xref: /linux/arch/arm/kernel/smp.c (revision 10034aabca9032246762daaca3152f3e79380ea0)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 
29 #include <asm/atomic.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cpu.h>
32 #include <asm/cputype.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgtable.h>
35 #include <asm/pgalloc.h>
36 #include <asm/processor.h>
37 #include <asm/sections.h>
38 #include <asm/tlbflush.h>
39 #include <asm/ptrace.h>
40 #include <asm/localtimer.h>
41 #include <asm/smp_plat.h>
42 
43 /*
44  * as from 2.5, kernels no longer have an init_tasks structure
45  * so we need some other way of telling a new secondary core
46  * where to place its SVC stack
47  */
48 struct secondary_data secondary_data;
49 
50 enum ipi_msg_type {
51 	IPI_TIMER = 2,
52 	IPI_RESCHEDULE,
53 	IPI_CALL_FUNC,
54 	IPI_CALL_FUNC_SINGLE,
55 	IPI_CPU_STOP,
56 };
57 
58 static inline void identity_mapping_add(pgd_t *pgd, unsigned long start,
59 	unsigned long end)
60 {
61 	unsigned long addr, prot;
62 	pmd_t *pmd;
63 
64 	prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE;
65 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
66 		prot |= PMD_BIT4;
67 
68 	for (addr = start & PGDIR_MASK; addr < end;) {
69 		pmd = pmd_offset(pgd + pgd_index(addr), addr);
70 		pmd[0] = __pmd(addr | prot);
71 		addr += SECTION_SIZE;
72 		pmd[1] = __pmd(addr | prot);
73 		addr += SECTION_SIZE;
74 		flush_pmd_entry(pmd);
75 		outer_clean_range(__pa(pmd), __pa(pmd + 1));
76 	}
77 }
78 
79 static inline void identity_mapping_del(pgd_t *pgd, unsigned long start,
80 	unsigned long end)
81 {
82 	unsigned long addr;
83 	pmd_t *pmd;
84 
85 	for (addr = start & PGDIR_MASK; addr < end; addr += PGDIR_SIZE) {
86 		pmd = pmd_offset(pgd + pgd_index(addr), addr);
87 		pmd[0] = __pmd(0);
88 		pmd[1] = __pmd(0);
89 		clean_pmd_entry(pmd);
90 		outer_clean_range(__pa(pmd), __pa(pmd + 1));
91 	}
92 }
93 
94 int __cpuinit __cpu_up(unsigned int cpu)
95 {
96 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
97 	struct task_struct *idle = ci->idle;
98 	pgd_t *pgd;
99 	int ret;
100 
101 	/*
102 	 * Spawn a new process manually, if not already done.
103 	 * Grab a pointer to its task struct so we can mess with it
104 	 */
105 	if (!idle) {
106 		idle = fork_idle(cpu);
107 		if (IS_ERR(idle)) {
108 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
109 			return PTR_ERR(idle);
110 		}
111 		ci->idle = idle;
112 	} else {
113 		/*
114 		 * Since this idle thread is being re-used, call
115 		 * init_idle() to reinitialize the thread structure.
116 		 */
117 		init_idle(idle, cpu);
118 	}
119 
120 	/*
121 	 * Allocate initial page tables to allow the new CPU to
122 	 * enable the MMU safely.  This essentially means a set
123 	 * of our "standard" page tables, with the addition of
124 	 * a 1:1 mapping for the physical address of the kernel.
125 	 */
126 	pgd = pgd_alloc(&init_mm);
127 	if (!pgd)
128 		return -ENOMEM;
129 
130 	if (PHYS_OFFSET != PAGE_OFFSET) {
131 #ifndef CONFIG_HOTPLUG_CPU
132 		identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
133 #endif
134 		identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
135 		identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
136 	}
137 
138 	/*
139 	 * We need to tell the secondary core where to find
140 	 * its stack and the page tables.
141 	 */
142 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
143 	secondary_data.pgdir = virt_to_phys(pgd);
144 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
145 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
146 
147 	/*
148 	 * Now bring the CPU into our world.
149 	 */
150 	ret = boot_secondary(cpu, idle);
151 	if (ret == 0) {
152 		unsigned long timeout;
153 
154 		/*
155 		 * CPU was successfully started, wait for it
156 		 * to come online or time out.
