRACE
316 		 */
317 		timeout = jiffies + (5 * HZ);
318 		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
319 			barrier();
320 
321 		if (cpus_empty(data.pending))
322 			printk(KERN_CRIT "     RESOLVED\n");
323 		else
324 			printk(KERN_CRIT "     STILL STUCK\n");
325 	}
326 
327 	/*
328 	 * whatever happened, we're done with the data, so release it
329 	 */
330 	smp_call_function_data = NULL;
331 	spin_unlock(&smp_call_function_lock);
332 
333 	if (!cpus_empty(data.pending)) {
334 		ret = -ETIMEDOUT;
335 		goto out;
336 	}
337 
338 	if (wait)
339 		while (!cpus_empty(data.unfinished))
340 			barrier();
341  out:
342 
343 	return 0;
344 }
345 
346 int smp_call_function(void (*func)(void *info), void *info, int retry,
347                       int wait)
348 {
349 	return smp_call_function_on_cpu(func, info, retry, wait,
350 					cpu_online_map);
351 }
352 
353 void show_ipi_list(struct seq_file *p)
354 {
355 	unsigned int cpu;
356 
357 	seq_puts(p, "IPI:");
358 
359 	for_each_present_cpu(cpu)
360 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
361 
362 	seq_putc(p, '\n');
363 }
364 
365 static void ipi_timer(struct pt_regs *regs)
366 {
367 	int user = user_mode(regs);
368 
369 	irq_enter();
370 	profile_tick(CPU_PROFILING, regs);
371 	update_process_times(user);
372 	irq_exit();
373 }
374 
375 /*
376  * ipi_call_function - handle IPI from smp_call_function()
377  *
378  * Note that we copy data out of the cross-call structure and then
379  * let the caller know that we're here and have done with their data
380  */
381 static void ipi_call_function(unsigned int cpu)
382 {
383 	struct smp_call_struct *data = smp_call_function_data;
384 	void (*func)(void *info) = data->func;
385 	void *info = data->info;
386 	int wait = data->wait;
387 
388 	cpu_clear(cpu, data->pending);
389 
390 	func(info);
391 
392 	if (wait)
393 		cpu_clear(cpu, data->unfinished);
394 }
395 
396 static DEFINE_SPINLOCK(stop_lock);
397 
398 /*
399  * ipi_cpu_stop - handle IPI from smp_send_stop()
400  */
401 static void ipi_cpu_stop(unsigned int cpu)
402 {
403 	spin_lock(&stop_lock);
404 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
405 	dump_stack();
406 	spin_unlock(&stop_lock);
407 
408 	cpu_clear(cpu, cpu_online_map);
409 
410 	local_fiq_disable();
411 	local_irq_disable();
412 
413 	while (1)
414 		cpu_relax();
415 }
416 
417 /*
418  * Main handler for inter-processor interrupts
419  *
420  * For ARM, the ipimask now only identifies a single
421  * category of IPI (Bit 1 IPIs have been replaced by a
422  * different mechanism):
423  *
424  *  Bit 0 - Inter-processor function call
425  */
426 void do_IPI(struct pt_regs *regs)
427 {
428 	unsigned int cpu = smp_processor_id();
429 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
430 
431 	ipi->ipi_count++;
432 
433 	for (;;) {
434 		unsigned long msgs;
435 
436 		spin_lock(&ipi->lock);
437 		msgs = ipi->bits;
438 		ipi->bits = 0;
439 		spin_unlock(&ipi->lock);
440 
441 		if (!msgs)
442 			break;
443 
444 		do {
445 			unsigned nextmsg;
446 
447 			nextmsg = msgs & -msgs;
448 			msgs &= ~nextmsg;
449 			nextmsg = ffz(~nextmsg);
450 
451 			switch (nextmsg) {
452 			case IPI_TIMER:
453 				ipi_timer(regs);
454 				break;
455 
456 			case IPI_RESCHEDULE:
457 				/*
458 				 * nothing more to do - eveything is
459 				 * done on the interrupt return path
460 				 */
461 				break;
462 
463 			case IPI_CALL_FUNC:
464 				ipi_call_function(cpu);
465 				break;
466 
467 			case IPI_CPU_STOP:
468 				ipi_cpu_stop(cpu);
469 				break;
470 
471 			default:
472 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
