xref: /linux/arch/arm/kernel/ptrace.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 
27 #include <asm/pgtable.h>
28 #include <asm/system.h>
29 #include <asm/traps.h>
30 
31 #define REG_PC	15
32 #define REG_PSR	16
33 /*
34  * does not yet catch signals sent when the child dies.
35  * in exit.c or in signal.c.
36  */
37 
38 #if 0
39 /*
40  * Breakpoint SWI instruction: SWI &9F0001
41  */
42 #define BREAKINST_ARM	0xef9f0001
43 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
44 #else
45 /*
46  * New breakpoints - use an undefined instruction.  The ARM architecture
47  * reference manual guarantees that the following instruction space
48  * will produce an undefined instruction exception on all CPUs:
49  *
50  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
51  *  Thumb: 1101 1110 xxxx xxxx
52  */
53 #define BREAKINST_ARM	0xe7f001f0
54 #define BREAKINST_THUMB	0xde01
55 #endif
56 
57 struct pt_regs_offset {
58 	const char *name;
59 	int offset;
60 };
61 
62 #define REG_OFFSET_NAME(r) \
63 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
64 #define REG_OFFSET_END {.name = NULL, .offset = 0}
65 
66 static const struct pt_regs_offset regoffset_table[] = {
67 	REG_OFFSET_NAME(r0),
68 	REG_OFFSET_NAME(r1),
69 	REG_OFFSET_NAME(r2),
70 	REG_OFFSET_NAME(r3),
71 	REG_OFFSET_NAME(r4),
72 	REG_OFFSET_NAME(r5),
73 	REG_OFFSET_NAME(r6),
74 	REG_OFFSET_NAME(r7),
75 	REG_OFFSET_NAME(r8),
76 	REG_OFFSET_NAME(r9),
77 	REG_OFFSET_NAME(r10),
78 	REG_OFFSET_NAME(fp),
79 	REG_OFFSET_NAME(ip),
80 	REG_OFFSET_NAME(sp),
81 	REG_OFFSET_NAME(lr),
82 	REG_OFFSET_NAME(pc),
83 	REG_OFFSET_NAME(cpsr),
84 	REG_OFFSET_NAME(ORIG_r0),
85 	REG_OFFSET_END,
86 };
87 
88 /**
89  * regs_query_register_offset() - query register offset from its name
90  * @name:	the name of a register
91  *
92  * regs_query_register_offset() returns the offset of a register in struct
93  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
94  */
95 int regs_query_register_offset(const char *name)
96 {
97 	const struct pt_regs_offset *roff;
98 	for (roff = regoffset_table; roff->name != NULL; roff++)
99 		if (!strcmp(roff->name, name))
100 			return roff->offset;
101 	return -EINVAL;
102 }
103 
104 /**
105  * regs_query_register_name() - query register name from its offset
106  * @offset:	the offset of a register in struct pt_regs.
107  *
108  * regs_query_register_name() returns the name of a register from its
109  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
110  */
111 const char *regs_query_register_name(unsigned int offset)
112 {
113 	const struct pt_regs_offset *roff;
114 	for (roff = regoffset_table; roff->name != NULL; roff++)
115 		if (roff->offset == offset)
116 			return roff->name;
117 	return NULL;
118 }
119 
120 /**
121  * regs_within_kernel_stack() - check the address in the stack
122  * @regs:      pt_regs which contains kernel stack pointer.
123  * @addr:      address which is checked.
124  *
125  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
126  * If @addr is within the kernel stack, it returns true. If not, returns false.
127  */
128 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
129 {
130 	return ((addr & ~(THREAD_SIZE - 1))  ==
131 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
132 }
133 
134 /**
135  * regs_get_kernel_stack_nth() - get Nth entry of the stack
136  * @regs:	pt_regs which contains kernel stack pointer.
137  * @n:		stack entry number.
138  *
139  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
140  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
141  * this returns 0.
