xref: /linux/arch/arm/kernel/ptrace.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/uaccess.h>
22 
23 #include <asm/pgtable.h>
24 #include <asm/system.h>
25 #include <asm/traps.h>
26 
27 #include "ptrace.h"
28 
29 #define REG_PC	15
30 #define REG_PSR	16
31 /*
32  * does not yet catch signals sent when the child dies.
33  * in exit.c or in signal.c.
34  */
35 
36 #if 0
37 /*
38  * Breakpoint SWI instruction: SWI &9F0001
39  */
40 #define BREAKINST_ARM	0xef9f0001
41 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
42 #else
43 /*
44  * New breakpoints - use an undefined instruction.  The ARM architecture
45  * reference manual guarantees that the following instruction space
46  * will produce an undefined instruction exception on all CPUs:
47  *
48  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
49  *  Thumb: 1101 1110 xxxx xxxx
50  */
51 #define BREAKINST_ARM	0xe7f001f0
52 #define BREAKINST_THUMB	0xde01
53 #endif
54 
55 struct pt_regs_offset {
56 	const char *name;
57 	int offset;
58 };
59 
60 #define REG_OFFSET_NAME(r) \
61 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
62 #define REG_OFFSET_END {.name = NULL, .offset = 0}
63 
64 static const struct pt_regs_offset regoffset_table[] = {
65 	REG_OFFSET_NAME(r0),
66 	REG_OFFSET_NAME(r1),
67 	REG_OFFSET_NAME(r2),
68 	REG_OFFSET_NAME(r3),
69 	REG_OFFSET_NAME(r4),
70 	REG_OFFSET_NAME(r5),
71 	REG_OFFSET_NAME(r6),
72 	REG_OFFSET_NAME(r7),
73 	REG_OFFSET_NAME(r8),
74 	REG_OFFSET_NAME(r9),
75 	REG_OFFSET_NAME(r10),
76 	REG_OFFSET_NAME(fp),
77 	REG_OFFSET_NAME(ip),
78 	REG_OFFSET_NAME(sp),
79 	REG_OFFSET_NAME(lr),
80 	REG_OFFSET_NAME(pc),
81 	REG_OFFSET_NAME(cpsr),
82 	REG_OFFSET_NAME(ORIG_r0),
83 	REG_OFFSET_END,
84 };
85 
86 /**
87  * regs_query_register_offset() - query register offset from its name
88  * @name:	the name of a register
89  *
90  * regs_query_register_offset() returns the offset of a register in struct
91  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
92  */
93 int regs_query_register_offset(const char *name)
94 {
95 	const struct pt_regs_offset *roff;
96 	for (roff = regoffset_table; roff->name != NULL; roff++)
97 		if (!strcmp(roff->name, name))
98 			return roff->offset;
99 	return -EINVAL;
100 }
101 
102 /**
103  * regs_query_register_name() - query register name from its offset
104  * @offset:	the offset of a register in struct pt_regs.
105  *
106  * regs_query_register_name() returns the name of a register from its
107  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
108  */
109 const char *regs_query_register_name(unsigned int offset)
110 {
111 	const struct pt_regs_offset *roff;
112 	for (roff = regoffset_table; roff->name != NULL; roff++)
113 		if (roff->offset == offset)
114 			return roff->name;
115 	return NULL;
116 }
117 
118 /**
119  * regs_within_kernel_stack() - check the address in the stack
120  * @regs:      pt_regs which contains kernel stack pointer.
121  * @addr:      address which is checked.
122  *
123  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
124  * If @addr is within the kernel stack, it returns true. If not, returns false.
125  */
126 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
127 {
128 	return ((addr & ~(THREAD_SIZE - 1))  ==
129 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
130 }
131 
132 /**
133  * regs_get_kernel_stack_nth() - get Nth entry of the stack
134  * @regs:	pt_regs which contains kernel stack pointer.
135  * @n:		stack entry number.
136  *
137  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
138  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
139  * this returns 0.
140  */
141 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
142 {
143 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
144 	addr += n;
145 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
146 		return *addr;
147 	else
148 		return 0;
149 }
150 
151 /*
152  * this routine will get a word off of the processes privileged stack.
