1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 #include <linux/completion.h> 28 29 #include <asm/atomic.h> 30 #include <asm/cacheflush.h> 31 #include <asm/cpu.h> 32 #include <asm/cputype.h> 33 #include <asm/mmu_context.h> 34 #include <asm/pgtable.h> 35 #include <asm/pgalloc.h> 36 #include <asm/processor.h> 37 #include <asm/sections.h> 38 #include <asm/tlbflush.h> 39 #include <asm/ptrace.h> 40 #include <asm/localtimer.h> 41 42 /* 43 * as from 2.5, kernels no longer have an init_tasks structure 44 * so we need some other way of telling a new secondary core 45 * where to place its SVC stack 46 */ 47 struct secondary_data secondary_data; 48 49 enum ipi_msg_type { 50 IPI_TIMER = 2, 51 IPI_RESCHEDULE, 52 IPI_CALL_FUNC, 53 IPI_CALL_FUNC_SINGLE, 54 IPI_CPU_STOP, 55 }; 56 57 static inline void identity_mapping_add(pgd_t *pgd, unsigned long start, 58 unsigned long end) 59 { 60 unsigned long addr, prot; 61 pmd_t *pmd; 62 63 prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE; 64 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) 65 prot |= PMD_BIT4; 66 67 for (addr = start & PGDIR_MASK; addr < end;) { 68 pmd = pmd_offset(pgd + pgd_index(addr), addr); 69 pmd[0] = __pmd(addr | prot); 70 addr += SECTION_SIZE; 71 pmd[1] = __pmd(addr | prot); 72 addr += SECTION_SIZE; 73 flush_pmd_entry(pmd); 74 outer_clean_range(__pa(pmd), __pa(pmd + 1)); 75 } 76 } 77 78 static inline void identity_mapping_del(pgd_t *pgd, unsigned long start, 79 unsigned long end) 80 { 81 unsigned long addr; 82 pmd_t *pmd; 83 84 for (addr = start & PGDIR_MASK; addr < end; addr += PGDIR_SIZE) { 85 pmd = pmd_offset(pgd + pgd_index(addr), addr); 86 pmd[0] = __pmd(0); 87 pmd[1] = __pmd(0); 88 clean_pmd_entry(pmd); 89 outer_clean_range(__pa(pmd), __pa(pmd + 1)); 90 } 91 } 92 93 int __cpuinit __cpu_up(unsigned int cpu) 94 { 95 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 96 struct task_struct *idle = ci->idle; 97 pgd_t *pgd; 98 int ret; 99 100 /* 101 * Spawn a new process manually, if not already done. 102 * Grab a pointer to its task struct so we can mess with it 103 */ 104 if (!idle) { 105 idle = fork_idle(cpu); 106 if (IS_ERR(idle)) { 107 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 108 return PTR_ERR(idle); 109 } 110 ci->idle = idle; 111 } else { 112 /* 113 * Since this idle thread is being re-used, call 114 * init_idle() to reinitialize the thread structure. 115 */ 116 init_idle(idle, cpu); 117 } 118 119 /* 120 * Allocate initial page tables to allow the new CPU to 121 * enable the MMU safely. This essentially means a set 122 * of our "standard" page tables, with the addition of 123 * a 1:1 mapping for the physical address of the kernel. 124 */ 125 pgd = pgd_alloc(&init_mm); 126 if (!pgd) 127 return -ENOMEM; 128 129 if (PHYS_OFFSET != PAGE_OFFSET) { 130 #ifndef CONFIG_HOTPLUG_CPU 131 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end)); 132 #endif 133 identity_mapping_add(pgd, __pa(_stext), __pa(_etext)); 134 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata)); 135 } 136 137 /* 138 * We need to tell the secondary core where to find 139 * its stack and the page tables. 140 */ 141 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 142 secondary_data.pgdir = virt_to_phys(pgd); 143 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 144 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 145 146 /* 147 * Now bring the CPU into our world. 