1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 #include <linux/completion.h> 28 29 #include <asm/atomic.h> 30 #include <asm/cacheflush.h> 31 #include <asm/cpu.h> 32 #include <asm/cputype.h> 33 #include <asm/mmu_context.h> 34 #include <asm/pgtable.h> 35 #include <asm/pgalloc.h> 36 #include <asm/processor.h> 37 #include <asm/sections.h> 38 #include <asm/tlbflush.h> 39 #include <asm/ptrace.h> 40 #include <asm/localtimer.h> 41 #include <asm/smp_plat.h> 42 43 /* 44 * as from 2.5, kernels no longer have an init_tasks structure 45 * so we need some other way of telling a new secondary core 46 * where to place its SVC stack 47 */ 48 struct secondary_data secondary_data; 49 50 enum ipi_msg_type { 51 IPI_TIMER = 2, 52 IPI_RESCHEDULE, 53 IPI_CALL_FUNC, 54 IPI_CALL_FUNC_SINGLE, 55 IPI_CPU_STOP, 56 }; 57 58 static inline void identity_mapping_add(pgd_t *pgd, unsigned long start, 59 unsigned long end) 60 { 61 unsigned long addr, prot; 62 pmd_t *pmd; 63 64 prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE; 65 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) 66 prot |= PMD_BIT4; 67 68 for (addr = start & PGDIR_MASK; addr < end;) { 69 pmd = pmd_offset(pgd + pgd_index(addr), addr); 70 pmd[0] = __pmd(addr | prot); 71 addr += SECTION_SIZE; 72 pmd[1] = __pmd(addr | prot); 73 addr += SECTION_SIZE; 74 flush_pmd_entry(pmd); 75 outer_clean_range(__pa(pmd), __pa(pmd + 1)); 76 } 77 } 78 79 static inline void identity_mapping_del(pgd_t *pgd, unsigned long start, 80 unsigned long end) 81 { 82 unsigned long addr; 83 pmd_t *pmd; 84 85 for (addr = start & PGDIR_MASK; addr < end; addr += PGDIR_SIZE) { 86 pmd = pmd_offset(pgd + pgd_index(addr), addr); 87 pmd[0] = __pmd(0); 88 pmd[1] = __pmd(0); 89 clean_pmd_entry(pmd); 90 outer_clean_range(__pa(pmd), __pa(pmd + 1)); 91 } 92 } 93 94 int __cpuinit __cpu_up(unsigned int cpu) 95 { 96 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 97 struct task_struct *idle = ci->idle; 98 pgd_t *pgd; 99 int ret; 100 101 /* 102 * Spawn a new process manually, if not already done. 103 * Grab a pointer to its task struct so we can mess with it 104 */ 105 if (!idle) { 106 idle = fork_idle(cpu); 107 if (IS_ERR(idle)) { 108 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 109 return PTR_ERR(idle); 110 } 111 ci->idle = idle; 112 } else { 113 /* 114 * Since this idle thread is being re-used, call 115 * init_idle() to reinitialize the thread structure. 116 */ 117 init_idle(idle, cpu); 118 } 119 120 /* 121 * Allocate initial page tables to allow the new CPU to 122 * enable the MMU safely. This essentially means a set 123 * of our "standard" page tables, with the addition of 124 * a 1:1 mapping for the physical address of the kernel. 125 */ 126 pgd = pgd_alloc(&init_mm); 127 if (!pgd) 128 return -ENOMEM; 129 130 if (PHYS_OFFSET != PAGE_OFFSET) { 131 #ifndef CONFIG_HOTPLUG_CPU 132 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end)); 133 #endif 134 identity_mapping_add(pgd, __pa(_stext), __pa(_etext)); 135 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata)); 136 } 137 138 /* 139 * We need to tell the secondary core where to find 140 * its stack and the page tables. 141 */ 142 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 143 secondary_data.pgdir = virt_to_phys(pgd); 144 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 145 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 146 147 /* 148 * Now bring the CPU into our world. 