1 /* 2 * linux/arch/arm/kernel/setup.c 3 * 4 * Copyright (C) 1995-2001 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/stddef.h> 14 #include <linux/ioport.h> 15 #include <linux/delay.h> 16 #include <linux/utsname.h> 17 #include <linux/initrd.h> 18 #include <linux/console.h> 19 #include <linux/bootmem.h> 20 #include <linux/seq_file.h> 21 #include <linux/tty.h> 22 #include <linux/init.h> 23 #include <linux/root_dev.h> 24 #include <linux/cpu.h> 25 #include <linux/interrupt.h> 26 27 #include <asm/cpu.h> 28 #include <asm/elf.h> 29 #include <asm/hardware.h> 30 #include <asm/io.h> 31 #include <asm/procinfo.h> 32 #include <asm/setup.h> 33 #include <asm/mach-types.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 37 #include <asm/mach/arch.h> 38 #include <asm/mach/irq.h> 39 #include <asm/mach/time.h> 40 41 #ifndef MEM_SIZE 42 #define MEM_SIZE (16*1024*1024) 43 #endif 44 45 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) 46 char fpe_type[8]; 47 48 static int __init fpe_setup(char *line) 49 { 50 memcpy(fpe_type, line, 8); 51 return 1; 52 } 53 54 __setup("fpe=", fpe_setup); 55 #endif 56 57 extern unsigned int mem_fclk_21285; 58 extern void paging_init(struct meminfo *, struct machine_desc *desc); 59 extern void convert_to_tag_list(struct tag *tags); 60 extern void squash_mem_tags(struct tag *tag); 61 extern void reboot_setup(char *str); 62 extern int root_mountflags; 63 extern void _stext, _text, _etext, __data_start, _edata, _end; 64 65 unsigned int processor_id; 66 unsigned int __machine_arch_type; 67 EXPORT_SYMBOL(__machine_arch_type); 68 69 unsigned int system_rev; 70 EXPORT_SYMBOL(system_rev); 71 72 unsigned int system_serial_low; 73 EXPORT_SYMBOL(system_serial_low); 74 75 unsigned int system_serial_high; 76 EXPORT_SYMBOL(system_serial_high); 77 78 unsigned int elf_hwcap; 79 EXPORT_SYMBOL(elf_hwcap); 80 81 82 #ifdef MULTI_CPU 83 struct processor processor; 84 #endif 85 #ifdef MULTI_TLB 86 struct cpu_tlb_fns cpu_tlb; 87 #endif 88 #ifdef MULTI_USER 89 struct cpu_user_fns cpu_user; 90 #endif 91 #ifdef MULTI_CACHE 92 struct cpu_cache_fns cpu_cache; 93 #endif 94 95 struct stack { 96 u32 irq[3]; 97 u32 abt[3]; 98 u32 und[3]; 99 } ____cacheline_aligned; 100 101 static struct stack stacks[NR_CPUS]; 102 103 char elf_platform[ELF_PLATFORM_SIZE]; 104 EXPORT_SYMBOL(elf_platform); 105 106 unsigned long phys_initrd_start __initdata = 0; 107 unsigned long phys_initrd_size __initdata = 0; 108 109 static struct meminfo meminfo __initdata = { 0, }; 110 static const char *cpu_name; 111 static const char *machine_name; 112 static char command_line[COMMAND_LINE_SIZE]; 113 114 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE; 115 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; 116 #define ENDIANNESS ((char)endian_test.l) 117 118 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); 119 120 /* 121 * Standard memory resources 122 */ 123 static struct resource mem_res[] = { 124 { "Video RAM", 0, 0, IORESOURCE_MEM }, 125 { "Kernel text", 0, 0, IORESOURCE_MEM }, 126 { "Kernel data", 0, 0, IORESOURCE_MEM } 127 }; 128 129 #define video_ram mem_res[0] 130 #define kernel_code mem_res[1] 131 #define kernel_data mem_res[2] 132 133 static struct resource io_res[] = { 134 { "reserved", 0x3bc, 0x3be, IORESOURCE_IO | IORESOURCE_BUSY }, 135 { "reserved", 0x378, 0x37f, IORESOURCE_IO | IORESOURCE_BUSY }, 136 { "reserved", 0x278, 0x27f, IORESOURCE_IO | IORESOURCE_BUSY } 137 }; 