142  */
143 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
144 {
145 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
146 	addr += n;
147 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
148 		return *addr;
149 	else
150 		return 0;
151 }
152 
153 /*
154  * this routine will get a word off of the processes privileged stack.
155  * the offset is how far from the base addr as stored in the THREAD.
156  * this routine assumes that all the privileged stacks are in our
157  * data space.
158  */
159 static inline long get_user_reg(struct task_struct *task, int offset)
160 {
161 	return task_pt_regs(task)->uregs[offset];
162 }
163 
164 /*
165  * this routine will put a word on the processes privileged stack.
166  * the offset is how far from the base addr as stored in the THREAD.
167  * this routine assumes that all the privileged stacks are in our
168  * data space.
169  */
170 static inline int
171 put_user_reg(struct task_struct *task, int offset, long data)
172 {
173 	struct pt_regs newregs, *regs = task_pt_regs(task);
174 	int ret = -EINVAL;
175 
176 	newregs = *regs;
177 	newregs.uregs[offset] = data;
178 
179 	if (valid_user_regs(&newregs)) {
180 		regs->uregs[offset] = data;
181 		ret = 0;
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * Called by kernel/ptrace.c when detaching..
189  */
190 void ptrace_disable(struct task_struct *child)
191 {
192 	/* Nothing to do. */
193 }
194 
195 /*
196  * Handle hitting a breakpoint.
197  */
198 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
199 {
200 	siginfo_t info;
201 
202 	info.si_signo = SIGTRAP;
203 	info.si_errno = 0;
204 	info.si_code  = TRAP_BRKPT;
205 	info.si_addr  = (void __user *)instruction_pointer(regs);
206 
207 	force_sig_info(SIGTRAP, &info, tsk);
208 }
209 
210 static int break_trap(struct pt_regs *regs, unsigned int instr)
211 {
212 	ptrace_break(current, regs);
213 	return 0;
214 }
215 
216 static struct undef_hook arm_break_hook = {
217 	.instr_mask	= 0x0fffffff,
218 	.instr_val	= 0x07f001f0,
219 	.cpsr_mask	= PSR_T_BIT,
220 	.cpsr_val	= 0,
221 	.fn		= break_trap,
222 };
223 
224 static struct undef_hook thumb_break_hook = {
225 	.instr_mask	= 0xffff,
226 	.instr_val	= 0xde01,
227 	.cpsr_mask	= PSR_T_BIT,
228 	.cpsr_val	= PSR_T_BIT,
229 	.fn		= break_trap,
230 };
231 
232 static struct undef_hook thumb2_break_hook = {
233 	.instr_mask	= 0xffffffff,
234 	.instr_val	= 0xf7f0a000,
235 	.cpsr_mask	= PSR_T_BIT,
236 	.cpsr_val	= PSR_T_BIT,
237 	.fn		= break_trap,
238 };
239 
240 static int __init ptrace_break_init(void)
241 {
242 	register_undef_hook(&arm_break_hook);
243 	register_undef_hook(&thumb_break_hook);
244 	register_undef_hook(&thumb2_break_hook);
245 	return 0;
246 }
247 
248 core_initcall(ptrace_break_init);
249 
250 /*
251  * Read the word at offset "off" into the "struct user".  We
252  * actually access the pt_regs stored on the kernel stack.
253  */
254 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
255 			    unsigned long __user *ret)
256 {
257 	unsigned long tmp;
258 
259 	if (off & 3 || off >= sizeof(struct user))
260 		return -EIO;
261 
262 	tmp = 0;
263 	if (off == PT_TEXT_ADDR)
264 		tmp = tsk->mm->start_code;
265 	else if (off == PT_DATA_ADDR)
266 		tmp = tsk->mm->start_data;
267 	else if (off == PT_TEXT_END_ADDR)
268 		tmp = tsk->mm->end_code;
269 	else if (off < sizeof(struct pt_regs))
270 		tmp = get_user_reg(tsk, off >> 2);
271 
272 	return put_user(tmp, ret);
273 }
274 
275 /*
276  * Write the word at offset "off" into "struct user".  We
277  * actually access the pt_regs stored on the kernel stack.