149 */ 150 ret = boot_secondary(cpu, idle); 151 if (ret == 0) { 152 unsigned long timeout; 153 154 /* 155 * CPU was successfully started, wait for it 156 * to come online or time out. 157 */ 158 timeout = jiffies + HZ; 159 while (time_before(jiffies, timeout)) { 160 if (cpu_online(cpu)) 161 break; 162 163 udelay(10); 164 barrier(); 165 } 166 167 if (!cpu_online(cpu)) { 168 pr_crit("CPU%u: failed to come online\n", cpu); 169 ret = -EIO; 170 } 171 } else { 172 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 173 } 174 175 secondary_data.stack = NULL; 176 secondary_data.pgdir = 0; 177 178 if (PHYS_OFFSET != PAGE_OFFSET) { 179 #ifndef CONFIG_HOTPLUG_CPU 180 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end)); 181 #endif 182 identity_mapping_del(pgd, __pa(_stext), __pa(_etext)); 183 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata)); 184 } 185 186 pgd_free(&init_mm, pgd); 187 188 return ret; 189 } 190 191 #ifdef CONFIG_HOTPLUG_CPU 192 static void percpu_timer_stop(void); 193 194 /* 195 * __cpu_disable runs on the processor to be shutdown. 196 */ 197 int __cpu_disable(void) 198 { 199 unsigned int cpu = smp_processor_id(); 200 struct task_struct *p; 201 int ret; 202 203 ret = platform_cpu_disable(cpu); 204 if (ret) 205 return ret; 206 207 /* 208 * Take this CPU offline. Once we clear this, we can't return, 209 * and we must not schedule until we're ready to give up the cpu. 210 */ 211 set_cpu_online(cpu, false); 212 213 /* 214 * OK - migrate IRQs away from this CPU 215 */ 216 migrate_irqs(); 217 218 /* 219 * Stop the local timer for this CPU. 220 */ 221 percpu_timer_stop(); 222 223 /* 224 * Flush user cache and TLB mappings, and then remove this CPU 225 * from the vm mask set of all processes. 226 */ 227 flush_cache_all(); 228 local_flush_tlb_all(); 229 230 read_lock(&tasklist_lock); 231 for_each_process(p) { 232 if (p->mm) 233 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 234 } 235 read_unlock(&tasklist_lock); 236 237 return 0; 238 } 239 240 static DECLARE_COMPLETION(cpu_died); 241 242 /* 243 * called on the thread which is asking for a CPU to be shutdown - 244 * waits until shutdown has completed, or it is timed out. 245 */ 246 void __cpu_die(unsigned int cpu) 247 { 248 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 249 pr_err("CPU%u: cpu didn't die\n", cpu); 250 return; 251 } 252 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 253 254 if (!platform_cpu_kill(cpu)) 255 printk("CPU%u: unable to kill\n", cpu); 256 } 257 258 /* 259 * Called from the idle thread for the CPU which has been shutdown. 260 * 261 * Note that we disable IRQs here, but do not re-enable them 262 * before returning to the caller. This is also the behaviour 263 * of the other hotplug-cpu capable cores, so presumably coming 264 * out of idle fixes this. 265 */ 266 void __ref cpu_die(void) 267 { 268 unsigned int cpu = smp_processor_id(); 269 270 idle_task_exit(); 271 272 local_irq_disable(); 273 mb(); 274 275 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 276 complete(&cpu_died); 277 278 /* 279 * actual CPU shutdown procedure is at least platform (if not 280 * CPU) specific. 281 */ 282 platform_cpu_die(cpu); 283 284 /* 285 * Do not return to the idle loop - jump back to the secondary 286 * cpu initialisation. There's some initialisation which needs 287 * to be repeated to undo the effects of taking the CPU offline. 288 */ 289 __asm__("mov sp, %0\n" 290 " b secondary_start_kernel" 291 : 292 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 293 } 294 #endif /* CONFIG_HOTPLUG_CPU */ 295 296 /* 297 * Called by both boot and secondaries to move global data into 298 * per-processor storage. 299 */ 300 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 301 { 302 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 303 304 cpu_info->loops_per_jiffy = loops_per_jiffy; 305 } 306 307 /* 308 * This is the secondary CPU boot entry. We're using this CPUs 309 * idle thread stack, but a set of temporary page tables. 