148 */ 149 ret = boot_secondary(cpu, idle); 150 if (ret == 0) { 151 unsigned long timeout; 152 153 /* 154 * CPU was successfully started, wait for it 155 * to come online or time out. 156 */ 157 timeout = jiffies + HZ; 158 while (time_before(jiffies, timeout)) { 159 if (cpu_online(cpu)) 160 break; 161 162 udelay(10); 163 barrier(); 164 } 165 166 if (!cpu_online(cpu)) { 167 pr_crit("CPU%u: failed to come online\n", cpu); 168 ret = -EIO; 169 } 170 } else { 171 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 172 } 173 174 secondary_data.stack = NULL; 175 secondary_data.pgdir = 0; 176 177 if (PHYS_OFFSET != PAGE_OFFSET) { 178 #ifndef CONFIG_HOTPLUG_CPU 179 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end)); 180 #endif 181 identity_mapping_del(pgd, __pa(_stext), __pa(_etext)); 182 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata)); 183 } 184 185 pgd_free(&init_mm, pgd); 186 187 return ret; 188 } 189 190 #ifdef CONFIG_HOTPLUG_CPU 191 static void percpu_timer_stop(void); 192 193 /* 194 * __cpu_disable runs on the processor to be shutdown. 195 */ 196 int __cpu_disable(void) 197 { 198 unsigned int cpu = smp_processor_id(); 199 struct task_struct *p; 200 int ret; 201 202 ret = platform_cpu_disable(cpu); 203 if (ret) 204 return ret; 205 206 /* 207 * Take this CPU offline. Once we clear this, we can't return, 208 * and we must not schedule until we're ready to give up the cpu. 209 */ 210 set_cpu_online(cpu, false); 211 212 /* 213 * OK - migrate IRQs away from this CPU 214 */ 215 migrate_irqs(); 216 217 /* 218 * Stop the local timer for this CPU. 219 */ 220 percpu_timer_stop(); 221 222 /* 223 * Flush user cache and TLB mappings, and then remove this CPU 224 * from the vm mask set of all processes. 225 */ 226 flush_cache_all(); 227 local_flush_tlb_all(); 228 229 read_lock(&tasklist_lock); 230 for_each_process(p) { 231 if (p->mm) 232 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 233 } 234 read_unlock(&tasklist_lock); 235 236 return 0; 237 } 238 239 static DECLARE_COMPLETION(cpu_died); 240 241 /* 242 * called on the thread which is asking for a CPU to be shutdown - 243 * waits until shutdown has completed, or it is timed out. 244 */ 245 void __cpu_die(unsigned int cpu) 246 { 247 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 248 pr_err("CPU%u: cpu didn't die\n", cpu); 249 return; 250 } 251 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 252 253 if (!platform_cpu_kill(cpu)) 254 printk("CPU%u: unable to kill\n", cpu); 255 } 256 257 /* 258 * Called from the idle thread for the CPU which has been shutdown. 259 * 260 * Note that we disable IRQs here, but do not re-enable them 261 * before returning to the caller. This is also the behaviour 262 * of the other hotplug-cpu capable cores, so presumably coming 263 * out of idle fixes this. 264 */ 265 void __ref cpu_die(void) 266 { 267 unsigned int cpu = smp_processor_id(); 268 269 idle_task_exit(); 270 271 local_irq_disable(); 272 mb(); 273 274 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 275 complete(&cpu_died); 276 277 /* 278 * actual CPU shutdown procedure is at least platform (if not 279 * CPU) specific. 280 */ 281 platform_cpu_die(cpu); 282 283 /* 284 * Do not return to the idle loop - jump back to the secondary 285 * cpu initialisation. There's some initialisation which needs 286 * to be repeated to undo the effects of taking the CPU offline. 287 */ 288 __asm__("mov sp, %0\n" 289 " b secondary_start_kernel" 290 : 291 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 292 } 293 #endif /* CONFIG_HOTPLUG_CPU */ 294 295 /* 296 * Called by both boot and secondaries to move global data into 297 * per-processor storage. 298 */ 299 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 300 { 301 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 302 303 cpu_info->loops_per_jiffy = loops_per_jiffy; 304 } 305 306 /* 307 * This is the secondary CPU boot entry. We're using this CPUs 308 * idle thread stack, but a set of temporary page tables. 309 */ 310 asmlinkage void __cpuinit secondary_start_kernel(void) 311 { 312 struct mm_struct *mm = &init_mm; 313 unsigned int cpu = smp_processor_id(); 314 315 printk("CPU%u: Booted secondary processor\n", cpu); 316 317 /* 318 * All kernel threads share the same mm context; grab a 319 * reference and switch to it. 320 */ 321 atomic_inc(&mm->mm_users); 322 atomic_inc(&mm->mm_count); 323 current->active_mm = mm; 324 cpumask_set_cpu(cpu, mm_cpumask(mm)); 325 cpu_switch_mm(mm->pgd, mm); 326 enter_lazy_tlb(mm, current); 327 local_flush_tlb_all(); 328 329 cpu_init(); 330 preempt_disable(); 331 trace_hardirqs_off(); 332 333 /* 334 * Give the platform a chance to do its own initialisation. 