157 		 */
158 		timeout = jiffies + HZ;
159 		while (time_before(jiffies, timeout)) {
160 			if (cpu_online(cpu))
161 				break;
162 
163 			udelay(10);
164 			barrier();
165 		}
166 
167 		if (!cpu_online(cpu)) {
168 			pr_crit("CPU%u: failed to come online\n", cpu);
169 			ret = -EIO;
170 		}
171 	} else {
172 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
173 	}
174 
175 	secondary_data.stack = NULL;
176 	secondary_data.pgdir = 0;
177 
178 	if (PHYS_OFFSET != PAGE_OFFSET) {
179 #ifndef CONFIG_HOTPLUG_CPU
180 		identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
181 #endif
182 		identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
183 		identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
184 	}
185 
186 	pgd_free(&init_mm, pgd);
187 
188 	return ret;
189 }
190 
191 #ifdef CONFIG_HOTPLUG_CPU
192 static void percpu_timer_stop(void);
193 
194 /*
195  * __cpu_disable runs on the processor to be shutdown.
196  */
197 int __cpu_disable(void)
198 {
199 	unsigned int cpu = smp_processor_id();
200 	struct task_struct *p;
201 	int ret;
202 
203 	ret = platform_cpu_disable(cpu);
204 	if (ret)
205 		return ret;
206 
207 	/*
208 	 * Take this CPU offline.  Once we clear this, we can't return,
209 	 * and we must not schedule until we're ready to give up the cpu.
210 	 */
211 	set_cpu_online(cpu, false);
212 
213 	/*
214 	 * OK - migrate IRQs away from this CPU
215 	 */
216 	migrate_irqs();
217 
218 	/*
219 	 * Stop the local timer for this CPU.
220 	 */
221 	percpu_timer_stop();
222 
223 	/*
224 	 * Flush user cache and TLB mappings, and then remove this CPU
225 	 * from the vm mask set of all processes.
226 	 */
227 	flush_cache_all();
228 	local_flush_tlb_all();
229 
230 	read_lock(&tasklist_lock);
231 	for_each_process(p) {
232 		if (p->mm)
233 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
234 	}
235 	read_unlock(&tasklist_lock);
236 
237 	return 0;
238 }
239 
240 static DECLARE_COMPLETION(cpu_died);
241 
242 /*
243  * called on the thread which is asking for a CPU to be shutdown -
244  * waits until shutdown has completed, or it is timed out.
245  */
246 void __cpu_die(unsigned int cpu)
247 {
248 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
249 		pr_err("CPU%u: cpu didn't die\n", cpu);
250 		return;
251 	}
252 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
253 
254 	if (!platform_cpu_kill(cpu))
255 		printk("CPU%u: unable to kill\n", cpu);
256 }
257 
258 /*
259  * Called from the idle thread for the CPU which has been shutdown.
260  *
261  * Note that we disable IRQs here, but do not re-enable them
262  * before returning to the caller. This is also the behaviour
263  * of the other hotplug-cpu capable cores, so presumably coming
264  * out of idle fixes this.
265  */
266 void __ref cpu_die(void)
267 {
268 	unsigned int cpu = smp_processor_id();
269 
270 	idle_task_exit();
271 
272 	local_irq_disable();
273 	mb();
274 
275 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
276 	complete(&cpu_died);
277 
278 	/*
279 	 * actual CPU shutdown procedure is at least platform (if not
280 	 * CPU) specific.
281 	 */
282 	platform_cpu_die(cpu);
283 
284 	/*
285 	 * Do not return to the idle loop - jump back to the secondary
286 	 * cpu initialisation.  There's some initialisation which needs
287 	 * to be repeated to undo the effects of taking the CPU offline.
288 	 */
289 	__asm__("mov	sp, %0\n"
290 	"	b	secondary_start_kernel"
291 		:
292 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
293 }
294 #endif /* CONFIG_HOTPLUG_CPU */
295 
296 /*
297  * Called by both boot and secondaries to move global data into
298  * per-processor storage.
299  */
300 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
301 {
302 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
303 
304 	cpu_info->loops_per_jiffy = loops_per_jiffy;
305 }
306 
307 /*
308  * This is the secondary CPU boot entry.  We're using this CPUs
309  * idle thread stack, but a set of temporary page tables.
310  */
311 asmlinkage void __cpuinit secondary_start_kernel(void)
312 {
313 	struct mm_struct *mm = &init_mm;
314 	unsigned int cpu = smp_processor_id();
315 
316 	printk("CPU%u: Booted secondary processor\n", cpu);
317 
318 	/*
319 	 * All kernel threads share the same mm context; grab a
320 	 * reference and switch to it.