138 139 #define lp0 io_res[0] 140 #define lp1 io_res[1] 141 #define lp2 io_res[2] 142 143 static const char *cache_types[16] = { 144 "write-through", 145 "write-back", 146 "write-back", 147 "undefined 3", 148 "undefined 4", 149 "undefined 5", 150 "write-back", 151 "write-back", 152 "undefined 8", 153 "undefined 9", 154 "undefined 10", 155 "undefined 11", 156 "undefined 12", 157 "undefined 13", 158 "write-back", 159 "undefined 15", 160 }; 161 162 static const char *cache_clean[16] = { 163 "not required", 164 "read-block", 165 "cp15 c7 ops", 166 "undefined 3", 167 "undefined 4", 168 "undefined 5", 169 "cp15 c7 ops", 170 "cp15 c7 ops", 171 "undefined 8", 172 "undefined 9", 173 "undefined 10", 174 "undefined 11", 175 "undefined 12", 176 "undefined 13", 177 "cp15 c7 ops", 178 "undefined 15", 179 }; 180 181 static const char *cache_lockdown[16] = { 182 "not supported", 183 "not supported", 184 "not supported", 185 "undefined 3", 186 "undefined 4", 187 "undefined 5", 188 "format A", 189 "format B", 190 "undefined 8", 191 "undefined 9", 192 "undefined 10", 193 "undefined 11", 194 "undefined 12", 195 "undefined 13", 196 "format C", 197 "undefined 15", 198 }; 199 200 static const char *proc_arch[] = { 201 "undefined/unknown", 202 "3", 203 "4", 204 "4T", 205 "5", 206 "5T", 207 "5TE", 208 "5TEJ", 209 "6TEJ", 210 "?(10)", 211 "?(11)", 212 "?(12)", 213 "?(13)", 214 "?(14)", 215 "?(15)", 216 "?(16)", 217 "?(17)", 218 }; 219 220 #define CACHE_TYPE(x) (((x) >> 25) & 15) 221 #define CACHE_S(x) ((x) & (1 << 24)) 222 #define CACHE_DSIZE(x) (((x) >> 12) & 4095) /* only if S=1 */ 223 #define CACHE_ISIZE(x) ((x) & 4095) 224 225 #define CACHE_SIZE(y) (((y) >> 6) & 7) 226 #define CACHE_ASSOC(y) (((y) >> 3) & 7) 227 #define CACHE_M(y) ((y) & (1 << 2)) 228 #define CACHE_LINE(y) ((y) & 3) 229 230 static inline void dump_cache(const char *prefix, int cpu, unsigned int cache) 231 { 232 unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0); 233 234 printk("CPU%u: %s: %d bytes, associativity %d, %d byte lines, %d sets\n", 235 cpu, prefix, 236 mult << (8 + CACHE_SIZE(cache)), 237 (mult << CACHE_ASSOC(cache)) >> 1, 238 8 << CACHE_LINE(cache), 239 1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) - 240 CACHE_LINE(cache))); 241 } 242 243 static void __init dump_cpu_info(int cpu) 244 { 245 unsigned int info = read_cpuid(CPUID_CACHETYPE); 246 247 if (info != processor_id) { 248 printk("CPU%u: D %s %s cache\n", cpu, cache_is_vivt() ? "VIVT" : "VIPT", 249 cache_types[CACHE_TYPE(info)]); 250 if (CACHE_S(info)) { 251 dump_cache("I cache", cpu, CACHE_ISIZE(info)); 252 dump_cache("D cache", cpu, CACHE_DSIZE(info)); 253 } else { 254 dump_cache("cache", cpu, CACHE_ISIZE(info)); 255 } 256 } 257 } 258 259 int cpu_architecture(void) 260 { 261 int cpu_arch; 262 263 if ((processor_id & 0x0000f000) == 0) { 264 cpu_arch = CPU_ARCH_UNKNOWN; 265 } else if ((processor_id & 0x0000f000) == 0x00007000) { 266 cpu_arch = (processor_id & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; 267 } else { 268 cpu_arch = (processor_id >> 16) & 7; 269 if (cpu_arch) 270 cpu_arch += CPU_ARCH_ARMv3; 271 } 272 273 return cpu_arch; 274 } 275 276 /* 277 * These functions re-use the assembly code in head.S, which 278 * already provide the required functionality. 