335 */ 336 platform_secondary_init(cpu); 337 338 /* 339 * Enable local interrupts. 340 */ 341 notify_cpu_starting(cpu); 342 local_irq_enable(); 343 local_fiq_enable(); 344 345 /* 346 * Setup the percpu timer for this CPU. 347 */ 348 percpu_timer_setup(); 349 350 calibrate_delay(); 351 352 smp_store_cpu_info(cpu); 353 354 /* 355 * OK, now it's safe to let the boot CPU continue 356 */ 357 set_cpu_online(cpu, true); 358 359 /* 360 * OK, it's off to the idle thread for us 361 */ 362 cpu_idle(); 363 } 364 365 void __init smp_cpus_done(unsigned int max_cpus) 366 { 367 int cpu; 368 unsigned long bogosum = 0; 369 370 for_each_online_cpu(cpu) 371 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 372 373 printk(KERN_INFO "SMP: Total of %d processors activated " 374 "(%lu.%02lu BogoMIPS).\n", 375 num_online_cpus(), 376 bogosum / (500000/HZ), 377 (bogosum / (5000/HZ)) % 100); 378 } 379 380 void __init smp_prepare_boot_cpu(void) 381 { 382 unsigned int cpu = smp_processor_id(); 383 384 per_cpu(cpu_data, cpu).idle = current; 385 } 386 387 void __init smp_prepare_cpus(unsigned int max_cpus) 388 { 389 unsigned int ncores = num_possible_cpus(); 390 391 smp_store_cpu_info(smp_processor_id()); 392 393 /* 394 * are we trying to boot more cores than exist? 395 */ 396 if (max_cpus > ncores) 397 max_cpus = ncores; 398 399 if (max_cpus > 1) { 400 /* 401 * Enable the local timer or broadcast device for the 402 * boot CPU, but only if we have more than one CPU. 403 */ 404 percpu_timer_setup(); 405 406 /* 407 * Initialise the SCU if there are more than one CPU 408 * and let them know where to start. 409 */ 410 platform_smp_prepare_cpus(max_cpus); 411 } 412 } 413 414 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 415 { 416 smp_cross_call(mask, IPI_CALL_FUNC); 417 } 418 419 void arch_send_call_function_single_ipi(int cpu) 420 { 421 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 422 } 423 424 static const char *ipi_types[NR_IPI] = { 425 #define S(x,s) [x - IPI_TIMER] = s 426 S(IPI_TIMER, "Timer broadcast interrupts"), 427 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 428 S(IPI_CALL_FUNC, "Function call interrupts"), 429 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 430 S(IPI_CPU_STOP, "CPU stop interrupts"), 431 }; 432 433 void show_ipi_list(struct seq_file *p, int prec) 434 { 435 unsigned int cpu, i; 436 437 for (i = 0; i < NR_IPI; i++) { 438 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 439 440 for_each_present_cpu(cpu) 441 seq_printf(p, "%10u ", 442 __get_irq_stat(cpu, ipi_irqs[i])); 443 444 seq_printf(p, " %s\n", ipi_types[i]); 445 } 446 } 447 448 u64 smp_irq_stat_cpu(unsigned int cpu) 449 { 450 u64 sum = 0; 451 int i; 452 453 for (i = 0; i < NR_IPI; i++) 454 sum += __get_irq_stat(cpu, ipi_irqs[i]); 455 456 #ifdef CONFIG_LOCAL_TIMERS 457 sum += __get_irq_stat(cpu, local_timer_irqs); 458 #endif 459 460 return sum; 461 } 462 463 /* 464 * Timer (local or broadcast) support 465 */ 466 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 467 468 static void ipi_timer(void) 469 { 470 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 471 irq_enter(); 472 evt->event_handler(evt); 473 irq_exit(); 474 } 475 476 #ifdef CONFIG_LOCAL_TIMERS 477 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 478 { 479 struct pt_regs *old_regs = set_irq_regs(regs); 480 int cpu = smp_processor_id(); 481 482 if (local_timer_ack()) { 483 __inc_irq_stat(cpu, local_timer_irqs); 484 ipi_timer(); 485 } 486 487 set_irq_regs(old_regs); 488 } 489 490 void show_local_irqs(struct seq_file *p, int prec) 