xref: /linux/arch/arm/kernel/setup.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/init.h>
22 #include <linux/kexec.h>
23 #include <linux/crash_dump.h>
24 #include <linux/root_dev.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/fs.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 
32 #include <asm/unified.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/elf.h>
36 #include <asm/procinfo.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/smp_plat.h>
40 #include <asm/mach-types.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cachetype.h>
43 #include <asm/tlbflush.h>
44 
45 #include <asm/mach/arch.h>
46 #include <asm/mach/irq.h>
47 #include <asm/mach/time.h>
48 #include <asm/traps.h>
49 #include <asm/unwind.h>
50 
51 #if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
52 #include "compat.h"
53 #endif
54 #include "atags.h"
55 #include "tcm.h"
56 
57 #ifndef MEM_SIZE
58 #define MEM_SIZE	(16*1024*1024)
59 #endif
60 
61 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
62 char fpe_type[8];
63 
64 static int __init fpe_setup(char *line)
65 {
66 	memcpy(fpe_type, line, 8);
67 	return 1;
68 }
69 
70 __setup("fpe=", fpe_setup);
71 #endif
72 
73 extern void paging_init(struct machine_desc *desc);
74 extern void reboot_setup(char *str);
75 
76 unsigned int processor_id;
77 EXPORT_SYMBOL(processor_id);
78 unsigned int __machine_arch_type __read_mostly;
79 EXPORT_SYMBOL(__machine_arch_type);
80 unsigned int cacheid __read_mostly;
81 EXPORT_SYMBOL(cacheid);
82 
83 unsigned int __atags_pointer __initdata;
84 
85 unsigned int system_rev;
86 EXPORT_SYMBOL(system_rev);
87 
88 unsigned int system_serial_low;
89 EXPORT_SYMBOL(system_serial_low);
90 
91 unsigned int system_serial_high;
92 EXPORT_SYMBOL(system_serial_high);
93 
94 unsigned int elf_hwcap __read_mostly;
95 EXPORT_SYMBOL(elf_hwcap);
96 
97 
98 #ifdef MULTI_CPU
99 struct processor processor __read_mostly;
100 #endif
101 #ifdef MULTI_TLB
102 struct cpu_tlb_fns cpu_tlb __read_mostly;
103 #endif
104 #ifdef MULTI_USER
105 struct cpu_user_fns cpu_user __read_mostly;
106 #endif
107 #ifdef MULTI_CACHE
108 struct cpu_cache_fns cpu_cache __read_mostly;
109 #endif
110 #ifdef CONFIG_OUTER_CACHE
111 struct outer_cache_fns outer_cache __read_mostly;
112 EXPORT_SYMBOL(outer_cache);
113 #endif
114 
115 struct stack {
116 	u32 irq[3];
117 	u32 abt[3];
118 	u32 und[3];
119 } ____cacheline_aligned;
120 
121 static struct stack stacks[NR_CPUS];
122 
123 char elf_platform[ELF_PLATFORM_SIZE];
124 EXPORT_SYMBOL(elf_platform);
125 
126 static const char *cpu_name;
127 static const char *machine_name;
128 static char __initdata cmd_line[COMMAND_LINE_SIZE];
129 struct machine_desc *machine_desc __initdata;
130 
131 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
132 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
133 #define ENDIANNESS ((char)endian_test.l)
134 
135 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
136 
137 /*
138  * Standard memory resources
139  */
140 static struct resource mem_res[] = {
141 	{
142 		.name = "Video RAM",
143 		.start = 0,
144 		.end = 0,
145 		.flags = IORESOURCE_MEM
146 	},
147 	{
148 		.name = "Kernel text",
149 		.start = 0,
150 		.end = 0,
151 		.flags = IORESOURCE_MEM
152 	},
153 	{
154 		.name = "Kernel data",
155 		.start = 0,
156 		.end = 0,
157 		.flags = IORESOURCE_MEM
158 	}
159 };
160 
161 #define video_ram   mem_res[0]
162 #define kernel_code mem_res[1]
163 #define kernel_data mem_res[2]
164 
165 static struct resource io_res[] = {
166 	{
167 		.name = "reserved",
168 		.start = 0x3bc,
169 		.end = 0x3be,
170 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
171 	},
172 	{
173 		.name = "reserved",
174 		.start = 0x378,
175 		.end = 0x37f,
176 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
177 	},
178 	{
