xref: /linux/arch/arm/kernel/smp.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 
28 #include <asm/atomic.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/pgalloc.h>
35 #include <asm/processor.h>
36 #include <asm/sections.h>
37 #include <asm/tlbflush.h>
38 #include <asm/ptrace.h>
39 #include <asm/localtimer.h>
40 #include <asm/smp_plat.h>
41 
42 /*
43  * as from 2.5, kernels no longer have an init_tasks structure
44  * so we need some other way of telling a new secondary core
45  * where to place its SVC stack
46  */
47 struct secondary_data secondary_data;
48 
49 /*
50  * structures for inter-processor calls
51  * - A collection of single bit ipi messages.
52  */
53 struct ipi_data {
54 	spinlock_t lock;
55 	unsigned long ipi_count;
56 	unsigned long bits;
57 };
58 
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 	.lock	= SPIN_LOCK_UNLOCKED,
61 };
62 
63 enum ipi_msg_type {
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 };
70 
71 static inline void identity_mapping_add(pgd_t *pgd, unsigned long start,
72 	unsigned long end)
73 {
74 	unsigned long addr, prot;
75 	pmd_t *pmd;
76 
77 	prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE;
78 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
79 		prot |= PMD_BIT4;
80 
81 	for (addr = start & PGDIR_MASK; addr < end;) {
82 		pmd = pmd_offset(pgd + pgd_index(addr), addr);
83 		pmd[0] = __pmd(addr | prot);
84 		addr += SECTION_SIZE;
85 		pmd[1] = __pmd(addr | prot);
86 		addr += SECTION_SIZE;
87 		flush_pmd_entry(pmd);
88 		outer_clean_range(__pa(pmd), __pa(pmd + 1));
89 	}
90 }
91 
92 static inline void identity_mapping_del(pgd_t *pgd, unsigned long start,
93 	unsigned long end)
94 {
95 	unsigned long addr;
96 	pmd_t *pmd;
97 
98 	for (addr = start & PGDIR_MASK; addr < end; addr += PGDIR_SIZE) {
99 		pmd = pmd_offset(pgd + pgd_index(addr), addr);
100 		pmd[0] = __pmd(0);
101 		pmd[1] = __pmd(0);
102 		clean_pmd_entry(pmd);
103 		outer_clean_range(__pa(pmd), __pa(pmd + 1));
104 	}
105 }
106 
107 int __cpuinit __cpu_up(unsigned int cpu)
108 {
109 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
110 	struct task_struct *idle = ci->idle;
111 	pgd_t *pgd;
112 	int ret;
113 
114 	/*
115 	 * Spawn a new process manually, if not already done.
116 	 * Grab a pointer to its task struct so we can mess with it
117 	 */
118 	if (!idle) {
119 		idle = fork_idle(cpu);
120 		if (IS_ERR(idle)) {
121 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
122 			return PTR_ERR(idle);
123 		}
124 		ci->idle = idle;
125 	} else {
126 		/*
127 		 * Since this idle thread is being re-used, call
128 		 * init_idle() to reinitialize the thread structure.
129 		 */
130 		init_idle(idle, cpu);
131 	}
132 
133 	/*
134 	 * Allocate initial page tables to allow the new CPU to
135 	 * enable the MMU safely.  This essentially means a set
136 	 * of our "standard" page tables, with the addition of
137 	 * a 1:1 mapping for the physical address of the kernel.
138 	 */
139 	pgd = pgd_alloc(&init_mm);
140 	if (!pgd)
141 		return -ENOMEM;
142 
143 	if (PHYS_OFFSET != PAGE_OFFSET) {
144 #ifndef CONFIG_HOTPLUG_CPU
145 		identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
146 #endif
147 		identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
148 		identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
149 	}
150 
151 	/*
152 	 * We need to tell the secondary core where to find
153 	 * its stack and the page tables.
154 	 */
155 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
156 	secondary_data.pgdir = virt_to_phys(pgd);
157 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
158 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
159 
160 	/*
161 	 * Now bring the CPU into our world.
