1 /* 2 * linux/arch/arm/kernel/setup.c 3 * 4 * Copyright (C) 1995-2001 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/stddef.h> 14 #include <linux/ioport.h> 15 #include <linux/delay.h> 16 #include <linux/utsname.h> 17 #include <linux/initrd.h> 18 #include <linux/console.h> 19 #include <linux/bootmem.h> 20 #include <linux/seq_file.h> 21 #include <linux/tty.h> 22 #include <linux/init.h> 23 #include <linux/root_dev.h> 24 #include <linux/cpu.h> 25 #include <linux/interrupt.h> 26 27 #include <asm/cpu.h> 28 #include <asm/elf.h> 29 #include <asm/hardware.h> 30 #include <asm/io.h> 31 #include <asm/procinfo.h> 32 #include <asm/setup.h> 33 #include <asm/mach-types.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 37 #include <asm/mach/arch.h> 38 #include <asm/mach/irq.h> 39 #include <asm/mach/time.h> 40 41 #ifndef MEM_SIZE 42 #define MEM_SIZE (16*1024*1024) 43 #endif 44 45 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) 46 char fpe_type[8]; 47 48 static int __init fpe_setup(char *line) 49 { 50 memcpy(fpe_type, line, 8); 51 return 1; 52 } 53 54 __setup("fpe=", fpe_setup); 55 #endif 56 57 extern unsigned int mem_fclk_21285; 58 extern void paging_init(struct meminfo *, struct machine_desc *desc); 59 extern void convert_to_tag_list(struct tag *tags); 60 extern void squash_mem_tags(struct tag *tag); 61 extern void reboot_setup(char *str); 62 extern int root_mountflags; 63 extern void _stext, _text, _etext, __data_start, _edata, _end; 64 65 unsigned int processor_id; 66 unsigned int __machine_arch_type; 67 EXPORT_SYMBOL(__machine_arch_type); 68 69 unsigned int system_rev; 70 EXPORT_SYMBOL(system_rev); 71 72 unsigned int system_serial_low; 73 EXPORT_SYMBOL(system_serial_low); 74 75 unsigned int system_serial_high; 76 EXPORT_SYMBOL(system_serial_high); 77 78 unsigned int elf_hwcap; 79 EXPORT_SYMBOL(elf_hwcap); 80 81 82 #ifdef MULTI_CPU 83 struct processor processor; 84 #endif 85 #ifdef MULTI_TLB 86 struct cpu_tlb_fns cpu_tlb; 87 #endif 88 #ifdef MULTI_USER 89 struct cpu_user_fns cpu_user; 90 #endif 91 #ifdef MULTI_CACHE 92 struct cpu_cache_fns cpu_cache; 93 #endif 94 95 struct stack { 96 u32 irq[3]; 97 u32 abt[3]; 98 u32 und[3]; 99 } ____cacheline_aligned; 100 101 static struct stack stacks[NR_CPUS]; 102 103 char elf_platform[ELF_PLATFORM_SIZE]; 104 EXPORT_SYMBOL(elf_platform); 105 106 unsigned long phys_initrd_start __initdata = 0; 107 unsigned long phys_initrd_size __initdata = 0; 108 109 static struct meminfo meminfo __initdata = { 0, }; 110 static const char *cpu_name; 111 static const char *machine_name; 112 static char command_line[COMMAND_LINE_SIZE]; 113 114 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE; 115 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; 116 #define ENDIANNESS ((char)endian_test.l) 117 118 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); 119 120 /* 121 * Standard memory resources 122 */ 123 static struct resource mem_res[] = { 124 { "Video RAM", 0, 0, IORESOURCE_MEM }, 125 { "Kernel text", 0, 0, IORESOURCE_MEM }, 126 { "Kernel data", 0, 0, IORESOURCE_MEM } 127 }; 128 129 #define video_ram mem_res[0] 130 #define kernel_code mem_res[1] 131 #define kernel_data mem_res[2] 132 133 static struct resource io_res[] = { 134 { "reserved", 0x3bc, 0x3be, IORESOURCE_IO | IORESOURCE_BUSY }, 135 { "reserved", 0x378, 0x37f, IORESOURCE_IO | IORESOURCE_BUSY }, 136 { "reserved", 0x278, 0x27f, IORESOURCE_IO | IORESOURCE_BUSY } 137 }; 138 