279 */ 280 extern struct proc_info_list *lookup_processor_type(void); 281 extern struct machine_desc *lookup_machine_type(unsigned int); 282 283 static void __init setup_processor(void) 284 { 285 struct proc_info_list *list; 286 287 /* 288 * locate processor in the list of supported processor 289 * types. The linker builds this table for us from the 290 * entries in arch/arm/mm/proc-*.S 291 */ 292 list = lookup_processor_type(); 293 if (!list) { 294 printk("CPU configuration botched (ID %08x), unable " 295 "to continue.\n", processor_id); 296 while (1); 297 } 298 299 cpu_name = list->cpu_name; 300 301 #ifdef MULTI_CPU 302 processor = *list->proc; 303 #endif 304 #ifdef MULTI_TLB 305 cpu_tlb = *list->tlb; 306 #endif 307 #ifdef MULTI_USER 308 cpu_user = *list->user; 309 #endif 310 #ifdef MULTI_CACHE 311 cpu_cache = *list->cache; 312 #endif 313 314 printk("CPU: %s [%08x] revision %d (ARMv%s)\n", 315 cpu_name, processor_id, (int)processor_id & 15, 316 proc_arch[cpu_architecture()]); 317 318 sprintf(system_utsname.machine, "%s%c", list->arch_name, ENDIANNESS); 319 sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS); 320 elf_hwcap = list->elf_hwcap; 321 322 cpu_proc_init(); 323 } 324 325 /* 326 * cpu_init - initialise one CPU. 327 * 328 * cpu_init dumps the cache information, initialises SMP specific 329 * information, and sets up the per-CPU stacks. 330 */ 331 void cpu_init(void) 332 { 333 unsigned int cpu = smp_processor_id(); 334 struct stack *stk = &stacks[cpu]; 335 336 if (cpu >= NR_CPUS) { 337 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu); 338 BUG(); 339 } 340 341 dump_cpu_info(cpu); 342 343 /* 344 * setup stacks for re-entrant exception handlers 345 */ 346 __asm__ ( 347 "msr cpsr_c, %1\n\t" 348 "add sp, %0, %2\n\t" 349 "msr cpsr_c, %3\n\t" 350 "add sp, %0, %4\n\t" 351 "msr cpsr_c, %5\n\t" 352 "add sp, %0, %6\n\t" 353 "msr cpsr_c, %7" 354 : 355 : "r" (stk), 356 "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), 357 "I" (offsetof(struct stack, irq[0])), 358 "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE), 359 "I" (offsetof(struct stack, abt[0])), 360 "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE), 361 "I" (offsetof(struct stack, und[0])), 362 "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)); 363 } 364 365 static struct machine_desc * __init setup_machine(unsigned int nr) 366 { 367 struct machine_desc *list; 368 369 /* 370 * locate machine in the list of supported machines. 371 */ 372 list = lookup_machine_type(nr); 373 if (!list) { 374 printk("Machine configuration botched (nr %d), unable " 375 "to continue.\n", nr); 376 while (1); 377 } 378 379 printk("Machine: %s\n", list->name); 380 381 return list; 382 } 383 384 static void __init early_initrd(char **p) 385 { 386 unsigned long start, size; 387 388 start = memparse(*p, p); 389 if (**p == ',') { 390 size = memparse((*p) + 1, p); 391 392 phys_initrd_start = start; 393 phys_initrd_size = size; 394 } 395 } 396 __early_param("initrd=", early_initrd); 397 398 static void __init add_memory(unsigned long start, unsigned long size) 399 { 400 /* 401 * Ensure that start/size are aligned to a page boundary. 