162 	 */
163 	ret = boot_secondary(cpu, idle);
164 	if (ret == 0) {
165 		unsigned long timeout;
166 
167 		/*
168 		 * CPU was successfully started, wait for it
169 		 * to come online or time out.
170 		 */
171 		timeout = jiffies + HZ;
172 		while (time_before(jiffies, timeout)) {
173 			if (cpu_online(cpu))
174 				break;
175 
176 			udelay(10);
177 			barrier();
178 		}
179 
180 		if (!cpu_online(cpu))
181 			ret = -EIO;
182 	}
183 
184 	secondary_data.stack = NULL;
185 	secondary_data.pgdir = 0;
186 
187 	if (PHYS_OFFSET != PAGE_OFFSET) {
188 #ifndef CONFIG_HOTPLUG_CPU
189 		identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
190 #endif
191 		identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
192 		identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
193 	}
194 
195 	pgd_free(&init_mm, pgd);
196 
197 	if (ret) {
198 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
199 
200 		/*
201 		 * FIXME: We need to clean up the new idle thread. --rmk
202 		 */
203 	}
204 
205 	return ret;
206 }
207 
208 #ifdef CONFIG_HOTPLUG_CPU
209 /*
210  * __cpu_disable runs on the processor to be shutdown.
211  */
212 int __cpu_disable(void)
213 {
214 	unsigned int cpu = smp_processor_id();
215 	struct task_struct *p;
216 	int ret;
217 
218 	ret = platform_cpu_disable(cpu);
219 	if (ret)
220 		return ret;
221 
222 	/*
223 	 * Take this CPU offline.  Once we clear this, we can't return,
224 	 * and we must not schedule until we're ready to give up the cpu.
225 	 */
226 	set_cpu_online(cpu, false);
227 
228 	/*
229 	 * OK - migrate IRQs away from this CPU
230 	 */
231 	migrate_irqs();
232 
233 	/*
234 	 * Stop the local timer for this CPU.
235 	 */
236 	local_timer_stop();
237 
238 	/*
239 	 * Flush user cache and TLB mappings, and then remove this CPU
240 	 * from the vm mask set of all processes.
241 	 */
242 	flush_cache_all();
243 	local_flush_tlb_all();
244 
245 	read_lock(&tasklist_lock);
246 	for_each_process(p) {
247 		if (p->mm)
248 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
249 	}
250 	read_unlock(&tasklist_lock);
251 
252 	return 0;
253 }
254 
255 /*
256  * called on the thread which is asking for a CPU to be shutdown -
257  * waits until shutdown has completed, or it is timed out.
258  */
259 void __cpu_die(unsigned int cpu)
260 {
261 	if (!platform_cpu_kill(cpu))
262 		printk("CPU%u: unable to kill\n", cpu);
263 }
264 
265 /*
266  * Called from the idle thread for the CPU which has been shutdown.
267  *
268  * Note that we disable IRQs here, but do not re-enable them
269  * before returning to the caller. This is also the behaviour
270  * of the other hotplug-cpu capable cores, so presumably coming
271  * out of idle fixes this.
272  */
273 void __ref cpu_die(void)
274 {
275 	unsigned int cpu = smp_processor_id();
276 
277 	local_irq_disable();
278 	idle_task_exit();
279 
280 	/*
281 	 * actual CPU shutdown procedure is at least platform (if not
282 	 * CPU) specific
283 	 */
284 	platform_cpu_die(cpu);
285 
286 	/*
287 	 * Do not return to the idle loop - jump back to the secondary
288 	 * cpu initialisation.  There's some initialisation which needs
289 	 * to be repeated to undo the effects of taking the CPU offline.
290 	 */
291 	__asm__("mov	sp, %0\n"
292 	"	b	secondary_start_kernel"
293 		:
294 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
295 }
296 #endif /* CONFIG_HOTPLUG_CPU */
297 
298 /*
299  * This is the secondary CPU boot entry.  We're using this CPUs
300  * idle thread stack, but a set of temporary page tables.