278  */
279 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
280 			     unsigned long val)
281 {
282 	if (off & 3 || off >= sizeof(struct user))
283 		return -EIO;
284 
285 	if (off >= sizeof(struct pt_regs))
286 		return 0;
287 
288 	return put_user_reg(tsk, off >> 2, val);
289 }
290 
291 #ifdef CONFIG_IWMMXT
292 
293 /*
294  * Get the child iWMMXt state.
295  */
296 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
297 {
298 	struct thread_info *thread = task_thread_info(tsk);
299 
300 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
301 		return -ENODATA;
302 	iwmmxt_task_disable(thread);  /* force it to ram */
303 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
304 		? -EFAULT : 0;
305 }
306 
307 /*
308  * Set the child iWMMXt state.
309  */
310 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
311 {
312 	struct thread_info *thread = task_thread_info(tsk);
313 
314 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
315 		return -EACCES;
316 	iwmmxt_task_release(thread);  /* force a reload */
317 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
318 		? -EFAULT : 0;
319 }
320 
321 #endif
322 
323 #ifdef CONFIG_CRUNCH
324 /*
325  * Get the child Crunch state.
326  */
327 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
328 {
329 	struct thread_info *thread = task_thread_info(tsk);
330 
331 	crunch_task_disable(thread);  /* force it to ram */
332 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
333 		? -EFAULT : 0;
334 }
335 
336 /*
337  * Set the child Crunch state.
338  */
339 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
340 {
341 	struct thread_info *thread = task_thread_info(tsk);
342 
343 	crunch_task_release(thread);  /* force a reload */
344 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
345 		? -EFAULT : 0;
346 }
347 #endif
348 
349 #ifdef CONFIG_HAVE_HW_BREAKPOINT
350 /*
351  * Convert a virtual register number into an index for a thread_info
352  * breakpoint array. Breakpoints are identified using positive numbers
353  * whilst watchpoints are negative. The registers are laid out as pairs
354  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
355  * Register 0 is reserved for describing resource information.
356  */
357 static int ptrace_hbp_num_to_idx(long num)
358 {
359 	if (num < 0)
360 		num = (ARM_MAX_BRP << 1) - num;
361 	return (num - 1) >> 1;
362 }
363 
364 /*
365  * Returns the virtual register number for the address of the
366  * breakpoint at index idx.
367  */
368 static long ptrace_hbp_idx_to_num(int idx)
369 {
370 	long mid = ARM_MAX_BRP << 1;
371 	long num = (idx << 1) + 1;
372 	return num > mid ? mid - num : num;
373 }
374 
375 /*
376  * Handle hitting a HW-breakpoint.
377  */
378 static void ptrace_hbptriggered(struct perf_event *bp,
379 				     struct perf_sample_data *data,
380 				     struct pt_regs *regs)
381 {
382 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
383 	long num;
384 	int i;
385 	siginfo_t info;
386 
387 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
388 		if (current->thread.debug.hbp[i] == bp)
389 			break;
390 
391 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
392 
393 	info.si_signo	= SIGTRAP;
394 	info.si_errno	= (int)num;
395 	info.si_code	= TRAP_HWBKPT;
396 	info.si_addr	= (void __user *)(bkpt->trigger);
397 
398 	force_sig_info(SIGTRAP, &info, current);
399 }
400 
401 /*
402  * Set ptrace breakpoint pointers to zero for this task.
403  * This is required in order to prevent child processes from unregistering
404  * breakpoints held by their parent.
405  */
406 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
407 {
408 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
409 }
410 
411 /*
412  * Unregister breakpoints from this task and reset the pointers in
413  * the thread_struct.