402 * Size is appropriately rounded down, start is rounded up. 403 */ 404 size -= start & ~PAGE_MASK; 405 406 meminfo.bank[meminfo.nr_banks].start = PAGE_ALIGN(start); 407 meminfo.bank[meminfo.nr_banks].size = size & PAGE_MASK; 408 meminfo.bank[meminfo.nr_banks].node = PHYS_TO_NID(start); 409 meminfo.nr_banks += 1; 410 } 411 412 /* 413 * Pick out the memory size. We look for mem=size@start, 414 * where start and size are "size[KkMm]" 415 */ 416 static void __init early_mem(char **p) 417 { 418 static int usermem __initdata = 0; 419 unsigned long size, start; 420 421 /* 422 * If the user specifies memory size, we 423 * blow away any automatically generated 424 * size. 425 */ 426 if (usermem == 0) { 427 usermem = 1; 428 meminfo.nr_banks = 0; 429 } 430 431 start = PHYS_OFFSET; 432 size = memparse(*p, p); 433 if (**p == '@') 434 start = memparse(*p + 1, p); 435 436 add_memory(start, size); 437 } 438 __early_param("mem=", early_mem); 439 440 /* 441 * Initial parsing of the command line. 442 */ 443 static void __init parse_cmdline(char **cmdline_p, char *from) 444 { 445 char c = ' ', *to = command_line; 446 int len = 0; 447 448 for (;;) { 449 if (c == ' ') { 450 extern struct early_params __early_begin, __early_end; 451 struct early_params *p; 452 453 for (p = &__early_begin; p < &__early_end; p++) { 454 int len = strlen(p->arg); 455 456 if (memcmp(from, p->arg, len) == 0) { 457 if (to != command_line) 458 to -= 1; 459 from += len; 460 p->fn(&from); 461 462 while (*from != ' ' && *from != '\0') 463 from++; 464 break; 465 } 466 } 467 } 468 c = *from++; 469 if (!c) 470 break; 471 if (COMMAND_LINE_SIZE <= ++len) 472 break; 473 *to++ = c; 474 } 475 *to = '\0'; 476 *cmdline_p = command_line; 477 } 478 479 static void __init 480 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz) 481 { 482 #ifdef CONFIG_BLK_DEV_RAM 483 extern int rd_size, rd_image_start, rd_prompt, rd_doload; 484 485 rd_image_start = image_start; 486 rd_prompt = prompt; 487 rd_doload = doload; 488 489 if (rd_sz) 490 rd_size = rd_sz; 491 #endif 492 } 493 494 static void __init 495 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc) 496 { 497 struct resource *res; 498 int i; 499 500 kernel_code.start = virt_to_phys(&_text); 501 kernel_code.end = virt_to_phys(&_etext - 1); 502 kernel_data.start = virt_to_phys(&__data_start); 503 kernel_data.end = virt_to_phys(&_end - 1); 504 505 for (i = 0; i < mi->nr_banks; i++) { 506 unsigned long virt_start, virt_end; 507 508 if (mi->bank[i].size == 0) 509 continue; 510 511 virt_start = __phys_to_virt(mi->bank[i].start); 512 virt_end = virt_start + mi->bank[i].size - 1; 513 514 res = alloc_bootmem_low(sizeof(*res)); 515 res->name = "System RAM"; 516 res->start = __virt_to_phys(virt_start); 517 res->end = __virt_to_phys(virt_end); 518 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 519 520 request_resource(&iomem_resource, res); 521 522 if (kernel_code.start >= res->start && 523 kernel_code.end <= res->end) 524 request_resource(res, &kernel_code); 525 if (kernel_data.start >= res->start && 526 kernel_data.end <= res->end) 527 request_resource(res, &kernel_data); 528 } 529 530 if (mdesc->video_start) { 531 video_ram.start = mdesc->video_start; 532 video_ram.end = mdesc->video_end; 533 request_resource(&iomem_resource, &video_ram); 534 } 535 536 /* 537 * Some machines don't have the possibility of ever 538 * possessing lp0, lp1 or lp2 539 */ 540 if (mdesc->reserve_lp0) 541 request_resource(&ioport_resource, &lp0); 542 if (mdesc->reserve_lp1) 543 request_resource(&ioport_resource, &lp1); 544 if (mdesc->reserve_lp2) 545 request_resource(&ioport_resource, &lp2); 546 } 547 548 /* 549 * Tag parsing. 550 * 551 * This is the new way of passing data to the kernel at boot time. Rather 552 * than passing a fixed inflexible structure to the kernel, we pass a list 553 * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE 554 * tag for the list to be recognised (to distinguish the tagged list from 555 * a param_struct). The list is terminated with a zero-length tag (this tag 556 * is not parsed in any way). 