179 		.name = "reserved",
180 		.start = 0x278,
181 		.end = 0x27f,
182 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
183 	}
184 };
185 
186 #define lp0 io_res[0]
187 #define lp1 io_res[1]
188 #define lp2 io_res[2]
189 
190 static const char *proc_arch[] = {
191 	"undefined/unknown",
192 	"3",
193 	"4",
194 	"4T",
195 	"5",
196 	"5T",
197 	"5TE",
198 	"5TEJ",
199 	"6TEJ",
200 	"7",
201 	"?(11)",
202 	"?(12)",
203 	"?(13)",
204 	"?(14)",
205 	"?(15)",
206 	"?(16)",
207 	"?(17)",
208 };
209 
210 int cpu_architecture(void)
211 {
212 	int cpu_arch;
213 
214 	if ((read_cpuid_id() & 0x0008f000) == 0) {
215 		cpu_arch = CPU_ARCH_UNKNOWN;
216 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
217 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
218 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
219 		cpu_arch = (read_cpuid_id() >> 16) & 7;
220 		if (cpu_arch)
221 			cpu_arch += CPU_ARCH_ARMv3;
222 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
223 		unsigned int mmfr0;
224 
225 		/* Revised CPUID format. Read the Memory Model Feature
226 		 * Register 0 and check for VMSAv7 or PMSAv7 */
227 		asm("mrc	p15, 0, %0, c0, c1, 4"
228 		    : "=r" (mmfr0));
229 		if ((mmfr0 & 0x0000000f) == 0x00000003 ||
230 		    (mmfr0 & 0x000000f0) == 0x00000030)
231 			cpu_arch = CPU_ARCH_ARMv7;
232 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
233 			 (mmfr0 & 0x000000f0) == 0x00000020)
234 			cpu_arch = CPU_ARCH_ARMv6;
235 		else
236 			cpu_arch = CPU_ARCH_UNKNOWN;
237 	} else
238 		cpu_arch = CPU_ARCH_UNKNOWN;
239 
240 	return cpu_arch;
241 }
242 
243 static int cpu_has_aliasing_icache(unsigned int arch)
244 {
245 	int aliasing_icache;
246 	unsigned int id_reg, num_sets, line_size;
247 
248 	/* arch specifies the register format */
249 	switch (arch) {
250 	case CPU_ARCH_ARMv7:
251 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
252 		    : /* No output operands */
253 		    : "r" (1));
254 		isb();
255 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
256 		    : "=r" (id_reg));
257 		line_size = 4 << ((id_reg & 0x7) + 2);
258 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
259 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
260 		break;
261 	case CPU_ARCH_ARMv6:
262 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
263 		break;
264 	default:
265 		/* I-cache aliases will be handled by D-cache aliasing code */
266 		aliasing_icache = 0;
267 	}
268 
269 	return aliasing_icache;
270 }
271 
272 static void __init cacheid_init(void)
273 {
274 	unsigned int cachetype = read_cpuid_cachetype();
275 	unsigned int arch = cpu_architecture();
276 
277 	if (arch >= CPU_ARCH_ARMv6) {
278 		if ((cachetype & (7 << 29)) == 4 << 29) {
279 			/* ARMv7 register format */
280 			cacheid = CACHEID_VIPT_NONALIASING;
281 			if ((cachetype & (3 << 14)) == 1 << 14)
282 				cacheid |= CACHEID_ASID_TAGGED;
283 			else if (cpu_has_aliasing_icache(CPU_ARCH_ARMv7))
284 				cacheid |= CACHEID_VIPT_I_ALIASING;
285 		} else if (cachetype & (1 << 23)) {
286 			cacheid = CACHEID_VIPT_ALIASING;
287 		} else {
288 			cacheid = CACHEID_VIPT_NONALIASING;
289 			if (cpu_has_aliasing_icache(CPU_ARCH_ARMv6))
290 				cacheid |= CACHEID_VIPT_I_ALIASING;
291 		}
292 	} else {
293 		cacheid = CACHEID_VIVT;
294 	}
295 
296 	printk("CPU: %s data cache, %s instruction cache\n",
297 		cache_is_vivt() ? "VIVT" :
298 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
299 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
300 		cache_is_vivt() ? "VIVT" :
301 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
302 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
303 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
304 }
305 
306 /*
307  * These functions re-use the assembly code in head.S, which
308  * already provide the required functionality.