139 #define lp0 io_res[0] 140 #define lp1 io_res[1] 141 #define lp2 io_res[2] 142 143 static const char *cache_types[16] = { 144 "write-through", 145 "write-back", 146 "write-back", 147 "undefined 3", 148 "undefined 4", 149 "undefined 5", 150 "write-back", 151 "write-back", 152 "undefined 8", 153 "undefined 9", 154 "undefined 10", 155 "undefined 11", 156 "undefined 12", 157 "undefined 13", 158 "write-back", 159 "undefined 15", 160 }; 161 162 static const char *cache_clean[16] = { 163 "not required", 164 "read-block", 165 "cp15 c7 ops", 166 "undefined 3", 167 "undefined 4", 168 "undefined 5", 169 "cp15 c7 ops", 170 "cp15 c7 ops", 171 "undefined 8", 172 "undefined 9", 173 "undefined 10", 174 "undefined 11", 175 "undefined 12", 176 "undefined 13", 177 "cp15 c7 ops", 178 "undefined 15", 179 }; 180 181 static const char *cache_lockdown[16] = { 182 "not supported", 183 "not supported", 184 "not supported", 185 "undefined 3", 186 "undefined 4", 187 "undefined 5", 188 "format A", 189 "format B", 190 "undefined 8", 191 "undefined 9", 192 "undefined 10", 193 "undefined 11", 194 "undefined 12", 195 "undefined 13", 196 "format C", 197 "undefined 15", 198 }; 199 200 static const char *proc_arch[] = { 201 "undefined/unknown", 202 "3", 203 "4", 204 "4T", 205 "5", 206 "5T", 207 "5TE", 208 "5TEJ", 209 "6TEJ", 210 "?(10)", 211 "?(11)", 212 "?(12)", 213 "?(13)", 214 "?(14)", 215 "?(15)", 216 "?(16)", 217 "?(17)", 218 }; 219 220 #define CACHE_TYPE(x) (((x) >> 25) & 15) 221 #define CACHE_S(x) ((x) & (1 << 24)) 222 #define CACHE_DSIZE(x) (((x) >> 12) & 4095) /* only if S=1 */ 223 #define CACHE_ISIZE(x) ((x) & 4095) 224 225 #define CACHE_SIZE(y) (((y) >> 6) & 7) 226 #define CACHE_ASSOC(y) (((y) >> 3) & 7) 227 #define CACHE_M(y) ((y) & (1 << 2)) 228 #define CACHE_LINE(y) ((y) & 3) 229 230 static inline void dump_cache(const char *prefix, int cpu, unsigned int cache) 231 { 232 unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0); 233 234 printk("CPU%u: %s: %d bytes, associativity %d, %d byte lines, %d sets\n", 235 cpu, prefix, 236 mult << (8 + CACHE_SIZE(cache)), 237 (mult << CACHE_ASSOC(cache)) >> 1, 238 8 << CACHE_LINE(cache), 239 1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) - 240 CACHE_LINE(cache))); 241 } 242 243 static void __init dump_cpu_info(int cpu) 244 { 245 unsigned int info = read_cpuid(CPUID_CACHETYPE); 246 247 if (info != processor_id) { 248 printk("CPU%u: D %s %s cache\n", cpu, cache_is_vivt() ? "VIVT" : "VIPT", 249 cache_types[CACHE_TYPE(info)]); 250 if (CACHE_S(info)) { 251 dump_cache("I cache", cpu, CACHE_ISIZE(info)); 252 dump_cache("D cache", cpu, CACHE_DSIZE(info)); 253 } else { 254 dump_cache("cache", cpu, CACHE_ISIZE(info)); 255 } 256 } 257 } 258 259 int cpu_architecture(void) 260 { 261 int cpu_arch; 262 263 if ((processor_id & 0x0000f000) == 0) { 264 cpu_arch = CPU_ARCH_UNKNOWN; 265 } else if ((processor_id & 0x0000f000) == 0x00007000) { 266 cpu_arch = (processor_id & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; 267 } else { 268 cpu_arch = (processor_id >> 16) & 7; 269 if (cpu_arch) 270 cpu_arch += CPU_ARCH_ARMv3; 271 } 272 273 return cpu_arch; 274 } 275 276 /* 277 * These functions re-use the assembly code in head.S, which 278 * already provide the required functionality. 