491 { 492 unsigned int cpu; 493 494 seq_printf(p, "%*s: ", prec, "LOC"); 495 496 for_each_present_cpu(cpu) 497 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs)); 498 499 seq_printf(p, " Local timer interrupts\n"); 500 } 501 #endif 502 503 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 504 static void smp_timer_broadcast(const struct cpumask *mask) 505 { 506 smp_cross_call(mask, IPI_TIMER); 507 } 508 #else 509 #define smp_timer_broadcast NULL 510 #endif 511 512 #ifndef CONFIG_LOCAL_TIMERS 513 static void broadcast_timer_set_mode(enum clock_event_mode mode, 514 struct clock_event_device *evt) 515 { 516 } 517 518 static void local_timer_setup(struct clock_event_device *evt) 519 { 520 evt->name = "dummy_timer"; 521 evt->features = CLOCK_EVT_FEAT_ONESHOT | 522 CLOCK_EVT_FEAT_PERIODIC | 523 CLOCK_EVT_FEAT_DUMMY; 524 evt->rating = 400; 525 evt->mult = 1; 526 evt->set_mode = broadcast_timer_set_mode; 527 528 clockevents_register_device(evt); 529 } 530 #endif 531 532 void __cpuinit percpu_timer_setup(void) 533 { 534 unsigned int cpu = smp_processor_id(); 535 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 536 537 evt->cpumask = cpumask_of(cpu); 538 evt->broadcast = smp_timer_broadcast; 539 540 local_timer_setup(evt); 541 } 542 543 #ifdef CONFIG_HOTPLUG_CPU 544 /* 545 * The generic clock events code purposely does not stop the local timer 546 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 547 * manually here. 548 */ 549 static void percpu_timer_stop(void) 550 { 551 unsigned int cpu = smp_processor_id(); 552 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 553 554 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); 555 } 556 #endif 557 558 static DEFINE_SPINLOCK(stop_lock); 559 560 /* 561 * ipi_cpu_stop - handle IPI from smp_send_stop() 562 */ 563 static void ipi_cpu_stop(unsigned int cpu) 564 { 565 if (system_state == SYSTEM_BOOTING || 566 system_state == SYSTEM_RUNNING) { 567 spin_lock(&stop_lock); 568 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 569 dump_stack(); 570 spin_unlock(&stop_lock); 571 } 572 573 set_cpu_online(cpu, false); 574 575 local_fiq_disable(); 576 local_irq_disable(); 577 578 while (1) 579 cpu_relax(); 580 } 581 582 /* 583 * Main handler for inter-processor interrupts 584 */ 585 asmlinkage void __exception do_IPI(int ipinr, struct pt_regs *regs) 586 { 587 unsigned int cpu = smp_processor_id(); 588 struct pt_regs *old_regs = set_irq_regs(regs); 589 590 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) 591 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); 592 593 switch (ipinr) { 594 case IPI_TIMER: 595 ipi_timer(); 596 break; 597 598 case IPI_RESCHEDULE: 599 /* 600 * nothing more to do - eveything is 601 * done on the interrupt return path 602 */ 603 break; 604 605 case IPI_CALL_FUNC: 606 generic_smp_call_function_interrupt(); 607 break; 608 609 case IPI_CALL_FUNC_SINGLE: 610 generic_smp_call_function_single_interrupt(); 611 break; 612 613 case IPI_CPU_STOP: 614 ipi_cpu_stop(cpu); 615 break; 616 617 default: 618 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 619 cpu, ipinr); 620 break; 621 } 622 set_irq_regs(old_regs); 623 } 624 625 void smp_send_reschedule(int cpu) 626 { 627 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 628 } 629 630 void smp_send_stop(void) 631 { 632 unsigned long timeout; 633 634 if (num_online_cpus() > 1) { 635 cpumask_t mask = cpu_online_map; 636 cpu_clear(smp_processor_id(), mask); 637 638 smp_cross_call(&mask, IPI_CPU_STOP); 639 } 640 641 /* Wait up to one second for other CPUs to stop */ 642 timeout = USEC_PER_SEC; 643 while (num_online_cpus() > 1 && timeout--) 644 udelay(1); 645 646 if (num_online_cpus() > 1) 647 pr_warning("SMP: failed to stop secondary CPUs\n"); 648 } 649 650 /* 651 * not supported here 652 */ 653 int setup_profiling_timer(unsigned int multiplier) 654 { 655 return -EINVAL; 656 } 657