309  */
310 extern struct proc_info_list *lookup_processor_type(unsigned int);
311 extern struct machine_desc *lookup_machine_type(unsigned int);
312 
313 static void __init feat_v6_fixup(void)
314 {
315 	int id = read_cpuid_id();
316 
317 	if ((id & 0xff0f0000) != 0x41070000)
318 		return;
319 
320 	/*
321 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
322 	 * see also kuser_get_tls_init.
323 	 */
324 	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
325 		elf_hwcap &= ~HWCAP_TLS;
326 }
327 
328 static void __init setup_processor(void)
329 {
330 	struct proc_info_list *list;
331 
332 	/*
333 	 * locate processor in the list of supported processor
334 	 * types.  The linker builds this table for us from the
335 	 * entries in arch/arm/mm/proc-*.S
336 	 */
337 	list = lookup_processor_type(read_cpuid_id());
338 	if (!list) {
339 		printk("CPU configuration botched (ID %08x), unable "
340 		       "to continue.\n", read_cpuid_id());
341 		while (1);
342 	}
343 
344 	cpu_name = list->cpu_name;
345 
346 #ifdef MULTI_CPU
347 	processor = *list->proc;
348 #endif
349 #ifdef MULTI_TLB
350 	cpu_tlb = *list->tlb;
351 #endif
352 #ifdef MULTI_USER
353 	cpu_user = *list->user;
354 #endif
355 #ifdef MULTI_CACHE
356 	cpu_cache = *list->cache;
357 #endif
358 
359 	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
360 	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
361 	       proc_arch[cpu_architecture()], cr_alignment);
362 
363 	sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
364 	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
365 	elf_hwcap = list->elf_hwcap;
366 #ifndef CONFIG_ARM_THUMB
367 	elf_hwcap &= ~HWCAP_THUMB;
368 #endif
369 
370 	feat_v6_fixup();
371 
372 	cacheid_init();
373 	cpu_proc_init();
374 }
375 
376 /*
377  * cpu_init - initialise one CPU.
378  *
379  * cpu_init sets up the per-CPU stacks.
380  */
381 void cpu_init(void)
382 {
383 	unsigned int cpu = smp_processor_id();
384 	struct stack *stk = &stacks[cpu];
385 
386 	if (cpu >= NR_CPUS) {
387 		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
388 		BUG();
389 	}
390 
391 	/*
392 	 * Define the placement constraint for the inline asm directive below.
393 	 * In Thumb-2, msr with an immediate value is not allowed.
394 	 */
395 #ifdef CONFIG_THUMB2_KERNEL
396 #define PLC	"r"
397 #else
398 #define PLC	"I"
399 #endif
400 
401 	/*
402 	 * setup stacks for re-entrant exception handlers
403 	 */
404 	__asm__ (
405 	"msr	cpsr_c, %1\n\t"
406 	"add	r14, %0, %2\n\t"
407 	"mov	sp, r14\n\t"
408 	"msr	cpsr_c, %3\n\t"
409 	"add	r14, %0, %4\n\t"
410 	"mov	sp, r14\n\t"
411 	"msr	cpsr_c, %5\n\t"
412 	"add	r14, %0, %6\n\t"
413 	"mov	sp, r14\n\t"
414 	"msr	cpsr_c, %7"
415 	    :
416 	    : "r" (stk),
417 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
418 	      "I" (offsetof(struct stack, irq[0])),
419 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
420 	      "I" (offsetof(struct stack, abt[0])),
421 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
422 	      "I" (offsetof(struct stack, und[0])),
423 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
424 	    : "r14");
425 }
426 
427 static struct machine_desc * __init setup_machine(unsigned int nr)
428 {
429 	struct machine_desc *list;
430 
431 	/*
432 	 * locate machine in the list of supported machines.
433 	 */
434 	list = lookup_machine_type(nr);
435 	if (!list) {
436 		printk("Machine configuration botched (nr %d), unable "
437 		       "to continue.\n", nr);
438 		while (1);
439 	}
440 
441 	printk("Machine: %s\n", list->name);
442 
443 	return list;
444 }
445 
446 static int __init arm_add_memory(unsigned long start, unsigned long size)
447 {
448 	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
449 
450 	if (meminfo.nr_banks >= NR_BANKS) {
451 		printk(KERN_CRIT "NR_BANKS too low, "
452 			"ignoring memory at %#lx\n", start);
453 		return -EINVAL;
454 	}
455 
456 	/*
457 	 * Ensure that start/size are aligned to a page boundary.