310 */ 311 asmlinkage void __cpuinit secondary_start_kernel(void) 312 { 313 struct mm_struct *mm = &init_mm; 314 unsigned int cpu = smp_processor_id(); 315 316 printk("CPU%u: Booted secondary processor\n", cpu); 317 318 /* 319 * All kernel threads share the same mm context; grab a 320 * reference and switch to it. 321 */ 322 atomic_inc(&mm->mm_users); 323 atomic_inc(&mm->mm_count); 324 current->active_mm = mm; 325 cpumask_set_cpu(cpu, mm_cpumask(mm)); 326 cpu_switch_mm(mm->pgd, mm); 327 enter_lazy_tlb(mm, current); 328 local_flush_tlb_all(); 329 330 cpu_init(); 331 preempt_disable(); 332 trace_hardirqs_off(); 333 334 /* 335 * Give the platform a chance to do its own initialisation. 336 */ 337 platform_secondary_init(cpu); 338 339 /* 340 * Enable local interrupts. 341 */ 342 notify_cpu_starting(cpu); 343 local_irq_enable(); 344 local_fiq_enable(); 345 346 /* 347 * Setup the percpu timer for this CPU. 348 */ 349 percpu_timer_setup(); 350 351 calibrate_delay(); 352 353 smp_store_cpu_info(cpu); 354 355 /* 356 * OK, now it's safe to let the boot CPU continue 357 */ 358 set_cpu_online(cpu, true); 359 360 /* 361 * OK, it's off to the idle thread for us 362 */ 363 cpu_idle(); 364 } 365 366 void __init smp_cpus_done(unsigned int max_cpus) 367 { 368 int cpu; 369 unsigned long bogosum = 0; 370 371 for_each_online_cpu(cpu) 372 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 373 374 printk(KERN_INFO "SMP: Total of %d processors activated " 375 "(%lu.%02lu BogoMIPS).\n", 376 num_online_cpus(), 377 bogosum / (500000/HZ), 378 (bogosum / (5000/HZ)) % 100); 379 } 380 381 void __init smp_prepare_boot_cpu(void) 382 { 383 unsigned int cpu = smp_processor_id(); 384 385 per_cpu(cpu_data, cpu).idle = current; 386 } 387 388 void __init smp_prepare_cpus(unsigned int max_cpus) 389 { 390 unsigned int ncores = num_possible_cpus(); 391 392 smp_store_cpu_info(smp_processor_id()); 393 394 /* 395 * are we trying to boot more cores than exist? 396 */ 397 if (max_cpus > ncores) 398 max_cpus = ncores; 399 400 if (max_cpus > 1) { 401 /* 402 * Enable the local timer or broadcast device for the 403 * boot CPU, but only if we have more than one CPU. 404 */ 405 percpu_timer_setup(); 406 407 /* 408 * Initialise the SCU if there are more than one CPU 409 * and let them know where to start. 410 */ 411 platform_smp_prepare_cpus(max_cpus); 412 } 413 } 414 415 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 416 { 417 smp_cross_call(mask, IPI_CALL_FUNC); 418 } 419 420 void arch_send_call_function_single_ipi(int cpu) 421 { 422 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 423 } 424 425 static const char *ipi_types[NR_IPI] = { 426 #define S(x,s) [x - IPI_TIMER] = s 427 S(IPI_TIMER, "Timer broadcast interrupts"), 428 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 429 S(IPI_CALL_FUNC, "Function call interrupts"), 430 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 431 S(IPI_CPU_STOP, "CPU stop interrupts"), 432 }; 433 434 void show_ipi_list(struct seq_file *p, int prec) 435 { 436 unsigned int cpu, i; 437 438 for (i = 0; i < NR_IPI; i++) { 439 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 440 441 for_each_present_cpu(cpu) 442 seq_printf(p, "%10u ", 443 __get_irq_stat(cpu, ipi_irqs[i])); 444 445 seq_printf(p, " %s\n", ipi_types[i]); 446 } 447 } 448 449 u64 smp_irq_stat_cpu(unsigned int cpu) 450 { 451 u64 sum = 0; 452 int i; 453 454 for (i = 0; i < NR_IPI; i++) 455 sum += __get_irq_stat(cpu, ipi_irqs[i]); 456 457 #ifdef CONFIG_LOCAL_TIMERS 458 sum += __get_irq_stat(cpu, local_timer_irqs); 459 #endif 460 461 return sum; 462 } 463 464 /* 465 * Timer (local or broadcast) support 466 */ 467 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 468 469 static void ipi_timer(void) 470 { 471 