301  */
302 asmlinkage void __cpuinit secondary_start_kernel(void)
303 {
304 	struct mm_struct *mm = &init_mm;
305 	unsigned int cpu = smp_processor_id();
306 
307 	printk("CPU%u: Booted secondary processor\n", cpu);
308 
309 	/*
310 	 * All kernel threads share the same mm context; grab a
311 	 * reference and switch to it.
312 	 */
313 	atomic_inc(&mm->mm_users);
314 	atomic_inc(&mm->mm_count);
315 	current->active_mm = mm;
316 	cpumask_set_cpu(cpu, mm_cpumask(mm));
317 	cpu_switch_mm(mm->pgd, mm);
318 	enter_lazy_tlb(mm, current);
319 	local_flush_tlb_all();
320 
321 	cpu_init();
322 	preempt_disable();
323 
324 	/*
325 	 * Give the platform a chance to do its own initialisation.
326 	 */
327 	platform_secondary_init(cpu);
328 
329 	/*
330 	 * Enable local interrupts.
331 	 */
332 	notify_cpu_starting(cpu);
333 	local_irq_enable();
334 	local_fiq_enable();
335 
336 	/*
337 	 * Setup the percpu timer for this CPU.
338 	 */
339 	percpu_timer_setup();
340 
341 	calibrate_delay();
342 
343 	smp_store_cpu_info(cpu);
344 
345 	/*
346 	 * OK, now it's safe to let the boot CPU continue
347 	 */
348 	set_cpu_online(cpu, true);
349 
350 	/*
351 	 * OK, it's off to the idle thread for us
352 	 */
353 	cpu_idle();
354 }
355 
356 /*
357  * Called by both boot and secondaries to move global data into
358  * per-processor storage.
359  */
360 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
361 {
362 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
363 
364 	cpu_info->loops_per_jiffy = loops_per_jiffy;
365 }
366 
367 void __init smp_cpus_done(unsigned int max_cpus)
368 {
369 	int cpu;
370 	unsigned long bogosum = 0;
371 
372 	for_each_online_cpu(cpu)
373 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
374 
375 	printk(KERN_INFO "SMP: Total of %d processors activated "
376 	       "(%lu.%02lu BogoMIPS).\n",
377 	       num_online_cpus(),
378 	       bogosum / (500000/HZ),
379 	       (bogosum / (5000/HZ)) % 100);
380 }
381 
382 void __init smp_prepare_boot_cpu(void)
383 {
384 	unsigned int cpu = smp_processor_id();
385 
386 	per_cpu(cpu_data, cpu).idle = current;
387 }
388 
389 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
390 {
391 	unsigned long flags;
392 	unsigned int cpu;
393 
394 	local_irq_save(flags);
395 
396 	for_each_cpu(cpu, mask) {
397 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
398 
399 		spin_lock(&ipi->lock);
400 		ipi->bits |= 1 << msg;
401 		spin_unlock(&ipi->lock);
402 	}
403 
404 	/*
405 	 * Call the platform specific cross-CPU call function.
406 	 */
407 	smp_cross_call(mask);
408 
409 	local_irq_restore(flags);
410 }
411 
412 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
413 {
414 	send_ipi_message(mask, IPI_CALL_FUNC);
415 }
416 
417 void arch_send_call_function_single_ipi(int cpu)
418 {
419 	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
420 }
421 
422 void show_ipi_list(struct seq_file *p)
423 {
424 	unsigned int cpu;
425 
426 	seq_puts(p, "IPI:");
427 
428 	for_each_present_cpu(cpu)
429 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
430 
431 	seq_putc(p, '\n');
432 }
433 
434 void show_local_irqs(struct seq_file *p)
435 {
436 	unsigned int cpu;
437 
438 	seq_printf(p, "LOC: ");
439 
440 	for_each_present_cpu(cpu)
441 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
442 
443 	seq_putc(p, '\n');
444 }
445 
446 /*
447  * Timer (local or broadcast) support
448  */
449 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
450 
451 static void ipi_timer(void)
452 {
453 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
454 	irq_enter();
455 	evt->event_handler(evt);
