1 /* 2 * linux/arch/arm/kernel/ptrace.c 3 * 4 * By Ross Biro 1/23/92 5 * edited by Linus Torvalds 6 * ARM modifications Copyright (C) 2000 Russell King 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/mm.h> 15 #include <linux/smp.h> 16 #include <linux/ptrace.h> 17 #include <linux/user.h> 18 #include <linux/security.h> 19 #include <linux/init.h> 20 #include <linux/signal.h> 21 #include <linux/uaccess.h> 22 #include <linux/perf_event.h> 23 #include <linux/hw_breakpoint.h> 24 #include <linux/regset.h> 25 26 #include <asm/pgtable.h> 27 #include <asm/system.h> 28 #include <asm/traps.h> 29 30 #define REG_PC 15 31 #define REG_PSR 16 32 /* 33 * does not yet catch signals sent when the child dies. 34 * in exit.c or in signal.c. 35 */ 36 37 #if 0 38 /* 39 * Breakpoint SWI instruction: SWI &9F0001 40 */ 41 #define BREAKINST_ARM 0xef9f0001 42 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 43 #else 44 /* 45 * New breakpoints - use an undefined instruction. The ARM architecture 46 * reference manual guarantees that the following instruction space 47 * will produce an undefined instruction exception on all CPUs: 48 * 49 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 50 * Thumb: 1101 1110 xxxx xxxx 51 */ 52 #define BREAKINST_ARM 0xe7f001f0 53 #define BREAKINST_THUMB 0xde01 54 #endif 55 56 struct pt_regs_offset { 57 const char *name; 58 int offset; 59 }; 60 61 #define REG_OFFSET_NAME(r) \ 62 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 63 #define REG_OFFSET_END {.name = NULL, .offset = 0} 64 65 static const struct pt_regs_offset regoffset_table[] = { 66 REG_OFFSET_NAME(r0), 67 REG_OFFSET_NAME(r1), 68 REG_OFFSET_NAME(r2), 69 REG_OFFSET_NAME(r3), 70 REG_OFFSET_NAME(r4), 71 REG_OFFSET_NAME(r5), 72 REG_OFFSET_NAME(r6), 73 REG_OFFSET_NAME(r7), 74 REG_OFFSET_NAME(r8), 75 REG_OFFSET_NAME(r9), 76 REG_OFFSET_NAME(r10), 77 REG_OFFSET_NAME(fp), 78 REG_OFFSET_NAME(ip), 79 REG_OFFSET_NAME(sp), 80 REG_OFFSET_NAME(lr), 81 REG_OFFSET_NAME(pc), 82 REG_OFFSET_NAME(cpsr), 83 REG_OFFSET_NAME(ORIG_r0), 84 REG_OFFSET_END, 85 }; 86 87 /** 88 * regs_query_register_offset() - query register offset from its name 89 * @name: the name of a register 90 * 91 * regs_query_register_offset() returns the offset of a register in struct 92 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 93 */ 94 int regs_query_register_offset(const char *name) 95 { 96 const struct pt_regs_offset *roff; 97 for (roff = regoffset_table; roff->name != NULL; roff++) 98 if (!strcmp(roff->name, name)) 99 return roff->offset; 100 return -EINVAL; 101 } 102 103 /** 104 * regs_query_register_name() - query register name from its offset 105 * @offset: the offset of a register in struct pt_regs. 106 * 107 * regs_query_register_name() returns the name of a register from its 108 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 109 */ 110 const char *regs_query_register_name(unsigned int offset) 111 { 112 const struct pt_regs_offset *roff; 113 for (roff = regoffset_table; roff->name != NULL; roff++) 114 if (roff->offset == offset) 115 return roff->name; 116 return NULL; 117 } 118 119 /** 120 * regs_within_kernel_stack() - check the address in the stack 121 * @regs: pt_regs which contains kernel stack pointer. 122 * @addr: address which is checked. 123 * 124 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 125 * If @addr is within the kernel stack, it returns true. If not, returns false. 