321 	 */
322 	atomic_inc(&mm->mm_users);
323 	atomic_inc(&mm->mm_count);
324 	current->active_mm = mm;
325 	cpumask_set_cpu(cpu, mm_cpumask(mm));
326 	cpu_switch_mm(mm->pgd, mm);
327 	enter_lazy_tlb(mm, current);
328 	local_flush_tlb_all();
329 
330 	cpu_init();
331 	preempt_disable();
332 	trace_hardirqs_off();
333 
334 	/*
335 	 * Give the platform a chance to do its own initialisation.
336 	 */
337 	platform_secondary_init(cpu);
338 
339 	/*
340 	 * Enable local interrupts.
341 	 */
342 	notify_cpu_starting(cpu);
343 	local_irq_enable();
344 	local_fiq_enable();
345 
346 	/*
347 	 * Setup the percpu timer for this CPU.
348 	 */
349 	percpu_timer_setup();
350 
351 	calibrate_delay();
352 
353 	smp_store_cpu_info(cpu);
354 
355 	/*
356 	 * OK, now it's safe to let the boot CPU continue
357 	 */
358 	set_cpu_online(cpu, true);
359 
360 	/*
361 	 * OK, it's off to the idle thread for us
362 	 */
363 	cpu_idle();
364 }
365 
366 void __init smp_cpus_done(unsigned int max_cpus)
367 {
368 	int cpu;
369 	unsigned long bogosum = 0;
370 
371 	for_each_online_cpu(cpu)
372 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
373 
374 	printk(KERN_INFO "SMP: Total of %d processors activated "
375 	       "(%lu.%02lu BogoMIPS).\n",
376 	       num_online_cpus(),
377 	       bogosum / (500000/HZ),
378 	       (bogosum / (5000/HZ)) % 100);
379 }
380 
381 void __init smp_prepare_boot_cpu(void)
382 {
383 	unsigned int cpu = smp_processor_id();
384 
385 	per_cpu(cpu_data, cpu).idle = current;
386 }
387 
388 void __init smp_prepare_cpus(unsigned int max_cpus)
389 {
390 	unsigned int ncores = num_possible_cpus();
391 
392 	smp_store_cpu_info(smp_processor_id());
393 
394 	/*
395 	 * are we trying to boot more cores than exist?
396 	 */
397 	if (max_cpus > ncores)
398 		max_cpus = ncores;
399 
400 	if (max_cpus > 1) {
401 		/*
402 		 * Enable the local timer or broadcast device for the
403 		 * boot CPU, but only if we have more than one CPU.
404 		 */
405 		percpu_timer_setup();
406 
407 		/*
408 		 * Initialise the SCU if there are more than one CPU
409 		 * and let them know where to start.
410 		 */
411 		platform_smp_prepare_cpus(max_cpus);
412 	}
413 }
414 
415 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
416 {
417 	smp_cross_call(mask, IPI_CALL_FUNC);
418 }
419 
420 void arch_send_call_function_single_ipi(int cpu)
421 {
422 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
423 }
424 
425 static const char *ipi_types[NR_IPI] = {
426 #define S(x,s)	[x - IPI_TIMER] = s
427 	S(IPI_TIMER, "Timer broadcast interrupts"),
428 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
429 	S(IPI_CALL_FUNC, "Function call interrupts"),
430 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
431 	S(IPI_CPU_STOP, "CPU stop interrupts"),
432 };
433 
434 void show_ipi_list(struct seq_file *p, int prec)
435 {
436 	unsigned int cpu, i;
437 
438 	for (i = 0; i < NR_IPI; i++) {
439 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
440 
441 		for_each_present_cpu(cpu)
442 			seq_printf(p, "%10u ",
443 				   __get_irq_stat(cpu, ipi_irqs[i]));
444 
445 		seq_printf(p, " %s\n", ipi_types[i]);
446 	}
447 }
448 
449 u64 smp_irq_stat_cpu(unsigned int cpu)
450 {
451 	u64 sum = 0;
452 	int i;
453 
454 	for (i = 0; i < NR_IPI; i++)
455 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
456 
457 #ifdef CONFIG_LOCAL_TIMERS
458 	sum += __get_irq_stat(cpu, local_timer_irqs);
459 #endif
460 
461 	return sum;
462 }
463 
464 /*
465  * Timer (local or broadcast) support
466  */
467 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
468 
469 static void ipi_timer(void)
470 {
471 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
472 	irq_enter();
473 	evt->event_handler(evt);
474 	irq_exit();
475 }
476 
477 #ifdef CONFIG_LOCAL_TIMERS