456 	irq_exit();
457 }
458 
459 #ifdef CONFIG_LOCAL_TIMERS
460 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
461 {
462 	struct pt_regs *old_regs = set_irq_regs(regs);
463 	int cpu = smp_processor_id();
464 
465 	if (local_timer_ack()) {
466 		irq_stat[cpu].local_timer_irqs++;
467 		ipi_timer();
468 	}
469 
470 	set_irq_regs(old_regs);
471 }
472 #endif
473 
474 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
475 static void smp_timer_broadcast(const struct cpumask *mask)
476 {
477 	send_ipi_message(mask, IPI_TIMER);
478 }
479 #else
480 #define smp_timer_broadcast	NULL
481 #endif
482 
483 #ifndef CONFIG_LOCAL_TIMERS
484 static void broadcast_timer_set_mode(enum clock_event_mode mode,
485 	struct clock_event_device *evt)
486 {
487 }
488 
489 static void local_timer_setup(struct clock_event_device *evt)
490 {
491 	evt->name	= "dummy_timer";
492 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
493 			  CLOCK_EVT_FEAT_PERIODIC |
494 			  CLOCK_EVT_FEAT_DUMMY;
495 	evt->rating	= 400;
496 	evt->mult	= 1;
497 	evt->set_mode	= broadcast_timer_set_mode;
498 
499 	clockevents_register_device(evt);
500 }
501 #endif
502 
503 void __cpuinit percpu_timer_setup(void)
504 {
505 	unsigned int cpu = smp_processor_id();
506 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
507 
508 	evt->cpumask = cpumask_of(cpu);
509 	evt->broadcast = smp_timer_broadcast;
510 
511 	local_timer_setup(evt);
512 }
513 
514 static DEFINE_SPINLOCK(stop_lock);
515 
516 /*
517  * ipi_cpu_stop - handle IPI from smp_send_stop()
518  */
519 static void ipi_cpu_stop(unsigned int cpu)
520 {
521 	if (system_state == SYSTEM_BOOTING ||
522 	    system_state == SYSTEM_RUNNING) {
523 		spin_lock(&stop_lock);
524 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
525 		dump_stack();
526 		spin_unlock(&stop_lock);
527 	}
528 
529 	set_cpu_online(cpu, false);
530 
531 	local_fiq_disable();
532 	local_irq_disable();
533 
534 	while (1)
535 		cpu_relax();
536 }
537 
538 /*
539  * Main handler for inter-processor interrupts
540  *
541  * For ARM, the ipimask now only identifies a single
542  * category of IPI (Bit 1 IPIs have been replaced by a
543  * different mechanism):
544  *
545  *  Bit 0 - Inter-processor function call
546  */
547 asmlinkage void __exception do_IPI(struct pt_regs *regs)
548 {
549 	unsigned int cpu = smp_processor_id();
550 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
551 	struct pt_regs *old_regs = set_irq_regs(regs);
552 
553 	ipi->ipi_count++;
554 
555 	for (;;) {
556 		unsigned long msgs;
557 
558 		spin_lock(&ipi->lock);
559 		msgs = ipi->bits;
560 		ipi->bits = 0;
561 		spin_unlock(&ipi->lock);
562 
563 		if (!msgs)
564 			break;
565 
566 		do {
567 			unsigned nextmsg;
568 
569 			nextmsg = msgs & -msgs;
570 			msgs &= ~nextmsg;
571 			nextmsg = ffz(~nextmsg);
572 
573 			switch (nextmsg) {
574 			case IPI_TIMER:
575 				ipi_timer();
576 				break;
577 
578 			case IPI_RESCHEDULE:
579 				/*
580 				 * nothing more to do - eveything is
581 				 * done on the interrupt return path
582 				 */
583 				break;
584 
585 			case IPI_CALL_FUNC:
586 				generic_smp_call_function_interrupt();
587 				break;
588 
589 			case IPI_CALL_FUNC_SINGLE:
590 				generic_smp_call_function_single_interrupt();
591 				break;
592 
593 			case IPI_CPU_STOP:
594 				ipi_cpu_stop(cpu);
595 				break;
596 
597 			default:
598 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599 				       cpu, nextmsg);
600 				break;
601 			}
602 		} while (msgs);
603 	}
604 
605 	set_irq_regs(old_regs);
606 }
607 
608 void smp_send_reschedule(int cpu)
609 {