279 */ 280 extern struct proc_info_list *lookup_processor_type(void); 281 extern struct machine_desc *lookup_machine_type(unsigned int); 282 283 static void __init setup_processor(void) 284 { 285 struct proc_info_list *list; 286 287 /* 288 * locate processor in the list of supported processor 289 * types. The linker builds this table for us from the 290 * entries in arch/arm/mm/proc-*.S 291 */ 292 list = lookup_processor_type(); 293 if (!list) { 294 printk("CPU configuration botched (ID %08x), unable " 295 "to continue.\n", processor_id); 296 while (1); 297 } 298 299 cpu_name = list->cpu_name; 300 301 #ifdef MULTI_CPU 302 processor = *list->proc; 303 #endif 304 #ifdef MULTI_TLB 305 cpu_tlb = *list->tlb; 306 #endif 307 #ifdef MULTI_USER 308 cpu_user = *list->user; 309 #endif 310 #ifdef MULTI_CACHE 311 cpu_cache = *list->cache; 312 #endif 313 314 printk("CPU: %s [%08x] revision %d (ARMv%s)\n", 315 cpu_name, processor_id, (int)processor_id & 15, 316 proc_arch[cpu_architecture()]); 317 318 sprintf(system_utsname.machine, "%s%c", list->arch_name, ENDIANNESS); 319 sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS); 320 elf_hwcap = list->elf_hwcap; 321 322 cpu_proc_init(); 323 } 324 325 /* 326 * cpu_init - initialise one CPU. 327 * 328 * cpu_init dumps the cache information, initialises SMP specific 329 * information, and sets up the per-CPU stacks. 330 */ 331 void cpu_init(void) 332 { 333 unsigned int cpu = smp_processor_id(); 334 struct stack *stk = &stacks[cpu]; 335 336 if (cpu >= NR_CPUS) { 337 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu); 338 BUG(); 339 } 340 341 dump_cpu_info(cpu); 342 343 /* 344 * setup stacks for re-entrant exception handlers 345 */ 346 __asm__ ( 347 "msr cpsr_c, %1\n\t" 348 "add sp, %0, %2\n\t" 349 "msr cpsr_c, %3\n\t" 350 "add sp, %0, %4\n\t" 351 "msr cpsr_c, %5\n\t" 352 "add sp, %0, %6\n\t" 353 "msr cpsr_c, %7" 354 : 355 : "r" (stk), 356 "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), 357 "I" (offsetof(struct stack, irq[0])), 358 "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE), 359 "I" (offsetof(struct stack, abt[0])), 360 "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE), 361 "I" (offsetof(struct stack, und[0])), 362 "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE) 363 : "r14"); 364 } 365 366 static struct machine_desc * __init setup_machine(unsigned int nr) 367 { 368 struct machine_desc *list; 369 370 /* 371 * locate machine in the list of supported machines. 372 */ 373 list = lookup_machine_type(nr); 374 if (!list) { 375 printk("Machine configuration botched (nr %d), unable " 376 "to continue.\n", nr); 377 while (1); 378 } 379 380 printk("Machine: %s\n", list->name); 381 382 return list; 383 } 384 385 static void __init early_initrd(char **p) 386 { 387 unsigned long start, size; 388 389 start = memparse(*p, p); 390 if (**p == ',') { 391 size = memparse((*p) + 1, p); 392 393 phys_initrd_start = start; 394 phys_initrd_size = size; 395 } 396 } 397 __early_param("initrd=", early_initrd); 398 399 static void __init add_memory(unsigned long start, unsigned long size) 400 { 401 /* 402 * Ensure that start/size are aligned to a page boundary. 