414  */
415 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
416 {
417 	int i;
418 	struct thread_struct *t = &tsk->thread;
419 
420 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
421 		if (t->debug.hbp[i]) {
422 			unregister_hw_breakpoint(t->debug.hbp[i]);
423 			t->debug.hbp[i] = NULL;
424 		}
425 	}
426 }
427 
428 static u32 ptrace_get_hbp_resource_info(void)
429 {
430 	u8 num_brps, num_wrps, debug_arch, wp_len;
431 	u32 reg = 0;
432 
433 	num_brps	= hw_breakpoint_slots(TYPE_INST);
434 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
435 	debug_arch	= arch_get_debug_arch();
436 	wp_len		= arch_get_max_wp_len();
437 
438 	reg		|= debug_arch;
439 	reg		<<= 8;
440 	reg		|= wp_len;
441 	reg		<<= 8;
442 	reg		|= num_wrps;
443 	reg		<<= 8;
444 	reg		|= num_brps;
445 
446 	return reg;
447 }
448 
449 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
450 {
451 	struct perf_event_attr attr;
452 
453 	ptrace_breakpoint_init(&attr);
454 
455 	/* Initialise fields to sane defaults. */
456 	attr.bp_addr	= 0;
457 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
458 	attr.bp_type	= type;
459 	attr.disabled	= 1;
460 
461 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
462 					   tsk);
463 }
464 
465 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
466 			     unsigned long  __user *data)
467 {
468 	u32 reg;
469 	int idx, ret = 0;
470 	struct perf_event *bp;
471 	struct arch_hw_breakpoint_ctrl arch_ctrl;
472 
473 	if (num == 0) {
474 		reg = ptrace_get_hbp_resource_info();
475 	} else {
476 		idx = ptrace_hbp_num_to_idx(num);
477 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
478 			ret = -EINVAL;
479 			goto out;
480 		}
481 
482 		bp = tsk->thread.debug.hbp[idx];
483 		if (!bp) {
484 			reg = 0;
485 			goto put;
486 		}
487 
488 		arch_ctrl = counter_arch_bp(bp)->ctrl;
489 
490 		/*
491 		 * Fix up the len because we may have adjusted it
492 		 * to compensate for an unaligned address.
493 		 */
494 		while (!(arch_ctrl.len & 0x1))
495 			arch_ctrl.len >>= 1;
496 
497 		if (num & 0x1)
498 			reg = bp->attr.bp_addr;
499 		else
500 			reg = encode_ctrl_reg(arch_ctrl);
501 	}
502 
503 put:
504 	if (put_user(reg, data))
505 		ret = -EFAULT;
506 
507 out:
508 	return ret;
509 }
510 
511 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
512 			     unsigned long __user *data)
513 {
514 	int idx, gen_len, gen_type, implied_type, ret = 0;
515 	u32 user_val;
516 	struct perf_event *bp;
517 	struct arch_hw_breakpoint_ctrl ctrl;
518 	struct perf_event_attr attr;
519 
520 	if (num == 0)
521 		goto out;
522 	else if (num < 0)
523 		implied_type = HW_BREAKPOINT_RW;
524 	else
525 		implied_type = HW_BREAKPOINT_X;
526 
527 	idx = ptrace_hbp_num_to_idx(num);
528 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
529 		ret = -EINVAL;
530 		goto out;
531 	}
532 
533 	if (get_user(user_val, data)) {
534 		ret = -EFAULT;
535 		goto out;
536 	}
537 
538 	bp = tsk->thread.debug.hbp[idx];
539 	if (!bp) {
540 		bp = ptrace_hbp_create(tsk, implied_type);
541 		if (IS_ERR(bp)) {
542 			ret = PTR_ERR(bp);
543 			goto out;
544 		}
545 		tsk->thread.debug.hbp[idx] = bp;
546 	}
547 
548 	attr = bp->attr;
549 
550 	if (num & 0x1) {
551 		/* Address */
552 		attr.bp_addr	= user_val;
553 	} else {
554 		/* Control */
555 		decode_ctrl_reg(user_val, &ctrl);
556 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
557 		if (ret)
558 			goto out;
559 
560 		if ((gen_type & implied_type) != gen_type) {
561 			ret = -EINVAL;
562 			goto out;
563 		}
564 
565 		attr.bp_len	= gen_len;
566 		attr.bp_type	= gen_type;
567 		attr.disabled	= !ctrl.enabled;
568 	}
569 
570 	ret = modify_user_hw_breakpoint(bp, &attr);
571 out:
572 	return ret;
573 }
574 #endif
575 
576 /* regset get/set implementations */
577 