153  * the offset is how far from the base addr as stored in the THREAD.
154  * this routine assumes that all the privileged stacks are in our
155  * data space.
156  */
157 static inline long get_user_reg(struct task_struct *task, int offset)
158 {
159 	return task_pt_regs(task)->uregs[offset];
160 }
161 
162 /*
163  * this routine will put a word on the processes privileged stack.
164  * the offset is how far from the base addr as stored in the THREAD.
165  * this routine assumes that all the privileged stacks are in our
166  * data space.
167  */
168 static inline int
169 put_user_reg(struct task_struct *task, int offset, long data)
170 {
171 	struct pt_regs newregs, *regs = task_pt_regs(task);
172 	int ret = -EINVAL;
173 
174 	newregs = *regs;
175 	newregs.uregs[offset] = data;
176 
177 	if (valid_user_regs(&newregs)) {
178 		regs->uregs[offset] = data;
179 		ret = 0;
180 	}
181 
182 	return ret;
183 }
184 
185 static inline int
186 read_u32(struct task_struct *task, unsigned long addr, u32 *res)
187 {
188 	int ret;
189 
190 	ret = access_process_vm(task, addr, res, sizeof(*res), 0);
191 
192 	return ret == sizeof(*res) ? 0 : -EIO;
193 }
194 
195 static inline int
196 read_instr(struct task_struct *task, unsigned long addr, u32 *res)
197 {
198 	int ret;
199 
200 	if (addr & 1) {
201 		u16 val;
202 		ret = access_process_vm(task, addr & ~1, &val, sizeof(val), 0);
203 		ret = ret == sizeof(val) ? 0 : -EIO;
204 		*res = val;
205 	} else {
206 		u32 val;
207 		ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0);
208 		ret = ret == sizeof(val) ? 0 : -EIO;
209 		*res = val;
210 	}
211 	return ret;
212 }
213 
214 /*
215  * Get value of register `rn' (in the instruction)
216  */
217 static unsigned long
218 ptrace_getrn(struct task_struct *child, unsigned long insn)
219 {
220 	unsigned int reg = (insn >> 16) & 15;
221 	unsigned long val;
222 
223 	val = get_user_reg(child, reg);
224 	if (reg == 15)
225 		val += 8;
226 
227 	return val;
228 }
229 
230 /*
231  * Get value of operand 2 (in an ALU instruction)
232  */
233 static unsigned long
234 ptrace_getaluop2(struct task_struct *child, unsigned long insn)
235 {
236 	unsigned long val;
237 	int shift;
238 	int type;
239 
240 	if (insn & 1 << 25) {
241 		val = insn & 255;
242 		shift = (insn >> 8) & 15;
243 		type = 3;
244 	} else {
245 		val = get_user_reg (child, insn & 15);
246 
247 		if (insn & (1 << 4))
248 			shift = (int)get_user_reg (child, (insn >> 8) & 15);
249 		else
250 			shift = (insn >> 7) & 31;
251 
252 		type = (insn >> 5) & 3;
253 	}
254 
255 	switch (type) {
256 	case 0:	val <<= shift;	break;
257 	case 1:	val >>= shift;	break;
258 	case 2:
259 		val = (((signed long)val) >> shift);
260 		break;
261 	case 3:
262  		val = (val >> shift) | (val << (32 - shift));
263 		break;
264 	}
265 	return val;
266 }
267 
268 /*
269  * Get value of operand 2 (in a LDR instruction)
270  */
271 static unsigned long
272 ptrace_getldrop2(struct task_struct *child, unsigned long insn)
273 {
274 	unsigned long val;
275 	int shift;
276 	int type;
277 
278 	val = get_user_reg(child, insn & 15);
279 	shift = (insn >> 7) & 31;
280 	type = (insn >> 5) & 3;
281 
282 	switch (type) {
283 	case 0:	val <<= shift;	break;
284 	case 1:	val >>= shift;	break;
285 	case 2:
286 		val = (((signed long)val) >> shift);
287 		break;
288 	case 3:
289  		val = (val >> shift) | (val << (32 - shift));
290 		break;
291 	}
292 	return val;
293 }
294 
295 #define OP_MASK	0x01e00000
296 #define OP_AND	0x00000000
297 #define OP_EOR	0x00200000
298 #define OP_SUB	0x00400000
299 #define OP_RSB	0x00600000
300 #define OP_ADD	0x00800000
301 #define OP_ADC	0x00a00000
302 #define OP_SBC	0x00c00000
303 #define OP_RSC	0x00e00000
304 #define OP_ORR	0x01800000
305 #define OP_MOV	0x01a00000
306 #define OP_BIC	0x01c00000
307 #define OP_MVN	0x01e00000
308 
309 static unsigned long
310 get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn)
311 {
312 	u32 alt = 0;
313 
314 	switch (insn & 0x0e000000) {
315 	case 0x00000000:
316 	case 0x02000000: {
317 		/*
318 		 * data processing
319 		 */
320 		long aluop1, aluop2, ccbit;
321 
322 	        if ((insn & 0x0fffffd0) == 0x012fff10) {
323 		        /*
324 			 * bx or blx
325 			 */
326 			alt = get_user_reg(child, insn & 15);
327 			break;
328 		}
329 
330 
331 		if ((insn & 0xf000) != 0xf000)
332 			break;
333 
334 		aluop1 = ptrace_getrn(child, insn);
335 		aluop2 = ptrace_getaluop2(child, insn);
336 		ccbit  = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0;
337 
338 		switch (insn & OP_MASK) {
339 		case OP_AND: alt = aluop1 & aluop2;		break;
340 		case OP_EOR: alt = aluop1 ^ aluop2;		break;
341 		case OP_SUB: alt = aluop1 - aluop2;		break;
342 		case OP_RSB: alt = aluop2 - aluop1;		break;
343 		case OP_ADD: alt = aluop1 + aluop2;		break;
344 		case OP_ADC: alt = aluop1 + aluop2 + ccbit;	break;
345 		case OP_SBC: alt = aluop1 - aluop2 + ccbit;	break;
346 		case OP_RSC: alt = aluop2 - aluop1 + ccbit;	break;
347 		case OP_ORR: alt = aluop1 | aluop2;		break;
348 		case OP_MOV: alt = aluop2;			break;
349 		case OP_BIC: alt = aluop1 & ~aluop2;		break;
350 		case OP_MVN: alt = ~aluop2;			break;
351 		}
352 		break;
353 	}
354 
355 	case 0x04000000:
356 	case 0x06000000:
357 		/*
358 		 * ldr
359 		 */
360 		if ((insn & 0x0010f000) == 0x0010f000) {
361 			unsigned long base;
362 
363 			base = ptrace_getrn(child, insn);
364 			if (insn & 1 << 24) {
365 				long aluop2;
366 
367 				if (insn & 0x02000000)
368 					aluop2 = ptrace_getldrop2(child, insn);
369 				else
370 					aluop2 = insn & 0xfff;
371 
372 				if (insn & 1 << 23)
373 					base += aluop2;
374 				else
375 					base -= aluop2;
376 			}
377 			read_u32(child, base, &alt);
378 		}
379 		break;
380 
381 	case 0x08000000:
382 		/*
383 		 * ldm
384 		 */
385 		if ((insn & 0x00108000) == 0x00108000) {
386 			unsigned long base;
387 			unsigned int nr_regs;
388 
389 			if (insn & (1 << 23)) {
390 				nr_regs = hweight16(insn & 65535) << 2;
391 
392 				if (!(insn & (1 << 24)))
393 					nr_regs -= 4;
394 			} else {
395 				if (insn & (1 << 24))
396 					nr_regs = -4;
397 				else
398 					nr_regs = 0;
399 			}
400 
401 			base = ptrace_getrn(child, insn);
402 
403 			read_u32(child, base + nr_regs, &alt);
404 			break;
405 		}
406 		break;
407 
408 	case 0x0a000000: {
409 		/*
410 		 * bl or b
411 		 */
412 		signed long displ;
413 		/* It's a branch/branch link: instead of trying to
414 		 * figure out whether the branch will be taken or not,
415 		 * we'll put a breakpoint at both locations.  This is
416 		 * simpler, more reliable, and probably not a whole lot
417 		 * slower than the alternative approach of emulating the
418 		 * branch.