126 */ 127 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 128 { 129 return ((addr & ~(THREAD_SIZE - 1)) == 130 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 131 } 132 133 /** 134 * regs_get_kernel_stack_nth() - get Nth entry of the stack 135 * @regs: pt_regs which contains kernel stack pointer. 136 * @n: stack entry number. 137 * 138 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 139 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 140 * this returns 0. 141 */ 142 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 143 { 144 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 145 addr += n; 146 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 147 return *addr; 148 else 149 return 0; 150 } 151 152 /* 153 * this routine will get a word off of the processes privileged stack. 154 * the offset is how far from the base addr as stored in the THREAD. 155 * this routine assumes that all the privileged stacks are in our 156 * data space. 157 */ 158 static inline long get_user_reg(struct task_struct *task, int offset) 159 { 160 return task_pt_regs(task)->uregs[offset]; 161 } 162 163 /* 164 * this routine will put a word on the processes privileged stack. 165 * the offset is how far from the base addr as stored in the THREAD. 166 * this routine assumes that all the privileged stacks are in our 167 * data space. 168 */ 169 static inline int 170 put_user_reg(struct task_struct *task, int offset, long data) 171 { 172 struct pt_regs newregs, *regs = task_pt_regs(task); 173 int ret = -EINVAL; 174 175 newregs = *regs; 176 newregs.uregs[offset] = data; 177 178 if (valid_user_regs(&newregs)) { 179 regs->uregs[offset] = data; 180 ret = 0; 181 } 182 183 return ret; 184 } 185 186 /* 187 * Called by kernel/ptrace.c when detaching.. 188 */ 189 void ptrace_disable(struct task_struct *child) 190 { 191 /* Nothing to do. */ 192 } 193 194 /* 195 * Handle hitting a breakpoint. 196 */ 197 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) 198 { 199 siginfo_t info; 200 201 info.si_signo = SIGTRAP; 202 info.si_errno = 0; 203 info.si_code = TRAP_BRKPT; 204 info.si_addr = (void __user *)instruction_pointer(regs); 205 206 force_sig_info(SIGTRAP, &info, tsk); 207 } 208 209 static int break_trap(struct pt_regs *regs, unsigned int instr) 210 { 211 ptrace_break(current, regs); 212 return 0; 213 } 214 215 static struct undef_hook arm_break_hook = { 216 .instr_mask = 0x0fffffff, 217 .instr_val = 0x07f001f0, 218 .cpsr_mask = PSR_T_BIT, 219 .cpsr_val = 0, 220 .fn = break_trap, 221 }; 222 223 static struct undef_hook thumb_break_hook = { 224 .instr_mask = 0xffff, 225 .instr_val = 0xde01, 226 .cpsr_mask = PSR_T_BIT, 227 .cpsr_val = PSR_T_BIT, 228 .fn = break_trap, 229 }; 230 231 static struct undef_hook thumb2_break_hook = { 232 .instr_mask = 0xffffffff, 233 .instr_val = 0xf7f0a000, 234 .cpsr_mask = PSR_T_BIT, 235 .cpsr_val = PSR_T_BIT, 236 .fn = break_trap, 237 }; 238 239 static int __init ptrace_break_init(void) 240 { 241 register_undef_hook(&arm_break_hook); 242 register_undef_hook(&thumb_break_hook); 243 register_undef_hook(&thumb2_break_hook); 244 return 0; 245 } 246 247 core_initcall(ptrace_break_init); 248 249 /* 250 * Read the word at offset "off" into the "struct user". We 251 * actually access the pt_regs stored on the kernel stack. 