458 	 * Size is appropriately rounded down, start is rounded up.
459 	 */
460 	size -= start & ~PAGE_MASK;
461 	bank->start = PAGE_ALIGN(start);
462 	bank->size  = size & PAGE_MASK;
463 
464 	/*
465 	 * Check whether this memory region has non-zero size or
466 	 * invalid node number.
467 	 */
468 	if (bank->size == 0)
469 		return -EINVAL;
470 
471 	meminfo.nr_banks++;
472 	return 0;
473 }
474 
475 /*
476  * Pick out the memory size.  We look for mem=size@start,
477  * where start and size are "size[KkMm]"
478  */
479 static int __init early_mem(char *p)
480 {
481 	static int usermem __initdata = 0;
482 	unsigned long size, start;
483 	char *endp;
484 
485 	/*
486 	 * If the user specifies memory size, we
487 	 * blow away any automatically generated
488 	 * size.
489 	 */
490 	if (usermem == 0) {
491 		usermem = 1;
492 		meminfo.nr_banks = 0;
493 	}
494 
495 	start = PHYS_OFFSET;
496 	size  = memparse(p, &endp);
497 	if (*endp == '@')
498 		start = memparse(endp + 1, NULL);
499 
500 	arm_add_memory(start, size);
501 
502 	return 0;
503 }
504 early_param("mem", early_mem);
505 
506 static void __init
507 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
508 {
509 #ifdef CONFIG_BLK_DEV_RAM
510 	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
511 
512 	rd_image_start = image_start;
513 	rd_prompt = prompt;
514 	rd_doload = doload;
515 
516 	if (rd_sz)
517 		rd_size = rd_sz;
518 #endif
519 }
520 
521 static void __init
522 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
523 {
524 	struct resource *res;
525 	int i;
526 
527 	kernel_code.start   = virt_to_phys(_text);
528 	kernel_code.end     = virt_to_phys(_etext - 1);
529 	kernel_data.start   = virt_to_phys(_sdata);
530 	kernel_data.end     = virt_to_phys(_end - 1);
531 
532 	for (i = 0; i < mi->nr_banks; i++) {
533 		if (mi->bank[i].size == 0)
534 			continue;
535 
536 		res = alloc_bootmem_low(sizeof(*res));
537 		res->name  = "System RAM";
538 		res->start = mi->bank[i].start;
539 		res->end   = mi->bank[i].start + mi->bank[i].size - 1;
540 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
541 
542 		request_resource(&iomem_resource, res);
543 
544 		if (kernel_code.start >= res->start &&
545 		    kernel_code.end <= res->end)
546 			request_resource(res, &kernel_code);
547 		if (kernel_data.start >= res->start &&
548 		    kernel_data.end <= res->end)
549 			request_resource(res, &kernel_data);
550 	}
551 
552 	if (mdesc->video_start) {
553 		video_ram.start = mdesc->video_start;
554 		video_ram.end   = mdesc->video_end;
555 		request_resource(&iomem_resource, &video_ram);
556 	}
557 
558 	/*
559 	 * Some machines don't have the possibility of ever
560 	 * possessing lp0, lp1 or lp2
561 	 */
562 	if (mdesc->reserve_lp0)
563 		request_resource(&ioport_resource, &lp0);
564 	if (mdesc->reserve_lp1)
565 		request_resource(&ioport_resource, &lp1);
566 	if (mdesc->reserve_lp2)
567 		request_resource(&ioport_resource, &lp2);
568 }
569 
570 /*
571  *  Tag parsing.
572  *
573  * This is the new way of passing data to the kernel at boot time.  Rather
574  * than passing a fixed inflexible structure to the kernel, we pass a list
575  * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
576  * tag for the list to be recognised (to distinguish the tagged list from
577  * a param_struct).  The list is terminated with a zero-length tag (this tag
578  * is not parsed in any way).