419 		 */
420 		displ = (insn & 0x00ffffff) << 8;
421 		displ = (displ >> 6) + 8;
422 		if (displ != 0 && displ != 4)
423 			alt = pc + displ;
424 	    }
425 	    break;
426 	}
427 
428 	return alt;
429 }
430 
431 static int
432 swap_insn(struct task_struct *task, unsigned long addr,
433 	  void *old_insn, void *new_insn, int size)
434 {
435 	int ret;
436 
437 	ret = access_process_vm(task, addr, old_insn, size, 0);
438 	if (ret == size)
439 		ret = access_process_vm(task, addr, new_insn, size, 1);
440 	return ret;
441 }
442 
443 static void
444 add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr)
445 {
446 	int nr = dbg->nsaved;
447 
448 	if (nr < 2) {
449 		u32 new_insn = BREAKINST_ARM;
450 		int res;
451 
452 		res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4);
453 
454 		if (res == 4) {
455 			dbg->bp[nr].address = addr;
456 			dbg->nsaved += 1;
457 		}
458 	} else
459 		printk(KERN_ERR "ptrace: too many breakpoints\n");
460 }
461 
462 /*
463  * Clear one breakpoint in the user program.  We copy what the hardware
464  * does and use bit 0 of the address to indicate whether this is a Thumb
465  * breakpoint or an ARM breakpoint.
466  */
467 static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp)
468 {
469 	unsigned long addr = bp->address;
470 	union debug_insn old_insn;
471 	int ret;
472 
473 	if (addr & 1) {
474 		ret = swap_insn(task, addr & ~1, &old_insn.thumb,
475 				&bp->insn.thumb, 2);
476 
477 		if (ret != 2 || old_insn.thumb != BREAKINST_THUMB)
478 			printk(KERN_ERR "%s:%d: corrupted Thumb breakpoint at "
479 				"0x%08lx (0x%04x)\n", task->comm,
480 				task_pid_nr(task), addr, old_insn.thumb);
481 	} else {
482 		ret = swap_insn(task, addr & ~3, &old_insn.arm,
483 				&bp->insn.arm, 4);
484 
485 		if (ret != 4 || old_insn.arm != BREAKINST_ARM)
486 			printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at "
487 				"0x%08lx (0x%08x)\n", task->comm,
488 				task_pid_nr(task), addr, old_insn.arm);
489 	}
490 }
491 
492 void ptrace_set_bpt(struct task_struct *child)
493 {
494 	struct pt_regs *regs;
495 	unsigned long pc;
496 	u32 insn;
497 	int res;
498 
499 	regs = task_pt_regs(child);
500 	pc = instruction_pointer(regs);
501 
502 	if (thumb_mode(regs)) {
503 		printk(KERN_WARNING "ptrace: can't handle thumb mode\n");
504 		return;
505 	}
506 
507 	res = read_instr(child, pc, &insn);
508 	if (!res) {
509 		struct debug_info *dbg = &child->thread.debug;
510 		unsigned long alt;
511 
512 		dbg->nsaved = 0;
513 
514 		alt = get_branch_address(child, pc, insn);
515 		if (alt)
516 			add_breakpoint(child, dbg, alt);
517 
518 		/*
519 		 * Note that we ignore the result of setting the above
520 		 * breakpoint since it may fail.  When it does, this is
521 		 * not so much an error, but a forewarning that we may
522 		 * be receiving a prefetch abort shortly.
523 		 *
524 		 * If we don't set this breakpoint here, then we can
525 		 * lose control of the thread during single stepping.
526 		 */
527 		if (!alt || predicate(insn) != PREDICATE_ALWAYS)
528 			add_breakpoint(child, dbg, pc + 4);
529 	}
530 }
531 
532 /*
533  * Ensure no single-step breakpoint is pending.  Returns non-zero
534  * value if child was being single-stepped.