578 static int gpr_get(struct task_struct *target,
579 		   const struct user_regset *regset,
580 		   unsigned int pos, unsigned int count,
581 		   void *kbuf, void __user *ubuf)
582 {
583 	struct pt_regs *regs = task_pt_regs(target);
584 
585 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
586 				   regs,
587 				   0, sizeof(*regs));
588 }
589 
590 static int gpr_set(struct task_struct *target,
591 		   const struct user_regset *regset,
592 		   unsigned int pos, unsigned int count,
593 		   const void *kbuf, const void __user *ubuf)
594 {
595 	int ret;
596 	struct pt_regs newregs;
597 
598 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
599 				 &newregs,
600 				 0, sizeof(newregs));
601 	if (ret)
602 		return ret;
603 
604 	if (!valid_user_regs(&newregs))
605 		return -EINVAL;
606 
607 	*task_pt_regs(target) = newregs;
608 	return 0;
609 }
610 
611 static int fpa_get(struct task_struct *target,
612 		   const struct user_regset *regset,
613 		   unsigned int pos, unsigned int count,
614 		   void *kbuf, void __user *ubuf)
615 {
616 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
617 				   &task_thread_info(target)->fpstate,
618 				   0, sizeof(struct user_fp));
619 }
620 
621 static int fpa_set(struct task_struct *target,
622 		   const struct user_regset *regset,
623 		   unsigned int pos, unsigned int count,
624 		   const void *kbuf, const void __user *ubuf)
625 {
626 	struct thread_info *thread = task_thread_info(target);
627 
628 	thread->used_cp[1] = thread->used_cp[2] = 1;
629 
630 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
631 		&thread->fpstate,
632 		0, sizeof(struct user_fp));
633 }
634 
635 #ifdef CONFIG_VFP
636 /*
637  * VFP register get/set implementations.
638  *
639  * With respect to the kernel, struct user_fp is divided into three chunks:
640  * 16 or 32 real VFP registers (d0-d15 or d0-31)
641  *	These are transferred to/from the real registers in the task's
642  *	vfp_hard_struct.  The number of registers depends on the kernel
643  *	configuration.
644  *
645  * 16 or 0 fake VFP registers (d16-d31 or empty)
646  *	i.e., the user_vfp structure has space for 32 registers even if
647  *	the kernel doesn't have them all.
648  *
649  *	vfp_get() reads this chunk as zero where applicable
650  *	vfp_set() ignores this chunk
651  *
652  * 1 word for the FPSCR
653  *
654  * The bounds-checking logic built into user_regset_copyout and friends
655  * means that we can make a simple sequence of calls to map the relevant data
656  * to/from the specified slice of the user regset structure.
657  */
658 static int vfp_get(struct task_struct *target,
659 		   const struct user_regset *regset,
660 		   unsigned int pos, unsigned int count,
661 		   void *kbuf, void __user *ubuf)
662 {
663 	int ret;
664 	struct thread_info *thread = task_thread_info(target);
665 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
666 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
667 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
668 
669 	vfp_sync_hwstate(thread);
670 
671 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
672 				  &vfp->fpregs,
673 				  user_fpregs_offset,
674 				  user_fpregs_offset + sizeof(vfp->fpregs));
675 	if (ret)
676 		return ret;
677 
678 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
679 				       user_fpregs_offset + sizeof(vfp->fpregs),
680 				       user_fpscr_offset);
681 	if (ret)
682 		return ret;
683 
684 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
685 				   &vfp->fpscr,
686 				   user_fpscr_offset,
687 				   user_fpscr_offset + sizeof(vfp->fpscr));
688 }
689 
690 /*
691  * For vfp_set() a read-modify-write is done on the VFP registers,
692  * in order to avoid writing back a half-modified set of registers on
693  * failure.