579  */
580 static int __init parse_tag_core(const struct tag *tag)
581 {
582 	if (tag->hdr.size > 2) {
583 		if ((tag->u.core.flags & 1) == 0)
584 			root_mountflags &= ~MS_RDONLY;
585 		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
586 	}
587 	return 0;
588 }
589 
590 __tagtable(ATAG_CORE, parse_tag_core);
591 
592 static int __init parse_tag_mem32(const struct tag *tag)
593 {
594 	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
595 }
596 
597 __tagtable(ATAG_MEM, parse_tag_mem32);
598 
599 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
600 struct screen_info screen_info = {
601  .orig_video_lines	= 30,
602  .orig_video_cols	= 80,
603  .orig_video_mode	= 0,
604  .orig_video_ega_bx	= 0,
605  .orig_video_isVGA	= 1,
606  .orig_video_points	= 8
607 };
608 
609 static int __init parse_tag_videotext(const struct tag *tag)
610 {
611 	screen_info.orig_x            = tag->u.videotext.x;
612 	screen_info.orig_y            = tag->u.videotext.y;
613 	screen_info.orig_video_page   = tag->u.videotext.video_page;
614 	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
615 	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
616 	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
617 	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
618 	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
619 	screen_info.orig_video_points = tag->u.videotext.video_points;
620 	return 0;
621 }
622 
623 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
624 #endif
625 
626 static int __init parse_tag_ramdisk(const struct tag *tag)
627 {
628 	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
629 		      (tag->u.ramdisk.flags & 2) == 0,
630 		      tag->u.ramdisk.start, tag->u.ramdisk.size);
631 	return 0;
632 }
633 
634 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
635 
636 static int __init parse_tag_serialnr(const struct tag *tag)
637 {
638 	system_serial_low = tag->u.serialnr.low;
639 	system_serial_high = tag->u.serialnr.high;
640 	return 0;
641 }
642 
643 __tagtable(ATAG_SERIAL, parse_tag_serialnr);
644 
645 static int __init parse_tag_revision(const struct tag *tag)
646 {
647 	system_rev = tag->u.revision.rev;
648 	return 0;
649 }
650 
651 __tagtable(ATAG_REVISION, parse_tag_revision);
652 
653 #ifndef CONFIG_CMDLINE_FORCE
654 static int __init parse_tag_cmdline(const struct tag *tag)
655 {
656 	strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
657 	return 0;
658 }
659 
660 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
661 #endif /* CONFIG_CMDLINE_FORCE */
662 
663 /*
664  * Scan the tag table for this tag, and call its parse function.
665  * The tag table is built by the linker from all the __tagtable
666  * declarations.
667  */
668 static int __init parse_tag(const struct tag *tag)
669 {
670 	extern struct tagtable __tagtable_begin, __tagtable_end;
671 	struct tagtable *t;
672 
673 	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
674 		if (tag->hdr.tag == t->tag) {
675 			t->parse(tag);
676 			break;
677 		}
678 
679 	return t < &__tagtable_end;
680 }
681 
682 /*
683  * Parse all tags in the list, checking both the global and architecture
684  * specific tag tables.
685  */
686 static void __init parse_tags(const struct tag *t)
687 {
688 	for (; t->hdr.size; t = tag_next(t))
689 		if (!parse_tag(t))
690 			printk(KERN_WARNING
691 				"Ignoring unrecognised tag 0x%08x\n",
692 				t->hdr.tag);
693 }
694 
695 /*
696  * This holds our defaults.
697  */
698 static struct init_tags {
699 	struct tag_header hdr1;
700 	struct tag_core   core;
701 	struct tag_header hdr2;
702 	struct tag_mem32  mem;
703 	struct tag_header hdr3;
704 } init_tags __initdata = {
705 	{ tag_size(tag_core), ATAG_CORE },
706 	{ 1, PAGE_SIZE, 0xff },
707 	{ tag_size(tag_mem32), ATAG_MEM },
708 	{ MEM_SIZE, PHYS_OFFSET },
709 	{ 0, ATAG_NONE }
710 };
711 
712 static int __init customize_machine(void)
713 {
714 	/* customizes platform devices, or adds new ones */
715 	if (machine_desc->init_machine)
716 		machine_desc->init_machine();
717 	return 0;
718 }
719 arch_initcall(customize_machine);
720 
721 #ifdef CONFIG_KEXEC
722 static inline unsigned long long get_total_mem(void)
723 {
724 	unsigned long total;
725 
726 	total = max_low_pfn - min_low_pfn;
727 	return total << PAGE_SHIFT;
728 }
729 
730 /**
731  * reserve_crashkernel() - reserves memory are for crash kernel
732  *
733  * This function reserves memory area given in "crashkernel=" kernel command
734  * line parameter. The memory reserved is used by a dump capture kernel when
735  * primary kernel is crashing.