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 472 irq_enter(); 473 evt->event_handler(evt); 474 irq_exit(); 475 } 476 477 #ifdef CONFIG_LOCAL_TIMERS 478 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 479 { 480 struct pt_regs *old_regs = set_irq_regs(regs); 481 int cpu = smp_processor_id(); 482 483 if (local_timer_ack()) { 484 __inc_irq_stat(cpu, local_timer_irqs); 485 ipi_timer(); 486 } 487 488 set_irq_regs(old_regs); 489 } 490 491 void show_local_irqs(struct seq_file *p, int prec) 492 { 493 unsigned int cpu; 494 495 seq_printf(p, "%*s: ", prec, "LOC"); 496 497 for_each_present_cpu(cpu) 498 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs)); 499 500 seq_printf(p, " Local timer interrupts\n"); 501 } 502 #endif 503 504 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 505 static void smp_timer_broadcast(const struct cpumask *mask) 506 { 507 smp_cross_call(mask, IPI_TIMER); 508 } 509 #else 510 #define smp_timer_broadcast NULL 511 #endif 512 513 #ifndef CONFIG_LOCAL_TIMERS 514 static void broadcast_timer_set_mode(enum clock_event_mode mode, 515 struct clock_event_device *evt) 516 { 517 } 518 519 static void local_timer_setup(struct clock_event_device *evt) 520 { 521 evt->name = "dummy_timer"; 522 evt->features = CLOCK_EVT_FEAT_ONESHOT | 523 CLOCK_EVT_FEAT_PERIODIC | 524 CLOCK_EVT_FEAT_DUMMY; 525 evt->rating = 400; 526 evt->mult = 1; 527 evt->set_mode = broadcast_timer_set_mode; 528 529 clockevents_register_device(evt); 530 } 531 #endif 532 533 void __cpuinit percpu_timer_setup(void) 534 { 535 unsigned int cpu = smp_processor_id(); 536 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 537 538 evt->cpumask = cpumask_of(cpu); 539 evt->broadcast = smp_timer_broadcast; 540 541 local_timer_setup(evt); 542 } 543 544 #ifdef CONFIG_HOTPLUG_CPU 545 /* 546 * The generic clock events code purposely does not stop the local timer 547 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 548 * manually here. 549 */ 550 static void percpu_timer_stop(void) 551 { 552 unsigned int cpu = smp_processor_id(); 553 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 554 555 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); 556 } 557 #endif 558 559 static DEFINE_SPINLOCK(stop_lock); 560 561 /* 562 * ipi_cpu_stop - handle IPI from smp_send_stop() 563 */ 564 static void ipi_cpu_stop(unsigned int cpu) 565 { 566 if (system_state == SYSTEM_BOOTING || 567 system_state == SYSTEM_RUNNING) { 568 spin_lock(&stop_lock); 569 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 570 dump_stack(); 571 spin_unlock(&stop_lock); 572 } 573 574 set_cpu_online(cpu, false); 575 576 local_fiq_disable(); 577 local_irq_disable(); 578 579 while (1) 580 cpu_relax(); 581 } 582 583 /* 584 * Main handler for inter-processor interrupts 585 */ 586 asmlinkage void __exception do_IPI(int ipinr, struct pt_regs *regs) 587 { 588 unsigned int cpu = smp_processor_id(); 589 struct pt_regs *old_regs = set_irq_regs(regs); 590 591 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) 592 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); 593 594 switch (ipinr) { 595 case IPI_TIMER: 596 ipi_timer(); 597 break; 598 599 case IPI_RESCHEDULE: 600 /* 601 * nothing more to do - eveything is 602 * done on the interrupt return path 603 */ 604 break; 605 606 case IPI_CALL_FUNC: 607 generic_smp_call_function_interrupt(); 608 break; 609 610 case IPI_CALL_FUNC_SINGLE: 611 generic_smp_call_function_single_interrupt(); 612 break; 613 614 case IPI_CPU_STOP: 615 ipi_cpu_stop(cpu); 616 break; 617 618 default: 619 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 620 cpu, ipinr); 621 break; 622 } 623 set_irq_regs(old_regs); 624 } 625 626 void smp_send_reschedule(int cpu) 627 { 628 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 