535  */
536 void ptrace_cancel_bpt(struct task_struct *child)
537 {
538 	int i, nsaved = child->thread.debug.nsaved;
539 
540 	child->thread.debug.nsaved = 0;
541 
542 	if (nsaved > 2) {
543 		printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
544 		nsaved = 2;
545 	}
546 
547 	for (i = 0; i < nsaved; i++)
548 		clear_breakpoint(child, &child->thread.debug.bp[i]);
549 }
550 
551 void user_disable_single_step(struct task_struct *task)
552 {
553 	task->ptrace &= ~PT_SINGLESTEP;
554 	ptrace_cancel_bpt(task);
555 }
556 
557 void user_enable_single_step(struct task_struct *task)
558 {
559 	task->ptrace |= PT_SINGLESTEP;
560 }
561 
562 /*
563  * Called by kernel/ptrace.c when detaching..
564  */
565 void ptrace_disable(struct task_struct *child)
566 {
567 	user_disable_single_step(child);
568 }
569 
570 /*
571  * Handle hitting a breakpoint.
572  */
573 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
574 {
575 	siginfo_t info;
576 
577 	ptrace_cancel_bpt(tsk);
578 
579 	info.si_signo = SIGTRAP;
580 	info.si_errno = 0;
581 	info.si_code  = TRAP_BRKPT;
582 	info.si_addr  = (void __user *)instruction_pointer(regs);
583 
584 	force_sig_info(SIGTRAP, &info, tsk);
585 }
586 
587 static int break_trap(struct pt_regs *regs, unsigned int instr)
588 {
589 	ptrace_break(current, regs);
590 	return 0;
591 }
592 
593 static struct undef_hook arm_break_hook = {
594 	.instr_mask	= 0x0fffffff,
595 	.instr_val	= 0x07f001f0,
596 	.cpsr_mask	= PSR_T_BIT,
597 	.cpsr_val	= 0,
598 	.fn		= break_trap,
599 };
600 
601 static struct undef_hook thumb_break_hook = {
602 	.instr_mask	= 0xffff,
603 	.instr_val	= 0xde01,
604 	.cpsr_mask	= PSR_T_BIT,
605 	.cpsr_val	= PSR_T_BIT,
606 	.fn		= break_trap,
607 };
608 
609 static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr)
610 {
611 	unsigned int instr2;
612 	void __user *pc;
613 
614 	/* Check the second half of the instruction.  */
615 	pc = (void __user *)(instruction_pointer(regs) + 2);
616 
617 	if (processor_mode(regs) == SVC_MODE) {
618 		instr2 = *(u16 *) pc;
619 	} else {
620 		get_user(instr2, (u16 __user *)pc);
621 	}
622 
623 	if (instr2 == 0xa000) {
624 		ptrace_break(current, regs);
625 		return 0;
626 	} else {
627 		return 1;
628 	}
629 }
630 
631 static struct undef_hook thumb2_break_hook = {
632 	.instr_mask	= 0xffff,
633 	.instr_val	= 0xf7f0,
634 	.cpsr_mask	= PSR_T_BIT,
635 	.cpsr_val	= PSR_T_BIT,
636 	.fn		= thumb2_break_trap,
637 };
638 
639 static int __init ptrace_break_init(void)
640 {
641 	register_undef_hook(&arm_break_hook);
642 	register_undef_hook(&thumb_break_hook);
643 	register_undef_hook(&thumb2_break_hook);
644 	return 0;
645 }
646 
647 core_initcall(ptrace_break_init);
648 
649 /*
650  * Read the word at offset "off" into the "struct user".  We
651  * actually access the pt_regs stored on the kernel stack.
652  */
653 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
654 			    unsigned long __user *ret)
655 {
656 	unsigned long tmp;
657 
658 	if (off & 3 || off >= sizeof(struct user))
659 		return -EIO;
660 
661 	tmp = 0;
662 	if (off == PT_TEXT_ADDR)
663 		tmp = tsk->mm->start_code;
664 	else if (off == PT_DATA_ADDR)
665 		tmp = tsk->mm->start_data;
666 	else if (off == PT_TEXT_END_ADDR)
667 		tmp = tsk->mm->end_code;
668 	else if (off < sizeof(struct pt_regs))
669 		tmp = get_user_reg(tsk, off >> 2);
670 
671 	return put_user(tmp, ret);
672 }
673 
674 /*
675  * Write the word at offset "off" into "struct user".  We
676  * actually access the pt_regs stored on the kernel stack.