252 */ 253 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 254 unsigned long __user *ret) 255 { 256 unsigned long tmp; 257 258 if (off & 3 || off >= sizeof(struct user)) 259 return -EIO; 260 261 tmp = 0; 262 if (off == PT_TEXT_ADDR) 263 tmp = tsk->mm->start_code; 264 else if (off == PT_DATA_ADDR) 265 tmp = tsk->mm->start_data; 266 else if (off == PT_TEXT_END_ADDR) 267 tmp = tsk->mm->end_code; 268 else if (off < sizeof(struct pt_regs)) 269 tmp = get_user_reg(tsk, off >> 2); 270 271 return put_user(tmp, ret); 272 } 273 274 /* 275 * Write the word at offset "off" into "struct user". We 276 * actually access the pt_regs stored on the kernel stack. 277 */ 278 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 279 unsigned long val) 280 { 281 if (off & 3 || off >= sizeof(struct user)) 282 return -EIO; 283 284 if (off >= sizeof(struct pt_regs)) 285 return 0; 286 287 return put_user_reg(tsk, off >> 2, val); 288 } 289 290 #ifdef CONFIG_IWMMXT 291 292 /* 293 * Get the child iWMMXt state. 294 */ 295 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 296 { 297 struct thread_info *thread = task_thread_info(tsk); 298 299 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 300 return -ENODATA; 301 iwmmxt_task_disable(thread); /* force it to ram */ 302 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 303 ? -EFAULT : 0; 304 } 305 306 /* 307 * Set the child iWMMXt state. 308 */ 309 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 310 { 311 struct thread_info *thread = task_thread_info(tsk); 312 313 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 314 return -EACCES; 315 iwmmxt_task_release(thread); /* force a reload */ 316 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 317 ? -EFAULT : 0; 318 } 319 320 #endif 321 322 #ifdef CONFIG_CRUNCH 323 /* 324 * Get the child Crunch state. 325 */ 326 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 327 { 328 struct thread_info *thread = task_thread_info(tsk); 329 330 crunch_task_disable(thread); /* force it to ram */ 331 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 332 ? -EFAULT : 0; 333 } 334 335 /* 336 * Set the child Crunch state. 337 */ 338 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 339 { 340 struct thread_info *thread = task_thread_info(tsk); 341 342 crunch_task_release(thread); /* force a reload */ 343 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 344 ? -EFAULT : 0; 345 } 346 #endif 347 348 #ifdef CONFIG_HAVE_HW_BREAKPOINT 349 /* 350 * Convert a virtual register number into an index for a thread_info 351 * breakpoint array. Breakpoints are identified using positive numbers 352 * whilst watchpoints are negative. The registers are laid out as pairs 353 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 354 * Register 0 is reserved for describing resource information. 355 */ 356 static int ptrace_hbp_num_to_idx(long num) 357 { 358 if (num < 0) 359 num = (ARM_MAX_BRP << 1) - num; 360 return (num - 1) >> 1; 361 } 362 363 /* 364 * Returns the virtual register number for the address of the 365 * breakpoint at index idx. 366 */ 367 static long ptrace_hbp_idx_to_num(int idx) 368 { 369 long mid = ARM_MAX_BRP << 1; 370 long num = (idx << 1) + 1; 371 return num > mid ? mid - num : num; 372 } 373 374 /* 375 * Handle hitting a HW-breakpoint. 