610 	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
611 }
612 
613 void smp_send_stop(void)
614 {
615 	cpumask_t mask = cpu_online_map;
616 	cpu_clear(smp_processor_id(), mask);
617 	if (!cpus_empty(mask))
618 		send_ipi_message(&mask, IPI_CPU_STOP);
619 }
620 
621 /*
622  * not supported here
623  */
624 int setup_profiling_timer(unsigned int multiplier)
625 {
626 	return -EINVAL;
627 }
628 
629 static void
630 on_each_cpu_mask(void (*func)(void *), void *info, int wait,
631 		const struct cpumask *mask)
632 {
633 	preempt_disable();
634 
635 	smp_call_function_many(mask, func, info, wait);
636 	if (cpumask_test_cpu(smp_processor_id(), mask))
637 		func(info);
638 
639 	preempt_enable();
640 }
641 
642 /**********************************************************************/
643 
644 /*
645  * TLB operations
646  */
647 struct tlb_args {
648 	struct vm_area_struct *ta_vma;
649 	unsigned long ta_start;
650 	unsigned long ta_end;
651 };
652 
653 static inline void ipi_flush_tlb_all(void *ignored)
654 {
655 	local_flush_tlb_all();
656 }
657 
658 static inline void ipi_flush_tlb_mm(void *arg)
659 {
660 	struct mm_struct *mm = (struct mm_struct *)arg;
661 
662 	local_flush_tlb_mm(mm);
663 }
664 
665 static inline void ipi_flush_tlb_page(void *arg)
666 {
667 	struct tlb_args *ta = (struct tlb_args *)arg;
668 
669 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
670 }
671 
672 static inline void ipi_flush_tlb_kernel_page(void *arg)
673 {
674 	struct tlb_args *ta = (struct tlb_args *)arg;
675 
676 	local_flush_tlb_kernel_page(ta->ta_start);
677 }
678 
679 static inline void ipi_flush_tlb_range(void *arg)
680 {
681 	struct tlb_args *ta = (struct tlb_args *)arg;
682 
683 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
684 }
685 
686 static inline void ipi_flush_tlb_kernel_range(void *arg)
687 {
688 	struct tlb_args *ta = (struct tlb_args *)arg;
689 
690 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
691 }
692 
693 void flush_tlb_all(void)
694 {
695 	if (tlb_ops_need_broadcast())
696 		on_each_cpu(ipi_flush_tlb_all, NULL, 1);
697 	else
698 		local_flush_tlb_all();
699 }
700 
701 void flush_tlb_mm(struct mm_struct *mm)
702 {
703 	if (tlb_ops_need_broadcast())
704 		on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
705 	else
706 		local_flush_tlb_mm(mm);
707 }
708 
709 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
710 {
711 	if (tlb_ops_need_broadcast()) {
712 		struct tlb_args ta;
713 		ta.ta_vma = vma;
714 		ta.ta_start = uaddr;
715 		on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
716 	} else
717 		local_flush_tlb_page(vma, uaddr);
718 }
719 
720 void flush_tlb_kernel_page(unsigned long kaddr)
721 {
722 	if (tlb_ops_need_broadcast()) {
723 		struct tlb_args ta;
724 		ta.ta_start = kaddr;
725 		on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
726 	} else
727 		local_flush_tlb_kernel_page(kaddr);
728 }
729 
730 void flush_tlb_range(struct vm_area_struct *vma,
731                      unsigned long start, unsigned long end)
732 {
733 	if (tlb_ops_need_broadcast()) {
734 		struct tlb_args ta;
735 		ta.ta_vma = vma;
736 		ta.ta_start = start;
737 		ta.ta_end = end;
738 		on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
739 	} else
740 		local_flush_tlb_range(vma, start, end);
741 }
742 
743 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
744 {
745 	if (tlb_ops_need_broadcast()) {
746 		struct tlb_args ta;
747 		ta.ta_start = start;
748 		ta.ta_end = end;
749 		on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
750 	} else
751 		local_flush_tlb_kernel_range(start, end);
752 }
753