1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/cpu.h> 21 #include <linux/smp.h> 22 #include <linux/seq_file.h> 23 24 #include <asm/atomic.h> 25 #include <asm/cacheflush.h> 26 #include <asm/cpu.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgtable.h> 29 #include <asm/pgalloc.h> 30 #include <asm/processor.h> 31 #include <asm/tlbflush.h> 32 #include <asm/ptrace.h> 33 34 /* 35 * bitmask of present and online CPUs. 36 * The present bitmask indicates that the CPU is physically present. 37 * The online bitmask indicates that the CPU is up and running. 38 */ 39 cpumask_t cpu_possible_map; 40 cpumask_t cpu_online_map; 41 42 /* 43 * as from 2.5, kernels no longer have an init_tasks structure 44 * so we need some other way of telling a new secondary core 45 * where to place its SVC stack 46 */ 47 struct secondary_data secondary_data; 48 49 /* 50 * structures for inter-processor calls 51 * - A collection of single bit ipi messages. 52 */ 53 struct ipi_data { 54 spinlock_t lock; 55 unsigned long ipi_count; 56 unsigned long bits; 57 }; 58 59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 60 .lock = SPIN_LOCK_UNLOCKED, 61 }; 62 63 enum ipi_msg_type { 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CPU_STOP, 68 }; 69 70 struct smp_call_struct { 71 void (*func)(void *info); 72 void *info; 73 int wait; 74 cpumask_t pending; 75 cpumask_t unfinished; 76 }; 77 78 static struct smp_call_struct * volatile smp_call_function_data; 79 static DEFINE_SPINLOCK(smp_call_function_lock); 80 81 int __init __cpu_up(unsigned int cpu) 82 { 83 struct task_struct *idle; 84 pgd_t *pgd; 85 pmd_t *pmd; 86 int ret; 87 88 /* 89 * Spawn a new process manually. Grab a pointer to 90 * its task struct so we can mess with it 91 */ 92 idle = fork_idle(cpu); 93 if (IS_ERR(idle)) { 94 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 95 return PTR_ERR(idle); 96 } 97 98 /* 99 * Allocate initial page tables to allow the new CPU to 100 * enable the MMU safely. This essentially means a set 101 * of our "standard" page tables, with the addition of 102 * a 1:1 mapping for the physical address of the kernel. 103 */ 104 pgd = pgd_alloc(&init_mm); 105 pmd = pmd_offset(pgd, PHYS_OFFSET); 106 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 107 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 108 109 /* 110 * We need to tell the secondary core where to find 111 * its stack and the page tables. 112 */ 113 secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8; 114 secondary_data.pgdir = virt_to_phys(pgd); 115 wmb(); 116 117 /* 118 * Now bring the CPU into our world. 119 */ 120 ret = boot_secondary(cpu, idle); 121 if (ret == 0) { 122 unsigned long timeout; 123 124 /* 125 * CPU was successfully started, wait for it 126 * to come online or time out. 127 */ 128 timeout = jiffies + HZ; 129 while (time_before(jiffies, timeout)) { 130 if (cpu_online(cpu)) 131 break; 132 133 udelay(10); 134 barrier(); 135 } 136 137 if (!cpu_online(cpu)) 138 ret = -EIO; 139 } 140 141 secondary_data.stack = 0; 142 secondary_data.pgdir = 0; 143 144 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); 145 pgd_free(pgd); 146 147 if (ret) { 148 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 149 150 /* 151 * FIXME: We need to clean up the new idle thread. --rmk 152 */ 153 } 154 155 return ret; 156 } 157 158 /* 159 * This is the secondary CPU boot entry. We're using this CPUs 160 * idle thread stack, but a set of temporary page tables. 