376 */ 377 static void ptrace_hbptriggered(struct perf_event *bp, 378 struct perf_sample_data *data, 379 struct pt_regs *regs) 380 { 381 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 382 long num; 383 int i; 384 siginfo_t info; 385 386 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 387 if (current->thread.debug.hbp[i] == bp) 388 break; 389 390 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 391 392 info.si_signo = SIGTRAP; 393 info.si_errno = (int)num; 394 info.si_code = TRAP_HWBKPT; 395 info.si_addr = (void __user *)(bkpt->trigger); 396 397 force_sig_info(SIGTRAP, &info, current); 398 } 399 400 /* 401 * Set ptrace breakpoint pointers to zero for this task. 402 * This is required in order to prevent child processes from unregistering 403 * breakpoints held by their parent. 404 */ 405 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 406 { 407 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 408 } 409 410 /* 411 * Unregister breakpoints from this task and reset the pointers in 412 * the thread_struct. 413 */ 414 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 415 { 416 int i; 417 struct thread_struct *t = &tsk->thread; 418 419 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 420 if (t->debug.hbp[i]) { 421 unregister_hw_breakpoint(t->debug.hbp[i]); 422 t->debug.hbp[i] = NULL; 423 } 424 } 425 } 426 427 static u32 ptrace_get_hbp_resource_info(void) 428 { 429 u8 num_brps, num_wrps, debug_arch, wp_len; 430 u32 reg = 0; 431 432 num_brps = hw_breakpoint_slots(TYPE_INST); 433 num_wrps = hw_breakpoint_slots(TYPE_DATA); 434 debug_arch = arch_get_debug_arch(); 435 wp_len = arch_get_max_wp_len(); 436 437 reg |= debug_arch; 438 reg <<= 8; 439 reg |= wp_len; 440 reg <<= 8; 441 reg |= num_wrps; 442 reg <<= 8; 443 reg |= num_brps; 444 445 return reg; 446 } 447 448 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 449 { 450 struct perf_event_attr attr; 451 452 ptrace_breakpoint_init(&attr); 453 454 /* Initialise fields to sane defaults. */ 455 attr.bp_addr = 0; 456 attr.bp_len = HW_BREAKPOINT_LEN_4; 457 attr.bp_type = type; 458 attr.disabled = 1; 459 460 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 461 tsk); 462 } 463 464 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 465 unsigned long __user *data) 466 { 467 u32 reg; 468 int idx, ret = 0; 469 struct perf_event *bp; 470 struct arch_hw_breakpoint_ctrl arch_ctrl; 471 472 if (num == 0) { 473 reg = ptrace_get_hbp_resource_info(); 474 } else { 475 idx = ptrace_hbp_num_to_idx(num); 476 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 477 ret = -EINVAL; 478 goto out; 479 } 480 481 bp = tsk->thread.debug.hbp[idx]; 482 if (!bp) { 483 reg = 0; 484 goto put; 485 } 486 487 arch_ctrl = counter_arch_bp(bp)->ctrl; 488 489 /* 490 * Fix up the len because we may have adjusted it 491 * to compensate for an unaligned address. 492 */ 493 while (!(arch_ctrl.len & 0x1)) 494 arch_ctrl.len >>= 1; 495 496 if (num & 0x1) 497 reg = bp->attr.bp_addr; 498 else 499 reg = encode_ctrl_reg(arch_ctrl); 500 } 501 502 put: 503 if (put_user(reg, data)) 504 ret = -EFAULT; 505 506 out: 507 return ret; 508 } 509 510 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 511 unsigned long __user *data) 512 { 513 int idx, gen_len, gen_type, implied_type, ret = 0; 514 u32 user_val; 515 struct perf_event *bp; 516 struct arch_hw_breakpoint_ctrl ctrl; 517 struct perf_event_attr attr; 518 519 if (num == 0) 520 goto out; 521 else if (num < 0) 522 implied_type = HW_BREAKPOINT_RW; 523 else 524 implied_type = HW_BREAKPOINT_X; 525 526 idx = ptrace_hbp_num_to_idx(num); 527 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 528 ret = -EINVAL; 529 goto out; 530 } 531 532 if (get_user(user_val, data)) { 533 ret = -EFAULT; 534 goto out; 535 } 536 537 bp = tsk->thread.debug.hbp[idx]; 538 if (!bp) { 539 bp = ptrace_hbp_create(tsk, implied_type); 540 if (IS_ERR(bp)) { 541 ret = PTR_ERR(bp); 542 goto out; 543 } 544 tsk->thread.debug.hbp[idx] = bp; 545 } 546 547 attr = bp->attr; 548 549 if (num & 0x1) { 550 /* Address */ 551 attr.bp_addr = user_val; 552 } else { 553 /* Control */ 554 decode_ctrl_reg(user_val, &ctrl); 555 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 556 if (ret) 557 goto out; 558 559 if ((gen_type & implied_type) != gen_type) { 560 ret = -EINVAL; 561 goto out; 562 } 563 564 attr.bp_len = gen_len; 565 attr.bp_type = gen_type; 566 attr.disabled = !ctrl.enabled; 567 } 568 569 ret = modify_user_hw_breakpoint(bp, &attr); 570 out: 571 return ret; 572 } 573 #endif 574 575 /* regset get/set implementations */ 576 577 static int gpr_get(struct task_struct *target, 578 const struct user_regset *regset, 579 unsigned int pos, unsigned int count, 580 void *kbuf, void __user *ubuf) 581 { 582 struct pt_regs *regs = task_pt_regs(target); 583 584 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 585 regs, 586 0, sizeof(*regs)); 587 } 588 589 static int gpr_set(struct task_struct *target, 590 const struct user_regset *regset, 591 unsigned int pos, unsigned int count, 592 const void *kbuf, const void __user *ubuf) 593 { 594 int ret; 595 struct pt_regs newregs; 596 597 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 598 &newregs, 599 0, sizeof(newregs)); 600 if (ret) 601 return ret; 602 603 if (!valid_user_regs(&newregs)) 604 return -EINVAL; 605 606 *task_pt_regs(target) = newregs; 607 return 0; 608 } 609 610 static int fpa_get(struct task_struct *target, 611 const struct user_regset *regset, 612 unsigned int pos, unsigned int count, 613 void *kbuf, void __user *ubuf) 614 { 615 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 616 &task_thread_info(target)->fpstate, 617 0, sizeof(struct user_fp)); 618 } 619 620 static int fpa_set(struct task_struct *target, 621 const struct user_regset *regset, 622 unsigned int pos, unsigned int count, 623 const void *kbuf, const void __user *ubuf) 624 { 625 struct thread_info *thread = task_thread_info(target); 626 627 thread->used_cp[1] = thread->used_cp[2] = 1; 628 629 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 630 &thread->fpstate, 631 0, sizeof(struct user_fp)); 632 } 633 634 #ifdef CONFIG_VFP 635 /* 636 * VFP register get/set implementations. 637 * 638 * With respect to the kernel, struct user_fp is divided into three chunks: 639 * 16 or 32 real VFP registers (d0-d15 or d0-31) 640 * These are transferred to/from the real registers in the task's 641 * vfp_hard_struct. The number of registers depends on the kernel 642 * configuration. 643 * 644 * 16 or 0 fake VFP registers (d16-d31 or empty) 645 * i.e., the user_vfp structure has space for 32 registers even if 646 * the kernel doesn't have them all. 647 * 648 * vfp_get() reads this chunk as zero where applicable 649 * vfp_set() ignores this chunk 650 * 651 * 1 word for the FPSCR 652 * 653 * The bounds-checking logic built into user_regset_copyout and friends 654 * means that we can make a simple sequence of calls to map the relevant data 655 * to/from the specified slice of the user regset structure. 