xref: /linux/arch/arm/kernel/ptrace.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 #include <linux/tracehook.h>
28 
29 #include <asm/pgtable.h>
30 #include <asm/traps.h>
31 
32 #define REG_PC	15
33 #define REG_PSR	16
34 /*
35  * does not yet catch signals sent when the child dies.
36  * in exit.c or in signal.c.
37  */
38 
39 #if 0
40 /*
41  * Breakpoint SWI instruction: SWI &9F0001
42  */
43 #define BREAKINST_ARM	0xef9f0001
44 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
45 #else
46 /*
47  * New breakpoints - use an undefined instruction.  The ARM architecture
48  * reference manual guarantees that the following instruction space
49  * will produce an undefined instruction exception on all CPUs:
50  *
51  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
52  *  Thumb: 1101 1110 xxxx xxxx
53  */
54 #define BREAKINST_ARM	0xe7f001f0
55 #define BREAKINST_THUMB	0xde01
56 #endif
57 
58 struct pt_regs_offset {
59 	const char *name;
60 	int offset;
61 };
62 
63 #define REG_OFFSET_NAME(r) \
64 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
66 
67 static const struct pt_regs_offset regoffset_table[] = {
68 	REG_OFFSET_NAME(r0),
69 	REG_OFFSET_NAME(r1),
70 	REG_OFFSET_NAME(r2),
71 	REG_OFFSET_NAME(r3),
72 	REG_OFFSET_NAME(r4),
73 	REG_OFFSET_NAME(r5),
74 	REG_OFFSET_NAME(r6),
75 	REG_OFFSET_NAME(r7),
76 	REG_OFFSET_NAME(r8),
77 	REG_OFFSET_NAME(r9),
78 	REG_OFFSET_NAME(r10),
79 	REG_OFFSET_NAME(fp),
80 	REG_OFFSET_NAME(ip),
81 	REG_OFFSET_NAME(sp),
82 	REG_OFFSET_NAME(lr),
83 	REG_OFFSET_NAME(pc),
84 	REG_OFFSET_NAME(cpsr),
85 	REG_OFFSET_NAME(ORIG_r0),
86 	REG_OFFSET_END,
87 };
88 
89 /**
90  * regs_query_register_offset() - query register offset from its name
91  * @name:	the name of a register
92  *
93  * regs_query_register_offset() returns the offset of a register in struct
94  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
95  */
96 int regs_query_register_offset(const char *name)
97 {
98 	const struct pt_regs_offset *roff;
99 	for (roff = regoffset_table; roff->name != NULL; roff++)
100 		if (!strcmp(roff->name, name))
101 			return roff->offset;
102 	return -EINVAL;
103 }
104 
105 /**
106  * regs_query_register_name() - query register name from its offset
107  * @offset:	the offset of a register in struct pt_regs.
108  *
109  * regs_query_register_name() returns the name of a register from its
110  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
111  */
112 const char *regs_query_register_name(unsigned int offset)
113 {
114 	const struct pt_regs_offset *roff;
115 	for (roff = regoffset_table; roff->name != NULL; roff++)
116 		if (roff->offset == offset)
117 			return roff->name;
118 	return NULL;
119 }
120 
121 /**
122  * regs_within_kernel_stack() - check the address in the stack
123  * @regs:      pt_regs which contains kernel stack pointer.
124  * @addr:      address which is checked.
125  *
126  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127  * If @addr is within the kernel stack, it returns true. If not, returns false.
128  */
129 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
130 {
131 	return ((addr & ~(THREAD_SIZE - 1))  ==
132 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
133 }
134 
135 /**
136  * regs_get_kernel_stack_nth() - get Nth entry of the stack
137  * @regs:	pt_regs which contains kernel stack pointer.
138  * @n:		stack entry number.
139  *
140  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142  * this returns 0.
143  */
144 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
145 {
146 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147 	addr += n;
148 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
149 		return *addr;
150 	else
151 		return 0;
152 }
153 
154 /*
155  * this routine will get a word off of the processes privileged stack.
156  * the offset is how far from the base addr as stored in the THREAD.
157  * this routine assumes that all the privileged stacks are in our
158  * data space.