161 */ 162 asmlinkage void __init secondary_start_kernel(void) 163 { 164 struct mm_struct *mm = &init_mm; 165 unsigned int cpu = smp_processor_id(); 166 167 printk("CPU%u: Booted secondary processor\n", cpu); 168 169 /* 170 * All kernel threads share the same mm context; grab a 171 * reference and switch to it. 172 */ 173 atomic_inc(&mm->mm_users); 174 atomic_inc(&mm->mm_count); 175 current->active_mm = mm; 176 cpu_set(cpu, mm->cpu_vm_mask); 177 cpu_switch_mm(mm->pgd, mm); 178 enter_lazy_tlb(mm, current); 179 180 cpu_init(); 181 182 /* 183 * Give the platform a chance to do its own initialisation. 184 */ 185 platform_secondary_init(cpu); 186 187 /* 188 * Enable local interrupts. 189 */ 190 local_irq_enable(); 191 local_fiq_enable(); 192 193 calibrate_delay(); 194 195 smp_store_cpu_info(cpu); 196 197 /* 198 * OK, now it's safe to let the boot CPU continue 199 */ 200 cpu_set(cpu, cpu_online_map); 201 202 /* 203 * OK, it's off to the idle thread for us 204 */ 205 cpu_idle(); 206 } 207 208 /* 209 * Called by both boot and secondaries to move global data into 210 * per-processor storage. 211 */ 212 void __init smp_store_cpu_info(unsigned int cpuid) 213 { 214 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 215 216 cpu_info->loops_per_jiffy = loops_per_jiffy; 217 } 218 219 void __init smp_cpus_done(unsigned int max_cpus) 220 { 221 int cpu; 222 unsigned long bogosum = 0; 223 224 for_each_online_cpu(cpu) 225 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 226 227 printk(KERN_INFO "SMP: Total of %d processors activated " 228 "(%lu.%02lu BogoMIPS).\n", 229 num_online_cpus(), 230 bogosum / (500000/HZ), 231 (bogosum / (5000/HZ)) % 100); 232 } 233 234 void __init smp_prepare_boot_cpu(void) 235 { 236 unsigned int cpu = smp_processor_id(); 237 238 cpu_set(cpu, cpu_possible_map); 239 cpu_set(cpu, cpu_present_map); 240 cpu_set(cpu, cpu_online_map); 241 } 242 243 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 244 { 245 unsigned long flags; 246 unsigned int cpu; 247 248 local_irq_save(flags); 249 250 for_each_cpu_mask(cpu, callmap) { 251 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 252 253 spin_lock(&ipi->lock); 254 ipi->bits |= 1 << msg; 255 spin_unlock(&ipi->lock); 256 } 257 258 /* 259 * Call the platform specific cross-CPU call function. 260 */ 261 smp_cross_call(callmap); 262 263 local_irq_restore(flags); 264 } 265 266 /* 267 * You must not call this function with disabled interrupts, from a 268 * hardware interrupt handler, nor from a bottom half handler. 269 */ 270 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry, 271 int wait, cpumask_t callmap) 272 { 273 struct smp_call_struct data; 274 unsigned long timeout; 275 int ret = 0; 276 277 data.func = func; 278 data.info = info; 279 data.wait = wait; 280 281 cpu_clear(smp_processor_id(), callmap); 282 if (cpus_empty(callmap)) 283 goto out; 284 285 data.pending = callmap; 286 if (wait) 287 data.unfinished = callmap; 288 289 /* 290 * try to get the mutex on smp_call_function_data 291 */ 292 spin_lock(&smp_call_function_lock); 293 smp_call_function_data = &data; 294 295 send_ipi_message(callmap, IPI_CALL_FUNC); 296 297 timeout = jiffies + HZ; 298 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 299 barrier(); 300 301 /* 302 * did we time out? 303 */ 304 if (!cpus_empty(data.pending)) { 305 /* 306 * this may be causing our panic - report it 307 */ 308 printk(KERN_CRIT 309 "CPU%u: smp_call_function timeout for %p(%p)\n" 310 " callmap %lx pending %lx, %swait\n", 