557 */ 558 static int __init parse_tag_core(const struct tag *tag) 559 { 560 if (tag->hdr.size > 2) { 561 if ((tag->u.core.flags & 1) == 0) 562 root_mountflags &= ~MS_RDONLY; 563 ROOT_DEV = old_decode_dev(tag->u.core.rootdev); 564 } 565 return 0; 566 } 567 568 __tagtable(ATAG_CORE, parse_tag_core); 569 570 static int __init parse_tag_mem32(const struct tag *tag) 571 { 572 if (meminfo.nr_banks >= NR_BANKS) { 573 printk(KERN_WARNING 574 "Ignoring memory bank 0x%08x size %dKB\n", 575 tag->u.mem.start, tag->u.mem.size / 1024); 576 return -EINVAL; 577 } 578 add_memory(tag->u.mem.start, tag->u.mem.size); 579 return 0; 580 } 581 582 __tagtable(ATAG_MEM, parse_tag_mem32); 583 584 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) 585 struct screen_info screen_info = { 586 .orig_video_lines = 30, 587 .orig_video_cols = 80, 588 .orig_video_mode = 0, 589 .orig_video_ega_bx = 0, 590 .orig_video_isVGA = 1, 591 .orig_video_points = 8 592 }; 593 594 static int __init parse_tag_videotext(const struct tag *tag) 595 { 596 screen_info.orig_x = tag->u.videotext.x; 597 screen_info.orig_y = tag->u.videotext.y; 598 screen_info.orig_video_page = tag->u.videotext.video_page; 599 screen_info.orig_video_mode = tag->u.videotext.video_mode; 600 screen_info.orig_video_cols = tag->u.videotext.video_cols; 601 screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx; 602 screen_info.orig_video_lines = tag->u.videotext.video_lines; 603 screen_info.orig_video_isVGA = tag->u.videotext.video_isvga; 604 screen_info.orig_video_points = tag->u.videotext.video_points; 605 return 0; 606 } 607 608 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext); 609 #endif 610 611 static int __init parse_tag_ramdisk(const struct tag *tag) 612 { 613 setup_ramdisk((tag->u.ramdisk.flags & 1) == 0, 614 (tag->u.ramdisk.flags & 2) == 0, 615 tag->u.ramdisk.start, tag->u.ramdisk.size); 616 return 0; 617 } 618 619 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk); 620 621 static int __init parse_tag_initrd(const struct tag *tag) 622 { 623 printk(KERN_WARNING "ATAG_INITRD is deprecated; " 624 "please update your bootloader.\n"); 625 phys_initrd_start = __virt_to_phys(tag->u.initrd.start); 626 phys_initrd_size = tag->u.initrd.size; 627 return 0; 628 } 629 630 __tagtable(ATAG_INITRD, parse_tag_initrd); 631 632 static int __init parse_tag_initrd2(const struct tag *tag) 633 { 634 phys_initrd_start = tag->u.initrd.start; 635 phys_initrd_size = tag->u.initrd.size; 636 return 0; 637 } 638 639 __tagtable(ATAG_INITRD2, parse_tag_initrd2); 640 641 static int __init parse_tag_serialnr(const struct tag *tag) 642 { 643 system_serial_low = tag->u.serialnr.low; 644 system_serial_high = tag->u.serialnr.high; 645 return 0; 646 } 647 648 __tagtable(ATAG_SERIAL, parse_tag_serialnr); 649 650 static int __init parse_tag_revision(const struct tag *tag) 651 { 652 system_rev = tag->u.revision.rev; 653 return 0; 654 } 655 656 __tagtable(ATAG_REVISION, parse_tag_revision); 657 658 static int __init parse_tag_cmdline(const struct tag *tag) 659 { 660 strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE); 661 return 0; 662 } 663 664 __tagtable(ATAG_CMDLINE, parse_tag_cmdline); 665 666 /* 667 * Scan the tag table for this tag, and call its parse function. 