478 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
479 {
480 	struct pt_regs *old_regs = set_irq_regs(regs);
481 	int cpu = smp_processor_id();
482 
483 	if (local_timer_ack()) {
484 		__inc_irq_stat(cpu, local_timer_irqs);
485 		ipi_timer();
486 	}
487 
488 	set_irq_regs(old_regs);
489 }
490 
491 void show_local_irqs(struct seq_file *p, int prec)
492 {
493 	unsigned int cpu;
494 
495 	seq_printf(p, "%*s: ", prec, "LOC");
496 
497 	for_each_present_cpu(cpu)
498 		seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
499 
500 	seq_printf(p, " Local timer interrupts\n");
501 }
502 #endif
503 
504 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
505 static void smp_timer_broadcast(const struct cpumask *mask)
506 {
507 	smp_cross_call(mask, IPI_TIMER);
508 }
509 #else
510 #define smp_timer_broadcast	NULL
511 #endif
512 
513 #ifndef CONFIG_LOCAL_TIMERS
514 static void broadcast_timer_set_mode(enum clock_event_mode mode,
515 	struct clock_event_device *evt)
516 {
517 }
518 
519 static void local_timer_setup(struct clock_event_device *evt)
520 {
521 	evt->name	= "dummy_timer";
522 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
523 			  CLOCK_EVT_FEAT_PERIODIC |
524 			  CLOCK_EVT_FEAT_DUMMY;
525 	evt->rating	= 400;
526 	evt->mult	= 1;
527 	evt->set_mode	= broadcast_timer_set_mode;
528 
529 	clockevents_register_device(evt);
530 }
531 #endif
532 
533 void __cpuinit percpu_timer_setup(void)
534 {
535 	unsigned int cpu = smp_processor_id();
536 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
537 
538 	evt->cpumask = cpumask_of(cpu);
539 	evt->broadcast = smp_timer_broadcast;
540 
541 	local_timer_setup(evt);
542 }
543 
544 #ifdef CONFIG_HOTPLUG_CPU
545 /*
546  * The generic clock events code purposely does not stop the local timer
547  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
548  * manually here.
549  */
550 static void percpu_timer_stop(void)
551 {
552 	unsigned int cpu = smp_processor_id();
553 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
554 
555 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
556 }
557 #endif
558 
559 static DEFINE_SPINLOCK(stop_lock);
560 
561 /*
562  * ipi_cpu_stop - handle IPI from smp_send_stop()
563  */
564 static void ipi_cpu_stop(unsigned int cpu)
565 {
566 	if (system_state == SYSTEM_BOOTING ||
567 	    system_state == SYSTEM_RUNNING) {
568 		spin_lock(&stop_lock);
569 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
570 		dump_stack();
571 		spin_unlock(&stop_lock);
572 	}
573 
574 	set_cpu_online(cpu, false);
575 
576 	local_fiq_disable();
577 	local_irq_disable();
578 
579 	while (1)
580 		cpu_relax();
581 }
582 
583 /*
584  * Main handler for inter-processor interrupts
585  */
586 asmlinkage void __exception do_IPI(int ipinr, struct pt_regs *regs)
587 {
588 	unsigned int cpu = smp_processor_id();
589 	struct pt_regs *old_regs = set_irq_regs(regs);
590 
591 	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
592 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
593 
594 	switch (ipinr) {
595 	case IPI_TIMER:
596 		ipi_timer();
597 		break;
598 
599 	case IPI_RESCHEDULE:
600 		/*
601 		 * nothing more to do - eveything is
602 		 * done on the interrupt return path
603 		 */
604 		break;
605 
606 	case IPI_CALL_FUNC:
607 		generic_smp_call_function_interrupt();
608 		break;
609 
610 	case IPI_CALL_FUNC_SINGLE:
611 		generic_smp_call_function_single_interrupt();
612 		break;
613 
614 	case IPI_CPU_STOP:
615 		ipi_cpu_stop(cpu);
616 		break;
617 
618 	default:
619 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
620 		       cpu, ipinr);
621 		break;
622 	}
623 	set_irq_regs(old_regs);
624 }
625 
626 void smp_send_reschedule(int cpu)
627 {
628 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
629 }
630 
631 void smp_send_stop(void)
632 {