473 				       cpu, nextmsg);
474 				break;
475 			}
476 		} while (msgs);
477 	}
478 }
479 
480 void smp_send_reschedule(int cpu)
481 {
482 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
483 }
484 
485 void smp_send_timer(void)
486 {
487 	cpumask_t mask = cpu_online_map;
488 	cpu_clear(smp_processor_id(), mask);
489 	send_ipi_message(mask, IPI_TIMER);
490 }
491 
492 void smp_send_stop(void)
493 {
494 	cpumask_t mask = cpu_online_map;
495 	cpu_clear(smp_processor_id(), mask);
496 	send_ipi_message(mask, IPI_CPU_STOP);
497 }
498 
499 /*
500  * not supported here
501  */
502 int __init setup_profiling_timer(unsigned int multiplier)
503 {
504 	return -EINVAL;
505 }
506 
507 static int
508 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
509 		 cpumask_t mask)
510 {
511 	int ret = 0;
512 
513 	preempt_disable();
514 
515 	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
516 	if (cpu_isset(smp_processor_id(), mask))
517 		func(info);
518 
519 	preempt_enable();
520 
521 	return ret;
522 }
523 
524 /**********************************************************************/
525 
526 /*
527  * TLB operations
528  */
529 struct tlb_args {
530 	struct vm_area_struct *ta_vma;
531 	unsigned long ta_start;
532 	unsigned long ta_end;
533 };
534 
535 static inline void ipi_flush_tlb_all(void *ignored)
536 {
537 	local_flush_tlb_all();
538 }
539 
540 static inline void ipi_flush_tlb_mm(void *arg)
541 {
542 	struct mm_struct *mm = (struct mm_struct *)arg;
543 
544 	local_flush_tlb_mm(mm);
545 }
546 
547 static inline void ipi_flush_tlb_page(void *arg)
548 {
549 	struct tlb_args *ta = (struct tlb_args *)arg;
550 
551 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
552 }
553 
554 static inline void ipi_flush_tlb_kernel_page(void *arg)
555 {
556 	struct tlb_args *ta = (struct tlb_args *)arg;
557 
558 	local_flush_tlb_kernel_page(ta->ta_start);
559 }
560 
561 static inline void ipi_flush_tlb_range(void *arg)
562 {
563 	struct tlb_args *ta = (struct tlb_args *)arg;
564 
565 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
566 }
567 
568 static inline void ipi_flush_tlb_kernel_range(void *arg)
569 {
570 	struct tlb_args *ta = (struct tlb_args *)arg;
571 
572 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
573 }
574 
575 void flush_tlb_all(void)
576 {
577 	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
578 }
579 
580 void flush_tlb_mm(struct mm_struct *mm)
581 {
582 	cpumask_t mask = mm->cpu_vm_mask;
583 
584 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
585 }
586 
587 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
588 {
589 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
590 	struct tlb_args ta;
591 
592 	ta.ta_vma = vma;
593 	ta.ta_start = uaddr;
594 
595 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
596 }
597 
598 void flush_tlb_kernel_page(unsigned long kaddr)
599 {
600 	struct tlb_args ta;
601 
602 	ta.ta_start = kaddr;
603 
604 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
605 }
606 
607 void flush_tlb_range(struct vm_area_struct *vma,
608                      unsigned long start, unsigned long end)
609 {
610 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
611 	struct tlb_args ta;
612 
613 	ta.ta_vma = vma;
614 	ta.ta_start = start;
615 	ta.ta_end = end;
616 
617 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
618 }
619 
620 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
621 {
622 	struct tlb_args ta;
623 
624 	ta.ta_start = start;
625 	ta.ta_end = end;
626 
627 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
628 }
629