403 * Size is appropriately rounded down, start is rounded up. 404 */ 405 size -= start & ~PAGE_MASK; 406 407 meminfo.bank[meminfo.nr_banks].start = PAGE_ALIGN(start); 408 meminfo.bank[meminfo.nr_banks].size = size & PAGE_MASK; 409 meminfo.bank[meminfo.nr_banks].node = PHYS_TO_NID(start); 410 meminfo.nr_banks += 1; 411 } 412 413 /* 414 * Pick out the memory size. We look for mem=size@start, 415 * where start and size are "size[KkMm]" 416 */ 417 static void __init early_mem(char **p) 418 { 419 static int usermem __initdata = 0; 420 unsigned long size, start; 421 422 /* 423 * If the user specifies memory size, we 424 * blow away any automatically generated 425 * size. 426 */ 427 if (usermem == 0) { 428 usermem = 1; 429 meminfo.nr_banks = 0; 430 } 431 432 start = PHYS_OFFSET; 433 size = memparse(*p, p); 434 if (**p == '@') 435 start = memparse(*p + 1, p); 436 437 add_memory(start, size); 438 } 439 __early_param("mem=", early_mem); 440 441 /* 442 * Initial parsing of the command line. 443 */ 444 static void __init parse_cmdline(char **cmdline_p, char *from) 445 { 446 char c = ' ', *to = command_line; 447 int len = 0; 448 449 for (;;) { 450 if (c == ' ') { 451 extern struct early_params __early_begin, __early_end; 452 struct early_params *p; 453 454 for (p = &__early_begin; p < &__early_end; p++) { 455 int len = strlen(p->arg); 456 457 if (memcmp(from, p->arg, len) == 0) { 458 if (to != command_line) 459 to -= 1; 460 from += len; 461 p->fn(&from); 462 463 while (*from != ' ' && *from != '\0') 464 from++; 465 break; 466 } 467 } 468 } 469 c = *from++; 470 if (!c) 471 break; 472 if (COMMAND_LINE_SIZE <= ++len) 473 break; 474 *to++ = c; 475 } 476 *to = '\0'; 477 *cmdline_p = command_line; 478 } 479 480 static void __init 481 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz) 482 { 483 #ifdef CONFIG_BLK_DEV_RAM 484 extern int rd_size, rd_image_start, rd_prompt, rd_doload; 485 486 rd_image_start = image_start; 487 rd_prompt = prompt; 488 rd_doload = doload; 489 490 if (rd_sz) 491 rd_size = rd_sz; 492 #endif 493 } 494 495 static void __init 496 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc) 497 { 498 struct resource *res; 499 int i; 500 501 kernel_code.start = virt_to_phys(&_text); 502 kernel_code.end = virt_to_phys(&_etext - 1); 503 kernel_data.start = virt_to_phys(&__data_start); 504 kernel_data.end = virt_to_phys(&_end - 1); 505 506 for (i = 0; i < mi->nr_banks; i++) { 507 unsigned long virt_start, virt_end; 508 509 if (mi->bank[i].size == 0) 510 continue; 511 512 virt_start = __phys_to_virt(mi->bank[i].start); 513 virt_end = virt_start + mi->bank[i].size - 1; 514 515 res = alloc_bootmem_low(sizeof(*res)); 516 res->name = "System RAM"; 517 res->start = __virt_to_phys(virt_start); 518 res->end = __virt_to_phys(virt_end); 519 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 520 521 request_resource(&iomem_resource, res); 522 523 if (kernel_code.start >= res->start && 524 kernel_code.end <= res->end) 525 request_resource(res, &kernel_code); 526 if (kernel_data.start >= res->start && 527 kernel_data.end <= res->end) 528 request_resource(res, &kernel_data); 529 } 530 531 if (mdesc->video_start) { 532 video_ram.start = mdesc->video_start; 533 video_ram.end = mdesc->video_end; 534 request_resource(&iomem_resource, &video_ram); 535 } 536 537 /* 538 * Some machines don't have the possibility of ever 539 * possessing lp0, lp1 or lp2 540 */ 541 if (mdesc->reserve_lp0) 542 request_resource(&ioport_resource, &lp0); 543 if (mdesc->reserve_lp1) 544 request_resource(&ioport_resource, &lp1); 545 if (mdesc->reserve_lp2) 546 request_resource(&ioport_resource, &lp2); 547 } 548 549 /* 550 * Tag parsing. 