159  */
160 static inline long get_user_reg(struct task_struct *task, int offset)
161 {
162 	return task_pt_regs(task)->uregs[offset];
163 }
164 
165 /*
166  * this routine will put a word on the processes privileged stack.
167  * the offset is how far from the base addr as stored in the THREAD.
168  * this routine assumes that all the privileged stacks are in our
169  * data space.
170  */
171 static inline int
172 put_user_reg(struct task_struct *task, int offset, long data)
173 {
174 	struct pt_regs newregs, *regs = task_pt_regs(task);
175 	int ret = -EINVAL;
176 
177 	newregs = *regs;
178 	newregs.uregs[offset] = data;
179 
180 	if (valid_user_regs(&newregs)) {
181 		regs->uregs[offset] = data;
182 		ret = 0;
183 	}
184 
185 	return ret;
186 }
187 
188 /*
189  * Called by kernel/ptrace.c when detaching..
190  */
191 void ptrace_disable(struct task_struct *child)
192 {
193 	/* Nothing to do. */
194 }
195 
196 /*
197  * Handle hitting a breakpoint.
198  */
199 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
200 {
201 	siginfo_t info;
202 
203 	info.si_signo = SIGTRAP;
204 	info.si_errno = 0;
205 	info.si_code  = TRAP_BRKPT;
206 	info.si_addr  = (void __user *)instruction_pointer(regs);
207 
208 	force_sig_info(SIGTRAP, &info, tsk);
209 }
210 
211 static int break_trap(struct pt_regs *regs, unsigned int instr)
212 {
213 	ptrace_break(current, regs);
214 	return 0;
215 }
216 
217 static struct undef_hook arm_break_hook = {
218 	.instr_mask	= 0x0fffffff,
219 	.instr_val	= 0x07f001f0,
220 	.cpsr_mask	= PSR_T_BIT,
221 	.cpsr_val	= 0,
222 	.fn		= break_trap,
223 };
224 
225 static struct undef_hook thumb_break_hook = {
226 	.instr_mask	= 0xffff,
227 	.instr_val	= 0xde01,
228 	.cpsr_mask	= PSR_T_BIT,
229 	.cpsr_val	= PSR_T_BIT,
230 	.fn		= break_trap,
231 };
232 
233 static struct undef_hook thumb2_break_hook = {
234 	.instr_mask	= 0xffffffff,
235 	.instr_val	= 0xf7f0a000,
236 	.cpsr_mask	= PSR_T_BIT,
237 	.cpsr_val	= PSR_T_BIT,
238 	.fn		= break_trap,
239 };
240 
241 static int __init ptrace_break_init(void)
242 {
243 	register_undef_hook(&arm_break_hook);
244 	register_undef_hook(&thumb_break_hook);
245 	register_undef_hook(&thumb2_break_hook);
246 	return 0;
247 }
248 
249 core_initcall(ptrace_break_init);
250 
251 /*
252  * Read the word at offset "off" into the "struct user".  We
253  * actually access the pt_regs stored on the kernel stack.
254  */
255 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256 			    unsigned long __user *ret)
257 {
258 	unsigned long tmp;
259 
260 	if (off & 3)
261 		return -EIO;
262 
263 	tmp = 0;
264 	if (off == PT_TEXT_ADDR)
265 		tmp = tsk->mm->start_code;
266 	else if (off == PT_DATA_ADDR)
267 		tmp = tsk->mm->start_data;
268 	else if (off == PT_TEXT_END_ADDR)
269 		tmp = tsk->mm->end_code;
270 	else if (off < sizeof(struct pt_regs))
271 		tmp = get_user_reg(tsk, off >> 2);
272 	else if (off >= sizeof(struct user))
273 		return -EIO;
274 
275 	return put_user(tmp, ret);
276 }
277 
278 /*
279  * Write the word at offset "off" into "struct user".  We
280  * actually access the pt_regs stored on the kernel stack.