656 */ 657 static int vfp_get(struct task_struct *target, 658 const struct user_regset *regset, 659 unsigned int pos, unsigned int count, 660 void *kbuf, void __user *ubuf) 661 { 662 int ret; 663 struct thread_info *thread = task_thread_info(target); 664 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 665 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 666 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 667 668 vfp_sync_hwstate(thread); 669 670 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 671 &vfp->fpregs, 672 user_fpregs_offset, 673 user_fpregs_offset + sizeof(vfp->fpregs)); 674 if (ret) 675 return ret; 676 677 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 678 user_fpregs_offset + sizeof(vfp->fpregs), 679 user_fpscr_offset); 680 if (ret) 681 return ret; 682 683 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 684 &vfp->fpscr, 685 user_fpscr_offset, 686 user_fpscr_offset + sizeof(vfp->fpscr)); 687 } 688 689 /* 690 * For vfp_set() a read-modify-write is done on the VFP registers, 691 * in order to avoid writing back a half-modified set of registers on 692 * failure. 693 */ 694 static int vfp_set(struct task_struct *target, 695 const struct user_regset *regset, 696 unsigned int pos, unsigned int count, 697 const void *kbuf, const void __user *ubuf) 698 { 699 int ret; 700 struct thread_info *thread = task_thread_info(target); 701 struct vfp_hard_struct new_vfp = thread->vfpstate.hard; 702 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 703 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 704 705 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 706 &new_vfp.fpregs, 707 user_fpregs_offset, 708 user_fpregs_offset + sizeof(new_vfp.fpregs)); 709 if (ret) 710 return ret; 711 712 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 713 user_fpregs_offset + sizeof(new_vfp.fpregs), 714 user_fpscr_offset); 715 if (ret) 716 return ret; 717 718 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 719 &new_vfp.fpscr, 720 user_fpscr_offset, 721 user_fpscr_offset + sizeof(new_vfp.fpscr)); 722 if (ret) 723 return ret; 724 725 vfp_sync_hwstate(thread); 726 thread->vfpstate.hard = new_vfp; 727 vfp_flush_hwstate(thread); 728 729 return 0; 730 } 731 #endif /* CONFIG_VFP */ 732 733 enum arm_regset { 734 REGSET_GPR, 735 REGSET_FPR, 736 #ifdef CONFIG_VFP 737 REGSET_VFP, 738 #endif 739 }; 740 741 static const struct user_regset arm_regsets[] = { 742 [REGSET_GPR] = { 743 .core_note_type = NT_PRSTATUS, 744 .n = ELF_NGREG, 745 .size = sizeof(u32), 746 .align = sizeof(u32), 747 .get = gpr_get, 748 .set = gpr_set 749 }, 750 [REGSET_FPR] = { 751 /* 752 * For the FPA regs in fpstate, the real fields are a mixture 753 * of sizes, so pretend that the registers are word-sized: 754 */ 755 .core_note_type = NT_PRFPREG, 756 .n = sizeof(struct user_fp) / sizeof(u32), 757 .size = sizeof(u32), 758 .align = sizeof(u32), 759 .get = fpa_get, 760 .set = fpa_set 761 }, 762 #ifdef CONFIG_VFP 763 [REGSET_VFP] = { 764 /* 765 * Pretend that the VFP regs are word-sized, since the FPSCR is 766 * a single word dangling at the end of struct user_vfp: 767 */ 768 .core_note_type = NT_ARM_VFP, 769 .n = ARM_VFPREGS_SIZE / sizeof(u32), 770 .size = sizeof(u32), 771 .align = sizeof(u32), 772 .get = vfp_get, 773 .set = vfp_set 774 }, 775 #endif /* CONFIG_VFP */ 776 }; 777 778 static const struct user_regset_view user_arm_view = { 779 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 780 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 781 }; 782 783 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 784 { 785 return &user_arm_view; 786 } 787 788 long arch_ptrace(struct task_struct *child, long request, 789 unsigned long addr, unsigned long data) 790 { 791 int ret; 792 