311 smp_processor_id(), func, info, callmap, data.pending, 312 wait ? "" : "no "); 313 314 /* 315 * TRACE 316 */ 317 timeout = jiffies + (5 * HZ); 318 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 319 barrier(); 320 321 if (cpus_empty(data.pending)) 322 printk(KERN_CRIT " RESOLVED\n"); 323 else 324 printk(KERN_CRIT " STILL STUCK\n"); 325 } 326 327 /* 328 * whatever happened, we're done with the data, so release it 329 */ 330 smp_call_function_data = NULL; 331 spin_unlock(&smp_call_function_lock); 332 333 if (!cpus_empty(data.pending)) { 334 ret = -ETIMEDOUT; 335 goto out; 336 } 337 338 if (wait) 339 while (!cpus_empty(data.unfinished)) 340 barrier(); 341 out: 342 343 return 0; 344 } 345 346 int smp_call_function(void (*func)(void *info), void *info, int retry, 347 int wait) 348 { 349 return smp_call_function_on_cpu(func, info, retry, wait, 350 cpu_online_map); 351 } 352 353 void show_ipi_list(struct seq_file *p) 354 { 355 unsigned int cpu; 356 357 seq_puts(p, "IPI:"); 358 359 for_each_present_cpu(cpu) 360 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 361 362 seq_putc(p, '\n'); 363 } 364 365 static void ipi_timer(struct pt_regs *regs) 366 { 367 int user = user_mode(regs); 368 369 irq_enter(); 370 profile_tick(CPU_PROFILING, regs); 371 update_process_times(user); 372 irq_exit(); 373 } 374 375 /* 376 * ipi_call_function - handle IPI from smp_call_function() 377 * 378 * Note that we copy data out of the cross-call structure and then 379 * let the caller know that we're here and have done with their data 380 */ 381 static void ipi_call_function(unsigned int cpu) 382 { 383 struct smp_call_struct *data = smp_call_function_data; 384 void (*func)(void *info) = data->func; 385 void *info = data->info; 386 int wait = data->wait; 387 388 cpu_clear(cpu, data->pending); 389 390 func(info); 391 392 if (wait) 393 cpu_clear(cpu, data->unfinished); 394 } 395 396 static DEFINE_SPINLOCK(stop_lock); 397 398 /* 399 * ipi_cpu_stop - handle IPI from smp_send_stop() 400 */ 401 static void ipi_cpu_stop(unsigned int cpu) 402 { 403 spin_lock(&stop_lock); 404 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 405 dump_stack(); 406 spin_unlock(&stop_lock); 407 408 cpu_clear(cpu, cpu_online_map); 409 410 local_fiq_disable(); 411 local_irq_disable(); 412 413 while (1) 414 cpu_relax(); 415 } 416 417 /* 418 * Main handler for inter-processor interrupts 419 * 420 * For ARM, the ipimask now only identifies a single 421 * category of IPI (Bit 1 IPIs have been replaced by a 422 * different mechanism): 423 * 424 * Bit 0 - Inter-processor function call 425 */ 426 void do_IPI(struct pt_regs *regs) 427 { 428 unsigned int cpu = smp_processor_id(); 429 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 430 431 ipi->ipi_count++; 432 433 for (;;) { 434 unsigned long msgs; 435 436 spin_lock(&ipi->lock); 437 msgs = ipi->bits; 438 ipi->bits = 0; 439 spin_unlock(&ipi->lock); 440 441 if (!msgs) 442 break; 443 444 do { 445 unsigned nextmsg; 446 447 nextmsg = msgs & -msgs; 448 msgs &= ~nextmsg; 449 nextmsg = ffz(~nextmsg); 450 451 switch (nextmsg) { 452 case IPI_TIMER: 453 ipi_timer(regs); 454 break; 455 456 case IPI_RESCHEDULE: 457 /* 458 * nothing more to do - eveything is 459 * done on the interrupt return path 460 */ 461 break; 462 463 case IPI_CALL_FUNC: 464 ipi_call_function(cpu); 465 break; 466 467 case IPI_CPU_STOP: 468 ipi_cpu_stop(cpu); 469 break; 470 471 default: 472 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 473 