281  */
282 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
283 			     unsigned long val)
284 {
285 	if (off & 3 || off >= sizeof(struct user))
286 		return -EIO;
287 
288 	if (off >= sizeof(struct pt_regs))
289 		return 0;
290 
291 	return put_user_reg(tsk, off >> 2, val);
292 }
293 
294 #ifdef CONFIG_IWMMXT
295 
296 /*
297  * Get the child iWMMXt state.
298  */
299 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
300 {
301 	struct thread_info *thread = task_thread_info(tsk);
302 
303 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
304 		return -ENODATA;
305 	iwmmxt_task_disable(thread);  /* force it to ram */
306 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
307 		? -EFAULT : 0;
308 }
309 
310 /*
311  * Set the child iWMMXt state.
312  */
313 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
314 {
315 	struct thread_info *thread = task_thread_info(tsk);
316 
317 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
318 		return -EACCES;
319 	iwmmxt_task_release(thread);  /* force a reload */
320 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
321 		? -EFAULT : 0;
322 }
323 
324 #endif
325 
326 #ifdef CONFIG_CRUNCH
327 /*
328  * Get the child Crunch state.
329  */
330 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
331 {
332 	struct thread_info *thread = task_thread_info(tsk);
333 
334 	crunch_task_disable(thread);  /* force it to ram */
335 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
336 		? -EFAULT : 0;
337 }
338 
339 /*
340  * Set the child Crunch state.
341  */
342 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
343 {
344 	struct thread_info *thread = task_thread_info(tsk);
345 
346 	crunch_task_release(thread);  /* force a reload */
347 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
348 		? -EFAULT : 0;
349 }
350 #endif
351 
352 #ifdef CONFIG_HAVE_HW_BREAKPOINT
353 /*
354  * Convert a virtual register number into an index for a thread_info
355  * breakpoint array. Breakpoints are identified using positive numbers
356  * whilst watchpoints are negative. The registers are laid out as pairs
357  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
358  * Register 0 is reserved for describing resource information.
359  */
360 static int ptrace_hbp_num_to_idx(long num)
361 {
362 	if (num < 0)
363 		num = (ARM_MAX_BRP << 1) - num;
364 	return (num - 1) >> 1;
365 }
366 
367 /*
368  * Returns the virtual register number for the address of the
369  * breakpoint at index idx.
370  */
371 static long ptrace_hbp_idx_to_num(int idx)
372 {
373 	long mid = ARM_MAX_BRP << 1;
374 	long num = (idx << 1) + 1;
375 	return num > mid ? mid - num : num;
376 }
377 
378 /*
379  * Handle hitting a HW-breakpoint.
380  */
381 static void ptrace_hbptriggered(struct perf_event *bp,
382 				     struct perf_sample_data *data,
383 				     struct pt_regs *regs)
384 {
385 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
386 	long num;
387 	int i;
388 	siginfo_t info;
389 
390 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
391 		if (current->thread.debug.hbp[i] == bp)
392 			break;
393 
394 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
395 
396 	info.si_signo	= SIGTRAP;
397 	info.si_errno	= (int)num;
398 	info.si_code	= TRAP_HWBKPT;
399 	info.si_addr	= (void __user *)(bkpt->trigger);
400 
401 	force_sig_info(SIGTRAP, &info, current);
402 }
403 
404 /*
405  * Set ptrace breakpoint pointers to zero for this task.
406  * This is required in order to prevent child processes from unregistering
407  * breakpoints held by their parent.
408  */
409 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
410 {
411 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
412 }
413 
414 /*
415  * Unregister breakpoints from this task and reset the pointers in
416  * the thread_struct.