unsigned long __user *datap = (unsigned long __user *) data; 793 794 switch (request) { 795 case PTRACE_PEEKUSR: 796 ret = ptrace_read_user(child, addr, datap); 797 break; 798 799 case PTRACE_POKEUSR: 800 ret = ptrace_write_user(child, addr, data); 801 break; 802 803 case PTRACE_GETREGS: 804 ret = copy_regset_to_user(child, 805 &user_arm_view, REGSET_GPR, 806 0, sizeof(struct pt_regs), 807 datap); 808 break; 809 810 case PTRACE_SETREGS: 811 ret = copy_regset_from_user(child, 812 &user_arm_view, REGSET_GPR, 813 0, sizeof(struct pt_regs), 814 datap); 815 break; 816 817 case PTRACE_GETFPREGS: 818 ret = copy_regset_to_user(child, 819 &user_arm_view, REGSET_FPR, 820 0, sizeof(union fp_state), 821 datap); 822 break; 823 824 case PTRACE_SETFPREGS: 825 ret = copy_regset_from_user(child, 826 &user_arm_view, REGSET_FPR, 827 0, sizeof(union fp_state), 828 datap); 829 break; 830 831 #ifdef CONFIG_IWMMXT 832 case PTRACE_GETWMMXREGS: 833 ret = ptrace_getwmmxregs(child, datap); 834 break; 835 836 case PTRACE_SETWMMXREGS: 837 ret = ptrace_setwmmxregs(child, datap); 838 break; 839 #endif 840 841 case PTRACE_GET_THREAD_AREA: 842 ret = put_user(task_thread_info(child)->tp_value, 843 datap); 844 break; 845 846 case PTRACE_SET_SYSCALL: 847 task_thread_info(child)->syscall = data; 848 ret = 0; 849 break; 850 851 #ifdef CONFIG_CRUNCH 852 case PTRACE_GETCRUNCHREGS: 853 ret = ptrace_getcrunchregs(child, datap); 854 break; 855 856 case PTRACE_SETCRUNCHREGS: 857 ret = ptrace_setcrunchregs(child, datap); 858 break; 859 #endif 860 861 #ifdef CONFIG_VFP 862 case PTRACE_GETVFPREGS: 863 ret = copy_regset_to_user(child, 864 &user_arm_view, REGSET_VFP, 865 0, ARM_VFPREGS_SIZE, 866 datap); 867 break; 868 869 case PTRACE_SETVFPREGS: 870 ret = copy_regset_from_user(child, 871 &user_arm_view, REGSET_VFP, 872 0, ARM_VFPREGS_SIZE, 873 datap); 874 break; 875 #endif 876 877 #ifdef CONFIG_HAVE_HW_BREAKPOINT 878 case PTRACE_GETHBPREGS: 879 if (ptrace_get_breakpoints(child) < 0) 880 return -ESRCH; 881 882 ret = ptrace_gethbpregs(child, addr, 883 (unsigned long __user *)data); 884 ptrace_put_breakpoints(child); 885 break; 886 case PTRACE_SETHBPREGS: 887 if (ptrace_get_breakpoints(child) < 0) 888 return -ESRCH; 889 890 ret = ptrace_sethbpregs(child, addr, 891 (unsigned long __user *)data); 892 ptrace_put_breakpoints(child); 893 break; 894 #endif 895 896 default: 897 ret = ptrace_request(child, request, addr, data); 898 break; 899 } 900 901 return ret; 902 } 903 904 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) 905 { 906 unsigned long ip; 907 908 if (!test_thread_flag(TIF_SYSCALL_TRACE)) 909 return scno; 910 if (!(current->ptrace & PT_PTRACED)) 911 return scno; 912 913 /* 914 * Save IP. IP is used to denote syscall entry/exit: 915 * IP = 0 -> entry, = 1 -> exit 916 */ 917 ip = regs->ARM_ip; 918 regs->ARM_ip = why; 919 920 current_thread_info()->syscall = scno; 921 922 /* the 0x80 provides a way for the tracing parent to distinguish 923 between a syscall stop and SIGTRAP delivery */ 924 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) 925 ? 0x80 : 0)); 926 /* 927 * this isn't the same as continuing with a signal, but it will do 928 * for normal use. strace only continues with a signal if the 929 * stopping signal is not SIGTRAP. -brl 930 */ 931 if (current->exit_code) { 932 send_sig(current->exit_code, current, 1); 933 current->exit_code = 0; 934 } 935 regs->ARM_ip = ip; 936 937 return current_thread_info()->syscall; 938 } 939