694  */
695 static int vfp_set(struct task_struct *target,
696 			  const struct user_regset *regset,
697 			  unsigned int pos, unsigned int count,
698 			  const void *kbuf, const void __user *ubuf)
699 {
700 	int ret;
701 	struct thread_info *thread = task_thread_info(target);
702 	struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
703 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
704 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
705 
706 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
707 				  &new_vfp.fpregs,
708 				  user_fpregs_offset,
709 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
710 	if (ret)
711 		return ret;
712 
713 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
714 				user_fpregs_offset + sizeof(new_vfp.fpregs),
715 				user_fpscr_offset);
716 	if (ret)
717 		return ret;
718 
719 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
720 				 &new_vfp.fpscr,
721 				 user_fpscr_offset,
722 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
723 	if (ret)
724 		return ret;
725 
726 	vfp_sync_hwstate(thread);
727 	thread->vfpstate.hard = new_vfp;
728 	vfp_flush_hwstate(thread);
729 
730 	return 0;
731 }
732 #endif /* CONFIG_VFP */
733 
734 enum arm_regset {
735 	REGSET_GPR,
736 	REGSET_FPR,
737 #ifdef CONFIG_VFP
738 	REGSET_VFP,
739 #endif
740 };
741 
742 static const struct user_regset arm_regsets[] = {
743 	[REGSET_GPR] = {
744 		.core_note_type = NT_PRSTATUS,
745 		.n = ELF_NGREG,
746 		.size = sizeof(u32),
747 		.align = sizeof(u32),
748 		.get = gpr_get,
749 		.set = gpr_set
750 	},
751 	[REGSET_FPR] = {
752 		/*
753 		 * For the FPA regs in fpstate, the real fields are a mixture
754 		 * of sizes, so pretend that the registers are word-sized:
755 		 */
756 		.core_note_type = NT_PRFPREG,
757 		.n = sizeof(struct user_fp) / sizeof(u32),
758 		.size = sizeof(u32),
759 		.align = sizeof(u32),
760 		.get = fpa_get,
761 		.set = fpa_set
762 	},
763 #ifdef CONFIG_VFP
764 	[REGSET_VFP] = {
765 		/*
766 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
767 		 * a single word dangling at the end of struct user_vfp:
768 		 */
769 		.core_note_type = NT_ARM_VFP,
770 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
771 		.size = sizeof(u32),
772 		.align = sizeof(u32),
773 		.get = vfp_get,
774 		.set = vfp_set
775 	},
776 #endif /* CONFIG_VFP */
777 };
778 
779 static const struct user_regset_view user_arm_view = {
780 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
781 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
782 };
783 
784 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
785 {
786 	return &user_arm_view;
787 }
788 
789 long arch_ptrace(struct task_struct *child, long request,
790 		 unsigned long addr, unsigned long data)
791 {
792 	int ret;
793 	unsigned long __user *datap = (unsigned long __user *) data;
794 
795 	switch (request) {
796 		case PTRACE_PEEKUSR:
797 			ret = ptrace_read_user(child, addr, datap);
798 			break;
799 
800 		case PTRACE_POKEUSR:
801 			ret = ptrace_write_user(child, addr, data);
802 			break;
803 
804 		case PTRACE_GETREGS:
805 			ret = copy_regset_to_user(child,
806 						  &user_arm_view, REGSET_GPR,
807 						  0, sizeof(struct pt_regs),
808 						  datap);
809 			break;
810 
811 		case PTRACE_SETREGS:
812 			ret = copy_regset_from_user(child,