677  */
678 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
679 			     unsigned long val)
680 {
681 	if (off & 3 || off >= sizeof(struct user))
682 		return -EIO;
683 
684 	if (off >= sizeof(struct pt_regs))
685 		return 0;
686 
687 	return put_user_reg(tsk, off >> 2, val);
688 }
689 
690 /*
691  * Get all user integer registers.
692  */
693 static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
694 {
695 	struct pt_regs *regs = task_pt_regs(tsk);
696 
697 	return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
698 }
699 
700 /*
701  * Set all user integer registers.
702  */
703 static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
704 {
705 	struct pt_regs newregs;
706 	int ret;
707 
708 	ret = -EFAULT;
709 	if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
710 		struct pt_regs *regs = task_pt_regs(tsk);
711 
712 		ret = -EINVAL;
713 		if (valid_user_regs(&newregs)) {
714 			*regs = newregs;
715 			ret = 0;
716 		}
717 	}
718 
719 	return ret;
720 }
721 
722 /*
723  * Get the child FPU state.
724  */
725 static int ptrace_getfpregs(struct task_struct *tsk, void __user *ufp)
726 {
727 	return copy_to_user(ufp, &task_thread_info(tsk)->fpstate,
728 			    sizeof(struct user_fp)) ? -EFAULT : 0;
729 }
730 
731 /*
732  * Set the child FPU state.
733  */
734 static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp)
735 {
736 	struct thread_info *thread = task_thread_info(tsk);
737 	thread->used_cp[1] = thread->used_cp[2] = 1;
738 	return copy_from_user(&thread->fpstate, ufp,
739 			      sizeof(struct user_fp)) ? -EFAULT : 0;
740 }
741 
742 #ifdef CONFIG_IWMMXT
743 
744 /*
745  * Get the child iWMMXt state.
746  */
747 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
748 {
749 	struct thread_info *thread = task_thread_info(tsk);
750 
751 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
752 		return -ENODATA;
753 	iwmmxt_task_disable(thread);  /* force it to ram */
754 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
755 		? -EFAULT : 0;
756 }
757 
758 /*
759  * Set the child iWMMXt state.
760  */
761 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
762 {
763 	struct thread_info *thread = task_thread_info(tsk);
764 
765 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
766 		return -EACCES;
767 	iwmmxt_task_release(thread);  /* force a reload */
768 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
769 		? -EFAULT : 0;
770 }
771 
772 #endif
773 
774 #ifdef CONFIG_CRUNCH
775 /*
776  * Get the child Crunch state.
777  */
778 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
779 {
780 	struct thread_info *thread = task_thread_info(tsk);
781 
782 	crunch_task_disable(thread);  /* force it to ram */
783 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
784 		? -EFAULT : 0;
785 }
786 
787 /*
788  * Set the child Crunch state.
789  */
790 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
791 {
792 	struct thread_info *thread = task_thread_info(tsk);
793 
794 	crunch_task_release(thread);  /* force a reload */
795 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
796 		? -EFAULT : 0;
797 }
798 #endif
799 
800 #ifdef CONFIG_VFP
801 /*
802  * Get the child VFP state.
803  */
804 static int ptrace_getvfpregs(struct task_struct *tsk, void __user *data)
805 {
806 	struct thread_info *thread = task_thread_info(tsk);
807 	union vfp_state *vfp = &thread->vfpstate;
808 	struct user_vfp __user *ufp = data;
809 
810 	vfp_sync_hwstate(thread);
811 
812 	/* copy the floating point registers */
813 	if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs,
814 			 sizeof(vfp->hard.fpregs)))
815 		return -EFAULT;
816 
817 	/* copy the status and control register */
818 	if (put_user(vfp->hard.fpscr, &ufp->fpscr))
819 		return -EFAULT;
820 
821 	return 0;
822 }
823 
824 /*
825  * Set the child VFP state.