633 	unsigned long timeout;
634 
635 	if (num_online_cpus() > 1) {
636 		cpumask_t mask = cpu_online_map;
637 		cpu_clear(smp_processor_id(), mask);
638 
639 		smp_cross_call(&mask, IPI_CPU_STOP);
640 	}
641 
642 	/* Wait up to one second for other CPUs to stop */
643 	timeout = USEC_PER_SEC;
644 	while (num_online_cpus() > 1 && timeout--)
645 		udelay(1);
646 
647 	if (num_online_cpus() > 1)
648 		pr_warning("SMP: failed to stop secondary CPUs\n");
649 }
650 
651 /*
652  * not supported here
653  */
654 int setup_profiling_timer(unsigned int multiplier)
655 {
656 	return -EINVAL;
657 }
658 
659 static void
660 on_each_cpu_mask(void (*func)(void *), void *info, int wait,
661 		const struct cpumask *mask)
662 {
663 	preempt_disable();
664 
665 	smp_call_function_many(mask, func, info, wait);
666 	if (cpumask_test_cpu(smp_processor_id(), mask))
667 		func(info);
668 
669 	preempt_enable();
670 }
671 
672 /**********************************************************************/
673 
674 /*
675  * TLB operations
676  */
677 struct tlb_args {
678 	struct vm_area_struct *ta_vma;
679 	unsigned long ta_start;
680 	unsigned long ta_end;
681 };
682 
683 static inline void ipi_flush_tlb_all(void *ignored)
684 {
685 	local_flush_tlb_all();
686 }
687 
688 static inline void ipi_flush_tlb_mm(void *arg)
689 {
690 	struct mm_struct *mm = (struct mm_struct *)arg;
691 
692 	local_flush_tlb_mm(mm);
693 }
694 
695 static inline void ipi_flush_tlb_page(void *arg)
696 {
697 	struct tlb_args *ta = (struct tlb_args *)arg;
698 
699 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
700 }
701 
702 static inline void ipi_flush_tlb_kernel_page(void *arg)
703 {
704 	struct tlb_args *ta = (struct tlb_args *)arg;
705 
706 	local_flush_tlb_kernel_page(ta->ta_start);
707 }
708 
709 static inline void ipi_flush_tlb_range(void *arg)
710 {
711 	struct tlb_args *ta = (struct tlb_args *)arg;
712 
713 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
714 }
715 
716 static inline void ipi_flush_tlb_kernel_range(void *arg)
717 {
718 	struct tlb_args *ta = (struct tlb_args *)arg;
719 
720 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
721 }
722 
723 void flush_tlb_all(void)
724 {
725 	if (tlb_ops_need_broadcast())
726 		on_each_cpu(ipi_flush_tlb_all, NULL, 1);
727 	else
728 		local_flush_tlb_all();
729 }
730 
731 void flush_tlb_mm(struct mm_struct *mm)
732 {
733 	if (tlb_ops_need_broadcast())
734 		on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
735 	else
736 		local_flush_tlb_mm(mm);
737 }
738 
739 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
740 {
741 	if (tlb_ops_need_broadcast()) {
742 		struct tlb_args ta;
743 		ta.ta_vma = vma;
744 		ta.ta_start = uaddr;
745 		on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
746 	} else
747 		local_flush_tlb_page(vma, uaddr);
748 }
749 
750 void flush_tlb_kernel_page(unsigned long kaddr)
751 {
752 	if (tlb_ops_need_broadcast()) {
753 		struct tlb_args ta;
754 		ta.ta_start = kaddr;
755 		on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
756 	} else
757 		local_flush_tlb_kernel_page(kaddr);
758 }
759 
760 void flush_tlb_range(struct vm_area_struct *vma,
761                      unsigned long start, unsigned long end)
762 {
763 	if (tlb_ops_need_broadcast()) {
764 		struct tlb_args ta;
765 		ta.ta_vma = vma;
766 		ta.ta_start = start;
767 		ta.ta_end = end;
768 		on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
769 	} else
770 		local_flush_tlb_range(vma, start, end);
771 }
772 
773 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
774 {
775 	if (tlb_ops_need_broadcast()) {
776 		struct tlb_args ta;
777 		ta.ta_start = start;
778 		ta.ta_end = end;
779 		on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
780 	} else
781 		local_flush_tlb_kernel_range(start, end);
782 }
783