736  */
737 static void __init reserve_crashkernel(void)
738 {
739 	unsigned long long crash_size, crash_base;
740 	unsigned long long total_mem;
741 	int ret;
742 
743 	total_mem = get_total_mem();
744 	ret = parse_crashkernel(boot_command_line, total_mem,
745 				&crash_size, &crash_base);
746 	if (ret)
747 		return;
748 
749 	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
750 	if (ret < 0) {
751 		printk(KERN_WARNING "crashkernel reservation failed - "
752 		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
753 		return;
754 	}
755 
756 	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
757 	       "for crashkernel (System RAM: %ldMB)\n",
758 	       (unsigned long)(crash_size >> 20),
759 	       (unsigned long)(crash_base >> 20),
760 	       (unsigned long)(total_mem >> 20));
761 
762 	crashk_res.start = crash_base;
763 	crashk_res.end = crash_base + crash_size - 1;
764 	insert_resource(&iomem_resource, &crashk_res);
765 }
766 #else
767 static inline void reserve_crashkernel(void) {}
768 #endif /* CONFIG_KEXEC */
769 
770 /*
771  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
772  * is_kdump_kernel() to determine if we are booting after a panic. Hence
773  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
774  */
775 
776 #ifdef CONFIG_CRASH_DUMP
777 /*
778  * elfcorehdr= specifies the location of elf core header stored by the crashed
779  * kernel. This option will be passed by kexec loader to the capture kernel.
780  */
781 static int __init setup_elfcorehdr(char *arg)
782 {
783 	char *end;
784 
785 	if (!arg)
786 		return -EINVAL;
787 
788 	elfcorehdr_addr = memparse(arg, &end);
789 	return end > arg ? 0 : -EINVAL;
790 }
791 early_param("elfcorehdr", setup_elfcorehdr);
792 #endif /* CONFIG_CRASH_DUMP */
793 
794 static void __init squash_mem_tags(struct tag *tag)
795 {
796 	for (; tag->hdr.size; tag = tag_next(tag))
797 		if (tag->hdr.tag == ATAG_MEM)
798 			tag->hdr.tag = ATAG_NONE;
799 }
800 
801 void __init setup_arch(char **cmdline_p)
802 {
803 	struct tag *tags = (struct tag *)&init_tags;
804 	struct machine_desc *mdesc;
805 	char *from = default_command_line;
806 
807 	unwind_init();
808 
809 	setup_processor();
810 	mdesc = setup_machine(machine_arch_type);
811 	machine_desc = mdesc;
812 	machine_name = mdesc->name;
813 
814 	if (mdesc->soft_reboot)
815 		reboot_setup("s");
816 
817 	if (__atags_pointer)
818 		tags = phys_to_virt(__atags_pointer);
819 	else if (mdesc->boot_params)
820 		tags = phys_to_virt(mdesc->boot_params);
821 
822 #if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
823 	/*
824 	 * If we have the old style parameters, convert them to
825 	 * a tag list.
826 	 */
827 	if (tags->hdr.tag != ATAG_CORE)
828 		convert_to_tag_list(tags);
829 #endif
830 	if (tags->hdr.tag != ATAG_CORE)
831 		tags = (struct tag *)&init_tags;
832 
833 	if (mdesc->fixup)
834 		mdesc->fixup(mdesc, tags, &from, &meminfo);
835 
836 	if (tags->hdr.tag == ATAG_CORE) {
837 		if (meminfo.nr_banks != 0)
838 			squash_mem_tags(tags);
839 		save_atags(tags);
840 		parse_tags(tags);
841 	}
842 
843 	init_mm.start_code = (unsigned long) _text;
844 	init_mm.end_code   = (unsigned long) _etext;
845 	init_mm.end_data   = (unsigned long) _edata;
846 	init_mm.brk	   = (unsigned long) _end;
847 
848 	/* parse_early_param needs a boot_command_line */
849 	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
850 
851 	/* populate cmd_line too for later use, preserving boot_command_line */
852 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
853 	*cmdline_p = cmd_line;
854 
855 	parse_early_param();
856 
857 	arm_memblock_init(&meminfo, mdesc);
858 
859 	paging_init(mdesc);
860 	request_standard_resources(&meminfo, mdesc);
861 
862 #ifdef CONFIG_SMP
863 	if (is_smp())
864 		smp_init_cpus();
865 #endif