551 * 552 * This is the new way of passing data to the kernel at boot time. Rather 553 * than passing a fixed inflexible structure to the kernel, we pass a list 554 * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE 555 * tag for the list to be recognised (to distinguish the tagged list from 556 * a param_struct). The list is terminated with a zero-length tag (this tag 557 * is not parsed in any way). 558 */ 559 static int __init parse_tag_core(const struct tag *tag) 560 { 561 if (tag->hdr.size > 2) { 562 if ((tag->u.core.flags & 1) == 0) 563 root_mountflags &= ~MS_RDONLY; 564 ROOT_DEV = old_decode_dev(tag->u.core.rootdev); 565 } 566 return 0; 567 } 568 569 __tagtable(ATAG_CORE, parse_tag_core); 570 571 static int __init parse_tag_mem32(const struct tag *tag) 572 { 573 if (meminfo.nr_banks >= NR_BANKS) { 574 printk(KERN_WARNING 575 "Ignoring memory bank 0x%08x size %dKB\n", 576 tag->u.mem.start, tag->u.mem.size / 1024); 577 return -EINVAL; 578 } 579 add_memory(tag->u.mem.start, tag->u.mem.size); 580 return 0; 581 } 582 583 __tagtable(ATAG_MEM, parse_tag_mem32); 584 585 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) 586 struct screen_info screen_info = { 587 .orig_video_lines = 30, 588 .orig_video_cols = 80, 589 .orig_video_mode = 0, 590 .orig_video_ega_bx = 0, 591 .orig_video_isVGA = 1, 592 .orig_video_points = 8 593 }; 594 595 static int __init parse_tag_videotext(const struct tag *tag) 596 { 597 screen_info.orig_x = tag->u.videotext.x; 598 screen_info.orig_y = tag->u.videotext.y; 599 screen_info.orig_video_page = tag->u.videotext.video_page; 600 screen_info.orig_video_mode = tag->u.videotext.video_mode; 601 screen_info.orig_video_cols = tag->u.videotext.video_cols; 602 screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx; 603 screen_info.orig_video_lines = tag->u.videotext.video_lines; 604 screen_info.orig_video_isVGA = tag->u.videotext.video_isvga; 605 screen_info.orig_video_points = tag->u.videotext.video_points; 606 return 0; 607 } 608 609 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext); 610 #endif 611 612 static int __init parse_tag_ramdisk(const struct tag *tag) 613 { 614 setup_ramdisk((tag->u.ramdisk.flags & 1) == 0, 615 (tag->u.ramdisk.flags & 2) == 0, 616 tag->u.ramdisk.start, tag->u.ramdisk.size); 617 return 0; 618 } 619 620 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk); 621 622 static int __init parse_tag_initrd(const struct tag *tag) 623 { 624 printk(KERN_WARNING "ATAG_INITRD is deprecated; " 625 "please update your bootloader.\n"); 626 phys_initrd_start = __virt_to_phys(tag->u.initrd.start); 627 phys_initrd_size = tag->u.initrd.size; 628 return 0; 629 } 630 631 __tagtable(ATAG_INITRD, parse_tag_initrd); 632 633 static int __init parse_tag_initrd2(const struct tag *tag) 634 { 635 phys_initrd_start = tag->u.initrd.start; 636 phys_initrd_size = tag->u.initrd.size; 637 return 0; 638 } 639 640 __tagtable(ATAG_INITRD2, parse_tag_initrd2); 641 642 static int __init parse_tag_serialnr(const struct tag *tag) 643 { 644 system_serial_low = tag->u.serialnr.low; 645 system_serial_high = tag->u.serialnr.high; 646 return 0; 647 } 648 649 __tagtable(ATAG_SERIAL, parse_tag_serialnr); 650 651 static int __init parse_tag_revision(const struct tag *tag) 652 { 653 system_rev = tag->u.revision.rev; 654 return 0; 655 } 656 657 __tagtable(ATAG_REVISION, parse_tag_revision); 658 659 static int __init parse_tag_cmdline(const struct tag *tag) 660 { 661 strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE); 662 return 0; 663 } 664 665 __tagtable(ATAG_CMDLINE, parse_tag_cmdline); 666 667 /* 668 * Scan the tag table for this tag, and call its parse function. 