cpu, nextmsg); 474 break; 475 } 476 } while (msgs); 477 } 478 } 479 480 void smp_send_reschedule(int cpu) 481 { 482 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 483 } 484 485 void smp_send_timer(void) 486 { 487 cpumask_t mask = cpu_online_map; 488 cpu_clear(smp_processor_id(), mask); 489 send_ipi_message(mask, IPI_TIMER); 490 } 491 492 void smp_send_stop(void) 493 { 494 cpumask_t mask = cpu_online_map; 495 cpu_clear(smp_processor_id(), mask); 496 send_ipi_message(mask, IPI_CPU_STOP); 497 } 498 499 /* 500 * not supported here 501 */ 502 int __init setup_profiling_timer(unsigned int multiplier) 503 { 504 return -EINVAL; 505 } 506 507 static int 508 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait, 509 cpumask_t mask) 510 { 511 int ret = 0; 512 513 preempt_disable(); 514 515 ret = smp_call_function_on_cpu(func, info, retry, wait, mask); 516 if (cpu_isset(smp_processor_id(), mask)) 517 func(info); 518 519 preempt_enable(); 520 521 return ret; 522 } 523 524 /**********************************************************************/ 525 526 /* 527 * TLB operations 528 */ 529 struct tlb_args { 530 struct vm_area_struct *ta_vma; 531 unsigned long ta_start; 532 unsigned long ta_end; 533 }; 534 535 static inline void ipi_flush_tlb_all(void *ignored) 536 { 537 local_flush_tlb_all(); 538 } 539 540 static inline void ipi_flush_tlb_mm(void *arg) 541 { 542 struct mm_struct *mm = (struct mm_struct *)arg; 543 544 local_flush_tlb_mm(mm); 545 } 546 547 static inline void ipi_flush_tlb_page(void *arg) 548 { 549 struct tlb_args *ta = (struct tlb_args *)arg; 550 551 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 552 } 553 554 static inline void ipi_flush_tlb_kernel_page(void *arg) 555 { 556 struct tlb_args *ta = (struct tlb_args *)arg; 557 558 local_flush_tlb_kernel_page(ta->ta_start); 559 } 560 561 static inline void ipi_flush_tlb_range(void *arg) 562 { 563 struct tlb_args *ta = (struct tlb_args *)arg; 564 565 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 566 } 567 568 static inline void ipi_flush_tlb_kernel_range(void *arg) 569 { 570 struct tlb_args *ta = (struct tlb_args *)arg; 571 572 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 573 } 574 575 void flush_tlb_all(void) 576 { 577 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1); 578 } 579 580 void flush_tlb_mm(struct mm_struct *mm) 581 { 582 cpumask_t mask = mm->cpu_vm_mask; 583 584 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask); 585 } 586 587 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 588 { 589 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 590 struct tlb_args ta; 591 592 ta.ta_vma = vma; 593 ta.ta_start = uaddr; 594 595 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask); 596 } 597 598 void flush_tlb_kernel_page(unsigned long kaddr) 599 { 600 struct tlb_args ta; 601 602 ta.ta_start = kaddr; 603 604 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1); 605 } 606 607 void flush_tlb_range(struct vm_area_struct *vma, 608 unsigned long start, unsigned long end) 609 { 610 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 611 struct tlb_args ta; 612 613 ta.ta_vma = vma; 614 ta.ta_start = start; 615 ta.ta_end = end; 616 617 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask); 618 } 619 620 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 621 { 622 struct tlb_args ta; 623 624 ta.ta_start = start; 625 ta.ta_end = end; 626 627 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1); 628 } 629