668 * The tag table is built by the linker from all the __tagtable 669 * declarations. 670 */ 671 static int __init parse_tag(const struct tag *tag) 672 { 673 extern struct tagtable __tagtable_begin, __tagtable_end; 674 struct tagtable *t; 675 676 for (t = &__tagtable_begin; t < &__tagtable_end; t++) 677 if (tag->hdr.tag == t->tag) { 678 t->parse(tag); 679 break; 680 } 681 682 return t < &__tagtable_end; 683 } 684 685 /* 686 * Parse all tags in the list, checking both the global and architecture 687 * specific tag tables. 688 */ 689 static void __init parse_tags(const struct tag *t) 690 { 691 for (; t->hdr.size; t = tag_next(t)) 692 if (!parse_tag(t)) 693 printk(KERN_WARNING 694 "Ignoring unrecognised tag 0x%08x\n", 695 t->hdr.tag); 696 } 697 698 /* 699 * This holds our defaults. 700 */ 701 static struct init_tags { 702 struct tag_header hdr1; 703 struct tag_core core; 704 struct tag_header hdr2; 705 struct tag_mem32 mem; 706 struct tag_header hdr3; 707 } init_tags __initdata = { 708 { tag_size(tag_core), ATAG_CORE }, 709 { 1, PAGE_SIZE, 0xff }, 710 { tag_size(tag_mem32), ATAG_MEM }, 711 { MEM_SIZE, PHYS_OFFSET }, 712 { 0, ATAG_NONE } 713 }; 714 715 static void (*init_machine)(void) __initdata; 716 717 static int __init customize_machine(void) 718 { 719 /* customizes platform devices, or adds new ones */ 720 if (init_machine) 721 init_machine(); 722 return 0; 723 } 724 arch_initcall(customize_machine); 725 726 void __init setup_arch(char **cmdline_p) 727 { 728 struct tag *tags = (struct tag *)&init_tags; 729 struct machine_desc *mdesc; 730 char *from = default_command_line; 731 732 setup_processor(); 733 mdesc = setup_machine(machine_arch_type); 734 machine_name = mdesc->name; 735 736 if (mdesc->soft_reboot) 737 reboot_setup("s"); 738 739 if (mdesc->param_offset) 740 tags = phys_to_virt(mdesc->param_offset); 741 742 /* 743 * If we have the old style parameters, convert them to 744 * a tag list. 745 */ 746 if (tags->hdr.tag != ATAG_CORE) 747 convert_to_tag_list(tags); 748 if (tags->hdr.tag != ATAG_CORE) 749 tags = (struct tag *)&init_tags; 750 751 if (mdesc->fixup) 752 mdesc->fixup(mdesc, tags, &from, &meminfo); 753 754 if (tags->hdr.tag == ATAG_CORE) { 755 if (meminfo.nr_banks != 0) 756 squash_mem_tags(tags); 757 parse_tags(tags); 758 } 759 760 init_mm.start_code = (unsigned long) &_text; 761 init_mm.end_code = (unsigned long) &_etext; 762 init_mm.end_data = (unsigned long) &_edata; 763 init_mm.brk = (unsigned long) &_end; 764 765 memcpy(saved_command_line, from, COMMAND_LINE_SIZE); 766 saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; 767 parse_cmdline(cmdline_p, from); 768 paging_init(&meminfo, mdesc); 769 request_standard_resources(&meminfo, mdesc); 770 771 cpu_init(); 772 773 /* 774 * Set up various architecture-specific pointers 775 */ 776 init_arch_irq = mdesc->init_irq; 777 system_timer = mdesc->timer; 778 init_machine = mdesc->init_machine; 779 780 #ifdef CONFIG_VT 781 #if defined(CONFIG_VGA_CONSOLE) 782 conswitchp = &vga_con; 783 #elif defined(CONFIG_DUMMY_CONSOLE) 784 conswitchp = &dummy_con; 785 #endif 786 #endif 787 } 788 789 790 static int __init topology_init(void) 791 { 792 int cpu; 793 794 for_each_cpu(cpu) 795 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu, NULL); 796 797 return 0; 798 } 799 800 subsys_initcall(topology_init); 801 802 static const char *hwcap_str[] = { 803 "swp", 804 "half", 805 "thumb", 806 "26bit", 807 "fastmult", 808 "fpa", 809 "vfp", 810 "edsp", 811 "java", 812 NULL 813 }; 814 815 static void 816 c_show_cache(struct seq_file *m, const char *type, unsigned int cache) 817 { 818 unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0); 819 820 seq_printf(m, "%s size\t\t: %d\n" 821 "%s assoc\t\t: %d\n" 822 "%s line length\t: %d\n" 823 "%s sets\t\t: %d\n", 824 type, mult << (8 + CACHE_SIZE(cache)), 825 type, (mult << CACHE_ASSOC(cache)) >> 1, 826 type, 8 << CACHE_LINE(cache), 827 type, 1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) - 828 CACHE_LINE(cache))); 829 } 830 831 static int c_show(struct seq_file *m, void *v) 832 { 833 int i; 834 835 seq_printf(m, "Processor\t: %s rev %d (%s)\n", 836 cpu_name, (int)processor_id & 15, elf_platform); 837 838 #if defined(CONFIG_SMP) 839 for_each_online_cpu(i) { 840 seq_printf(m, "Processor\t: %d\n", i); 841 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n", 842 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), 843 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); 844 } 845 #else /* CONFIG_SMP */ 846 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 847 loops_per_jiffy / (500000/HZ), 848 (loops_per_jiffy / (5000/HZ)) % 100); 849 #endif 850 851 /* dump out the processor features */ 852 seq_puts(m, "Features\t: "); 853 854 for (i = 0; hwcap_str[i]; i++) 855 if (elf_hwcap & (1 << i)) 856 seq_printf(m, "%s ", hwcap_str[i]); 857 858 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", processor_id >> 24); 859 seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]); 860 861 if ((processor_id & 0x0000f000) == 0x00000000) { 862 /* pre-ARM7 */ 863 seq_printf(m, "CPU part\t\t: %07x\n", processor_id >> 4); 864 } else { 865 if ((processor_id & 0x0000f000) == 0x00007000) { 866 /* ARM7 */ 867 seq_printf(m, "CPU variant\t: 0x%02x\n", 868 (processor_id >> 16) & 127); 869 } else { 870 /* post-ARM7 */ 871 seq_printf(m, "CPU variant\t: 0x%x\n", 872 (processor_id >> 20) & 15); 873 } 874 seq_printf(m, "CPU part\t: 0x%03x\n", 875 (processor_id >> 4) & 0xfff); 876 } 877 seq_printf(m, "CPU revision\t: %d\n", processor_id & 15); 878 879 { 880 unsigned int cache_info = read_cpuid(CPUID_CACHETYPE); 881 if (cache_info != processor_id) { 882 seq_printf(m, "Cache type\t: %s\n" 883 "Cache clean\t: %s\n" 884 "Cache lockdown\t: %s\n" 885 "Cache format\t: %s\n", 886 cache_types[CACHE_TYPE(cache_info)], 887 cache_clean[CACHE_TYPE(cache_info)], 888 cache_lockdown[CACHE_TYPE(cache_info)], 889 CACHE_S(cache_info) ? "Harvard" : "Unified"); 890 891 if (CACHE_S(cache_info)) { 892 c_show_cache(m, "I", CACHE_ISIZE(cache_info)); 893 c_show_cache(m, "D", CACHE_DSIZE(cache_info)); 894 } else { 895 c_show_cache(m, "Cache", CACHE_ISIZE(cache_info)); 896 } 897 } 898 } 899 900 seq_puts(m, "\n"); 901 902 seq_printf(m, "Hardware\t: %s\n", machine_name); 903 seq_printf(m, "Revision\t: %04x\n", system_rev); 904 seq_printf(m, "Serial\t\t: %08x%08x\n", 905 system_serial_high, system_serial_low); 906 907 return 0; 908 } 909 910 static void *c_start(struct seq_file *m, loff_t *pos) 911 { 912 return *pos < 1 ? (void *)1 : NULL; 913 } 914 915 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 916 { 917 ++*pos; 918 return NULL; 919 } 920 921 static void c_stop(struct seq_file *m, void *v) 922 { 923 } 924 925 struct seq_operations cpuinfo_op = { 926 .start = c_start, 927 .next = c_next, 928 .stop = c_stop, 929 .show = c_show 930 }; 931