866 	reserve_crashkernel();
867 
868 	cpu_init();
869 	tcm_init();
870 
871 #ifdef CONFIG_MULTI_IRQ_HANDLER
872 	handle_arch_irq = mdesc->handle_irq;
873 #endif
874 
875 #ifdef CONFIG_VT
876 #if defined(CONFIG_VGA_CONSOLE)
877 	conswitchp = &vga_con;
878 #elif defined(CONFIG_DUMMY_CONSOLE)
879 	conswitchp = &dummy_con;
880 #endif
881 #endif
882 	early_trap_init();
883 
884 	if (mdesc->init_early)
885 		mdesc->init_early();
886 }
887 
888 
889 static int __init topology_init(void)
890 {
891 	int cpu;
892 
893 	for_each_possible_cpu(cpu) {
894 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
895 		cpuinfo->cpu.hotpluggable = 1;
896 		register_cpu(&cpuinfo->cpu, cpu);
897 	}
898 
899 	return 0;
900 }
901 subsys_initcall(topology_init);
902 
903 #ifdef CONFIG_HAVE_PROC_CPU
904 static int __init proc_cpu_init(void)
905 {
906 	struct proc_dir_entry *res;
907 
908 	res = proc_mkdir("cpu", NULL);
909 	if (!res)
910 		return -ENOMEM;
911 	return 0;
912 }
913 fs_initcall(proc_cpu_init);
914 #endif
915 
916 static const char *hwcap_str[] = {
917 	"swp",
918 	"half",
919 	"thumb",
920 	"26bit",
921 	"fastmult",
922 	"fpa",
923 	"vfp",
924 	"edsp",
925 	"java",
926 	"iwmmxt",
927 	"crunch",
928 	"thumbee",
929 	"neon",
930 	"vfpv3",
931 	"vfpv3d16",
932 	NULL
933 };
934 
935 static int c_show(struct seq_file *m, void *v)
936 {
937 	int i;
938 
939 	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
940 		   cpu_name, read_cpuid_id() & 15, elf_platform);
941 
942 #if defined(CONFIG_SMP)
943 	for_each_online_cpu(i) {
944 		/*
945 		 * glibc reads /proc/cpuinfo to determine the number of
946 		 * online processors, looking for lines beginning with
947 		 * "processor".  Give glibc what it expects.
948 		 */
949 		seq_printf(m, "processor\t: %d\n", i);
950 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
951 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
952 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
953 	}
954 #else /* CONFIG_SMP */
955 	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
956 		   loops_per_jiffy / (500000/HZ),
957 		   (loops_per_jiffy / (5000/HZ)) % 100);
958 #endif
959 
960 	/* dump out the processor features */
961 	seq_puts(m, "Features\t: ");
962 
963 	for (i = 0; hwcap_str[i]; i++)
964 		if (elf_hwcap & (1 << i))
965 			seq_printf(m, "%s ", hwcap_str[i]);
966 
967 	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
968 	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
969 
970 	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
971 		/* pre-ARM7 */
972 		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
973 	} else {
974 		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
975 			/* ARM7 */
976 			seq_printf(m, "CPU variant\t: 0x%02x\n",
977 				   (read_cpuid_id() >> 16) & 127);
978 		} else {
979 			/* post-ARM7 */
980 			seq_printf(m, "CPU variant\t: 0x%x\n",
981 				   (read_cpuid_id() >> 20) & 15);
982 		}
983 		seq_printf(m, "CPU part\t: 0x%03x\n",
984 			   (read_cpuid_id() >> 4) & 0xfff);
985 	}
986 	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
987 
988 	seq_puts(m, "\n");
989 
990 	seq_printf(m, "Hardware\t: %s\n", machine_name);
991 	seq_printf(m, "Revision\t: %04x\n", system_rev);
992 	seq_printf(m, "Serial\t\t: %08x%08x\n",
993 		   system_serial_high, system_serial_low);
994 
995 	return 0;
996 }
997 
998 static void *c_start(struct seq_file *m, loff_t *pos)
999 {
1000 	return *pos < 1 ? (void *)1 : NULL;
1001 }
1002 
1003 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1004 {
1005 	++*pos;
1006 	return NULL;
1007 }
1008 
1009 static void c_stop(struct seq_file *m, void *v)
1010 {
1011 }
1012 
1013 const struct seq_operations cpuinfo_op = {
1014 	.start	= c_start,
1015 	.next	= c_next,
1016 	.stop	= c_stop,
1017 	.show	= c_show
1018 };
1019