813 						    &user_arm_view, REGSET_GPR,
814 						    0, sizeof(struct pt_regs),
815 						    datap);
816 			break;
817 
818 		case PTRACE_GETFPREGS:
819 			ret = copy_regset_to_user(child,
820 						  &user_arm_view, REGSET_FPR,
821 						  0, sizeof(union fp_state),
822 						  datap);
823 			break;
824 
825 		case PTRACE_SETFPREGS:
826 			ret = copy_regset_from_user(child,
827 						    &user_arm_view, REGSET_FPR,
828 						    0, sizeof(union fp_state),
829 						    datap);
830 			break;
831 
832 #ifdef CONFIG_IWMMXT
833 		case PTRACE_GETWMMXREGS:
834 			ret = ptrace_getwmmxregs(child, datap);
835 			break;
836 
837 		case PTRACE_SETWMMXREGS:
838 			ret = ptrace_setwmmxregs(child, datap);
839 			break;
840 #endif
841 
842 		case PTRACE_GET_THREAD_AREA:
843 			ret = put_user(task_thread_info(child)->tp_value,
844 				       datap);
845 			break;
846 
847 		case PTRACE_SET_SYSCALL:
848 			task_thread_info(child)->syscall = data;
849 			ret = 0;
850 			break;
851 
852 #ifdef CONFIG_CRUNCH
853 		case PTRACE_GETCRUNCHREGS:
854 			ret = ptrace_getcrunchregs(child, datap);
855 			break;
856 
857 		case PTRACE_SETCRUNCHREGS:
858 			ret = ptrace_setcrunchregs(child, datap);
859 			break;
860 #endif
861 
862 #ifdef CONFIG_VFP
863 		case PTRACE_GETVFPREGS:
864 			ret = copy_regset_to_user(child,
865 						  &user_arm_view, REGSET_VFP,
866 						  0, ARM_VFPREGS_SIZE,
867 						  datap);
868 			break;
869 
870 		case PTRACE_SETVFPREGS:
871 			ret = copy_regset_from_user(child,
872 						    &user_arm_view, REGSET_VFP,
873 						    0, ARM_VFPREGS_SIZE,
874 						    datap);
875 			break;
876 #endif
877 
878 #ifdef CONFIG_HAVE_HW_BREAKPOINT
879 		case PTRACE_GETHBPREGS:
880 			if (ptrace_get_breakpoints(child) < 0)
881 				return -ESRCH;
882 
883 			ret = ptrace_gethbpregs(child, addr,
884 						(unsigned long __user *)data);
885 			ptrace_put_breakpoints(child);
886 			break;
887 		case PTRACE_SETHBPREGS:
888 			if (ptrace_get_breakpoints(child) < 0)
889 				return -ESRCH;
890 
891 			ret = ptrace_sethbpregs(child, addr,
892 						(unsigned long __user *)data);
893 			ptrace_put_breakpoints(child);
894 			break;
895 #endif
896 
897 		default:
898 			ret = ptrace_request(child, request, addr, data);
899 			break;
900 	}
901 
902 	return ret;
903 }
904 
905 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
906 {
907 	unsigned long ip;
908 
909 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
910 		return scno;
911 	if (!(current->ptrace & PT_PTRACED))
912 		return scno;
913 
914 	/*
915 	 * Save IP.  IP is used to denote syscall entry/exit:
916 	 *  IP = 0 -> entry, = 1 -> exit
917 	 */
918 	ip = regs->ARM_ip;
919 	regs->ARM_ip = why;
920 
921 	current_thread_info()->syscall = scno;
922 
923 	/* the 0x80 provides a way for the tracing parent to distinguish
924 	   between a syscall stop and SIGTRAP delivery */
925 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
926 				 ? 0x80 : 0));
927 	/*
928 	 * this isn't the same as continuing with a signal, but it will do
929 	 * for normal use.  strace only continues with a signal if the
930 	 * stopping signal is not SIGTRAP.  -brl
931 	 */
932 	if (current->exit_code) {
933 		send_sig(current->exit_code, current, 1);
934 		current->exit_code = 0;
935 	}
936 	regs->ARM_ip = ip;
937 
938 	return current_thread_info()->syscall;
939 }
940