826  */
827 static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data)
828 {
829 	struct thread_info *thread = task_thread_info(tsk);
830 	union vfp_state *vfp = &thread->vfpstate;
831 	struct user_vfp __user *ufp = data;
832 
833 	vfp_sync_hwstate(thread);
834 
835 	/* copy the floating point registers */
836 	if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs,
837 			   sizeof(vfp->hard.fpregs)))
838 		return -EFAULT;
839 
840 	/* copy the status and control register */
841 	if (get_user(vfp->hard.fpscr, &ufp->fpscr))
842 		return -EFAULT;
843 
844 	vfp_flush_hwstate(thread);
845 
846 	return 0;
847 }
848 #endif
849 
850 long arch_ptrace(struct task_struct *child, long request, long addr, long data)
851 {
852 	int ret;
853 
854 	switch (request) {
855 		case PTRACE_PEEKUSR:
856 			ret = ptrace_read_user(child, addr, (unsigned long __user *)data);
857 			break;
858 
859 		case PTRACE_POKEUSR:
860 			ret = ptrace_write_user(child, addr, data);
861 			break;
862 
863 		case PTRACE_GETREGS:
864 			ret = ptrace_getregs(child, (void __user *)data);
865 			break;
866 
867 		case PTRACE_SETREGS:
868 			ret = ptrace_setregs(child, (void __user *)data);
869 			break;
870 
871 		case PTRACE_GETFPREGS:
872 			ret = ptrace_getfpregs(child, (void __user *)data);
873 			break;
874 
875 		case PTRACE_SETFPREGS:
876 			ret = ptrace_setfpregs(child, (void __user *)data);
877 			break;
878 
879 #ifdef CONFIG_IWMMXT
880 		case PTRACE_GETWMMXREGS:
881 			ret = ptrace_getwmmxregs(child, (void __user *)data);
882 			break;
883 
884 		case PTRACE_SETWMMXREGS:
885 			ret = ptrace_setwmmxregs(child, (void __user *)data);
886 			break;
887 #endif
888 
889 		case PTRACE_GET_THREAD_AREA:
890 			ret = put_user(task_thread_info(child)->tp_value,
891 				       (unsigned long __user *) data);
892 			break;
893 
894 		case PTRACE_SET_SYSCALL:
895 			task_thread_info(child)->syscall = data;
896 			ret = 0;
897 			break;
898 
899 #ifdef CONFIG_CRUNCH
900 		case PTRACE_GETCRUNCHREGS:
901 			ret = ptrace_getcrunchregs(child, (void __user *)data);
902 			break;
903 
904 		case PTRACE_SETCRUNCHREGS:
905 			ret = ptrace_setcrunchregs(child, (void __user *)data);
906 			break;
907 #endif
908 
909 #ifdef CONFIG_VFP
910 		case PTRACE_GETVFPREGS:
911 			ret = ptrace_getvfpregs(child, (void __user *)data);
912 			break;
913 
914 		case PTRACE_SETVFPREGS:
915 			ret = ptrace_setvfpregs(child, (void __user *)data);
916 			break;
917 #endif
918 
919 		default:
920 			ret = ptrace_request(child, request, addr, data);
921 			break;
922 	}
923 
924 	return ret;
925 }
926 
927 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
928 {
929 	unsigned long ip;
930 
931 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
932 		return scno;
933 	if (!(current->ptrace & PT_PTRACED))
934 		return scno;
935 
936 	/*
937 	 * Save IP.  IP is used to denote syscall entry/exit:
938 	 *  IP = 0 -> entry, = 1 -> exit
939 	 */
940 	ip = regs->ARM_ip;
941 	regs->ARM_ip = why;
942 
943 	current_thread_info()->syscall = scno;
944 
945 	/* the 0x80 provides a way for the tracing parent to distinguish
946 	   between a syscall stop and SIGTRAP delivery */
947 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
948 				 ? 0x80 : 0));
949 	/*
950 	 * this isn't the same as continuing with a signal, but it will do
951 	 * for normal use.  strace only continues with a signal if the
952 	 * stopping signal is not SIGTRAP.  -brl
953 	 */
954 	if (current->exit_code) {
955 		send_sig(current->exit_code, current, 1);
956 		current->exit_code = 0;
957 	}
958 	regs->ARM_ip = ip;
959 
960 	return current_thread_info()->syscall;
961 }
962