629 } 630 631 void smp_send_stop(void) 632 { 633 unsigned long timeout; 634 635 if (num_online_cpus() > 1) { 636 cpumask_t mask = cpu_online_map; 637 cpu_clear(smp_processor_id(), mask); 638 639 smp_cross_call(&mask, IPI_CPU_STOP); 640 } 641 642 /* Wait up to one second for other CPUs to stop */ 643 timeout = USEC_PER_SEC; 644 while (num_online_cpus() > 1 && timeout--) 645 udelay(1); 646 647 if (num_online_cpus() > 1) 648 pr_warning("SMP: failed to stop secondary CPUs\n"); 649 } 650 651 /* 652 * not supported here 653 */ 654 int setup_profiling_timer(unsigned int multiplier) 655 { 656 return -EINVAL; 657 } 658 659 static void 660 on_each_cpu_mask(void (*func)(void *), void *info, int wait, 661 const struct cpumask *mask) 662 { 663 preempt_disable(); 664 665 smp_call_function_many(mask, func, info, wait); 666 if (cpumask_test_cpu(smp_processor_id(), mask)) 667 func(info); 668 669 preempt_enable(); 670 } 671 672 /**********************************************************************/ 673 674 /* 675 * TLB operations 676 */ 677 struct tlb_args { 678 struct vm_area_struct *ta_vma; 679 unsigned long ta_start; 680 unsigned long ta_end; 681 }; 682 683 static inline void ipi_flush_tlb_all(void *ignored) 684 { 685 local_flush_tlb_all(); 686 } 687 688 static inline void ipi_flush_tlb_mm(void *arg) 689 { 690 struct mm_struct *mm = (struct mm_struct *)arg; 691 692 local_flush_tlb_mm(mm); 693 } 694 695 static inline void ipi_flush_tlb_page(void *arg) 696 { 697 struct tlb_args *ta = (struct tlb_args *)arg; 698 699 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 700 } 701 702 static inline void ipi_flush_tlb_kernel_page(void *arg) 703 { 704 struct tlb_args *ta = (struct tlb_args *)arg; 705 706 local_flush_tlb_kernel_page(ta->ta_start); 707 } 708 709 static inline void ipi_flush_tlb_range(void *arg) 710 { 711 struct tlb_args *ta = (struct tlb_args *)arg; 712 713 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 714 } 715 716 static inline void ipi_flush_tlb_kernel_range(void *arg) 717 { 718 struct tlb_args *ta = (struct tlb_args *)arg; 719 720 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 721 } 722 723 void flush_tlb_all(void) 724 { 725 if (tlb_ops_need_broadcast()) 726 on_each_cpu(ipi_flush_tlb_all, NULL, 1); 727 else 728 local_flush_tlb_all(); 729 } 730 731 void flush_tlb_mm(struct mm_struct *mm) 732 { 733 if (tlb_ops_need_broadcast()) 734 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm)); 735 else 736 local_flush_tlb_mm(mm); 737 } 738 739 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 740 { 741 if (tlb_ops_need_broadcast()) { 742 struct tlb_args ta; 743 ta.ta_vma = vma; 744 ta.ta_start = uaddr; 745 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm)); 746 } else 747 local_flush_tlb_page(vma, uaddr); 748 } 749 750 void flush_tlb_kernel_page(unsigned long kaddr) 751 { 752 if (tlb_ops_need_broadcast()) { 753 struct tlb_args ta; 754 ta.ta_start = kaddr; 755 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1); 756 } else 757 local_flush_tlb_kernel_page(kaddr); 758 } 759 760 void flush_tlb_range(struct vm_area_struct *vma, 761 unsigned long start, unsigned long end) 762 { 763 if (tlb_ops_need_broadcast()) { 764 struct tlb_args ta; 765 ta.ta_vma = vma; 766 ta.ta_start = start; 767 ta.ta_end = end; 768 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm)); 769 } else 770 local_flush_tlb_range(vma, start, end); 771 } 772 773 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 774 { 775 if (tlb_ops_need_broadcast()) { 776 struct tlb_args ta; 777 ta.ta_start = start; 778 ta.ta_end = end; 779 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 780 } else 781 local_flush_tlb_kernel_range(start, end); 782 } 783