669 * The tag table is built by the linker from all the __tagtable 670 * declarations. 671 */ 672 static int __init parse_tag(const struct tag *tag) 673 { 674 extern struct tagtable __tagtable_begin, __tagtable_end; 675 struct tagtable *t; 676 677 for (t = &__tagtable_begin; t < &__tagtable_end; t++) 678 if (tag->hdr.tag == t->tag) { 679 t->parse(tag); 680 break; 681 } 682 683 return t < &__tagtable_end; 684 } 685 686 /* 687 * Parse all tags in the list, checking both the global and architecture 688 * specific tag tables. 689 */ 690 static void __init parse_tags(const struct tag *t) 691 { 692 for (; t->hdr.size; t = tag_next(t)) 693 if (!parse_tag(t)) 694 printk(KERN_WARNING 695 "Ignoring unrecognised tag 0x%08x\n", 696 t->hdr.tag); 697 } 698 699 /* 700 * This holds our defaults. 701 */ 702 static struct init_tags { 703 struct tag_header hdr1; 704 struct tag_core core; 705 struct tag_header hdr2; 706 struct tag_mem32 mem; 707 struct tag_header hdr3; 708 } init_tags __initdata = { 709 { tag_size(tag_core), ATAG_CORE }, 710 { 1, PAGE_SIZE, 0xff }, 711 { tag_size(tag_mem32), ATAG_MEM }, 712 { MEM_SIZE, PHYS_OFFSET }, 713 { 0, ATAG_NONE } 714 }; 715 716 static void (*init_machine)(void) __initdata; 717 718 static int __init customize_machine(void) 719 { 720 /* customizes platform devices, or adds new ones */ 721 if (init_machine) 722 init_machine(); 723 return 0; 724 } 725 arch_initcall(customize_machine); 726 727 void __init setup_arch(char **cmdline_p) 728 { 729 struct tag *tags = (struct tag *)&init_tags; 730 struct machine_desc *mdesc; 731 char *from = default_command_line; 732 733 setup_processor(); 734 mdesc = setup_machine(machine_arch_type); 735 machine_name = mdesc->name; 736 737 if (mdesc->soft_reboot) 738 reboot_setup("s"); 739 740 if (mdesc->boot_params) 741 tags = phys_to_virt(mdesc->boot_params); 742 743 /* 744 * If we have the old style parameters, convert them to 745 * a tag list. 746 */ 747 if (tags->hdr.tag != ATAG_CORE) 748 convert_to_tag_list(tags); 749 if (tags->hdr.tag != ATAG_CORE) 750 tags = (struct tag *)&init_tags; 751 752 if (mdesc->fixup) 753 mdesc->fixup(mdesc, tags, &from, &meminfo); 754 755 if (tags->hdr.tag == ATAG_CORE) { 756 if (meminfo.nr_banks != 0) 757 squash_mem_tags(tags); 758 parse_tags(tags); 759 } 760 761 init_mm.start_code = (unsigned long) &_text; 762 init_mm.end_code = (unsigned long) &_etext; 763 init_mm.end_data = (unsigned long) &_edata; 764 init_mm.brk = (unsigned long) &_end; 765 766 memcpy(saved_command_line, from, COMMAND_LINE_SIZE); 767 saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; 768 parse_cmdline(cmdline_p, from); 769 paging_init(&meminfo, mdesc); 770 request_standard_resources(&meminfo, mdesc); 771 772 cpu_init(); 773 774 /* 775 * Set up various architecture-specific pointers 776 */ 777 init_arch_irq = mdesc->init_irq; 778 system_timer = mdesc->timer; 779 init_machine = mdesc->init_machine; 780 781 #ifdef CONFIG_VT 782 #if defined(CONFIG_VGA_CONSOLE) 783 conswitchp = &vga_con; 784 #elif defined(CONFIG_DUMMY_CONSOLE) 785 conswitchp = &dummy_con; 786 #endif 787 #endif 788 } 789 790 791 static int __init topology_init(void) 792 { 793 int cpu; 794 795 for_each_cpu(cpu) 796 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu, NULL); 797 798 return 0; 799 } 800 801 subsys_initcall(topology_init); 802 803 static const char *hwcap_str[] = { 804 "swp", 805 "half", 806 "thumb", 807 "26bit", 808 "fastmult", 809 "fpa", 810 "vfp", 811 "edsp", 812 "java", 813 NULL 814 }; 815 816 static void 817 c_show_cache(struct seq_file *m, const char *type, unsigned int cache) 818 { 819 unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0); 820 821 seq_printf(m, "%s size\t\t: %d\n" 822 "%s assoc\t\t: %d\n" 823 "%s line length\t: %d\n" 824 "%s sets\t\t: %d\n", 825 type, mult << (8 + CACHE_SIZE(cache)), 826 type, (mult << CACHE_ASSOC(cache)) >> 1, 827 type, 8 << CACHE_LINE(cache), 828 type, 1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) - 829 CACHE_LINE(cache))); 830 } 831 832 static int c_show(struct seq_file *m, void *v) 833 { 834 int i; 835 836 seq_printf(m, "Processor\t: %s rev %d (%s)\n", 837 cpu_name, (int)processor_id & 15, elf_platform); 838 839 #if defined(CONFIG_SMP) 840 for_each_online_cpu(i) { 841 seq_printf(m, "Processor\t: %d\n", i); 842 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n", 843 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), 844 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); 845 } 846 #else /* CONFIG_SMP */ 847 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 848 loops_per_jiffy / (500000/HZ), 849 (loops_per_jiffy / (5000/HZ)) % 100); 850 #endif 851 852 /* dump out the processor features */ 853 seq_puts(m, "Features\t: "); 854 855 for (i = 0; hwcap_str[i]; i++) 856 if (elf_hwcap & (1 << i)) 857 seq_printf(m, "%s ", hwcap_str[i]); 858 859 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", processor_id >> 24); 860 seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]); 861 862 if ((processor_id & 0x0000f000) == 0x00000000) { 863 /* pre-ARM7 */ 864 seq_printf(m, "CPU part\t\t: %07x\n", processor_id >> 4); 865 } else { 866 if ((processor_id & 0x0000f000) == 0x00007000) { 867 /* ARM7 */ 868 seq_printf(m, "CPU variant\t: 0x%02x\n", 869 (processor_id >> 16) & 127); 870 } else { 871 /* post-ARM7 */ 872 seq_printf(m, "CPU variant\t: 0x%x\n", 873 (processor_id >> 20) & 15); 874 } 875 seq_printf(m, "CPU part\t: 0x%03x\n", 876 (processor_id >> 4) & 0xfff); 877 } 878 seq_printf(m, "CPU revision\t: %d\n", processor_id & 15); 879 880 { 881 unsigned int cache_info = read_cpuid(CPUID_CACHETYPE); 882 if (cache_info != processor_id) { 883 seq_printf(m, "Cache type\t: %s\n" 884 "Cache clean\t: %s\n" 885 "Cache lockdown\t: %s\n" 886 "Cache format\t: %s\n", 887 cache_types[CACHE_TYPE(cache_info)], 888 cache_clean[CACHE_TYPE(cache_info)], 889 cache_lockdown[CACHE_TYPE(cache_info)], 890 CACHE_S(cache_info) ? "Harvard" : "Unified"); 891 892 if (CACHE_S(cache_info)) { 893 c_show_cache(m, "I", CACHE_ISIZE(cache_info)); 894 c_show_cache(m, "D", CACHE_DSIZE(cache_info)); 895 } else { 896 c_show_cache(m, "Cache", CACHE_ISIZE(cache_info)); 897 } 898 } 899 } 900 901 seq_puts(m, "\n"); 902 903 seq_printf(m, "Hardware\t: %s\n", machine_name); 904 seq_printf(m, "Revision\t: %04x\n", system_rev); 905 seq_printf(m, "Serial\t\t: %08x%08x\n", 906 system_serial_high, system_serial_low); 907 908 return 0; 909 } 910 911 static void *c_start(struct seq_file *m, loff_t *pos) 912 { 913 return *pos < 1 ? (void *)1 : NULL; 914 } 915 916 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 917 { 918 ++*pos; 919 return NULL; 920 } 921 922 static void c_stop(struct seq_file *m, void *v) 923 { 924 } 925 926 struct seq_operations cpuinfo_op = { 927 .start = c_start, 928 .next = c_next, 929 .stop = c_stop, 930 .show = c_show 931 }; 932