417  */
418 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
419 {
420 	int i;
421 	struct thread_struct *t = &tsk->thread;
422 
423 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
424 		if (t->debug.hbp[i]) {
425 			unregister_hw_breakpoint(t->debug.hbp[i]);
426 			t->debug.hbp[i] = NULL;
427 		}
428 	}
429 }
430 
431 static u32 ptrace_get_hbp_resource_info(void)
432 {
433 	u8 num_brps, num_wrps, debug_arch, wp_len;
434 	u32 reg = 0;
435 
436 	num_brps	= hw_breakpoint_slots(TYPE_INST);
437 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
438 	debug_arch	= arch_get_debug_arch();
439 	wp_len		= arch_get_max_wp_len();
440 
441 	reg		|= debug_arch;
442 	reg		<<= 8;
443 	reg		|= wp_len;
444 	reg		<<= 8;
445 	reg		|= num_wrps;
446 	reg		<<= 8;
447 	reg		|= num_brps;
448 
449 	return reg;
450 }
451 
452 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
453 {
454 	struct perf_event_attr attr;
455 
456 	ptrace_breakpoint_init(&attr);
457 
458 	/* Initialise fields to sane defaults. */
459 	attr.bp_addr	= 0;
460 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
461 	attr.bp_type	= type;
462 	attr.disabled	= 1;
463 
464 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
465 					   tsk);
466 }
467 
468 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
469 			     unsigned long  __user *data)
470 {
471 	u32 reg;
472 	int idx, ret = 0;
473 	struct perf_event *bp;
474 	struct arch_hw_breakpoint_ctrl arch_ctrl;
475 
476 	if (num == 0) {
477 		reg = ptrace_get_hbp_resource_info();
478 	} else {
479 		idx = ptrace_hbp_num_to_idx(num);
480 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
481 			ret = -EINVAL;
482 			goto out;
483 		}
484 
485 		bp = tsk->thread.debug.hbp[idx];
486 		if (!bp) {
487 			reg = 0;
488 			goto put;
489 		}
490 
491 		arch_ctrl = counter_arch_bp(bp)->ctrl;
492 
493 		/*
494 		 * Fix up the len because we may have adjusted it
495 		 * to compensate for an unaligned address.
496 		 */
497 		while (!(arch_ctrl.len & 0x1))
498 			arch_ctrl.len >>= 1;
499 
500 		if (num & 0x1)
501 			reg = bp->attr.bp_addr;
502 		else
503 			reg = encode_ctrl_reg(arch_ctrl);
504 	}
505 
506 put:
507 	if (put_user(reg, data))
508 		ret = -EFAULT;
509 
510 out:
511 	return ret;
512 }
513 
514 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
515 			     unsigned long __user *data)
516 {
517 	int idx, gen_len, gen_type, implied_type, ret = 0;
518 	u32 user_val;
519 	struct perf_event *bp;
520 	struct arch_hw_breakpoint_ctrl ctrl;
521 	struct perf_event_attr attr;
522 
523 	if (num == 0)
524 		goto out;
525 	else if (num < 0)
526 		implied_type = HW_BREAKPOINT_RW;
527 	else
528 		implied_type = HW_BREAKPOINT_X;
529 
530 	idx = ptrace_hbp_num_to_idx(num);
531 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
532 		ret = -EINVAL;
533 		goto out;
534 	}
535 
536 	if (get_user(user_val, data)) {
537 		ret = -EFAULT;
538 		goto out;
539 	}
540 
541 	bp = tsk->thread.debug.hbp[idx];
542 	if (!bp) {
543 		bp = ptrace_hbp_create(tsk, implied_type);
544 		if (IS_ERR(bp)) {
545 			ret = PTR_ERR(bp);
546 			goto out;
547 		}
548 		tsk->thread.debug.hbp[idx] = bp;
549 	}
550 
551 	attr = bp->attr;
552 
553 	if (num & 0x1) {
554 		/* Address */
555 		attr.bp_addr	= user_val;
556 	} else {
557 		/* Control */
558 		decode_ctrl_reg(user_val, &ctrl);
559 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
560 		if (ret)
561 			goto out;
562 
563 		if ((gen_type & implied_type) != gen_type) {
564 			ret = -EINVAL;
565 			goto out;
566 		}
567 
568 		attr.bp_len	= gen_len;
569 		attr.bp_type	= gen_type;
570 		attr.disabled	= !ctrl.enabled;
571 	}
572 
573 	ret = modify_user_hw_breakpoint(bp, &attr);
574 out:
575 	return ret;
576 }
577 #endif
578 
579 /* regset get/set implementations */
580 
581 static int gpr_get(struct task_struct *target,
582 		   const struct user_regset *regset,
583 		   unsigned int pos, unsigned int count,
584 		   void *kbuf, void __user *ubuf)
585 {
586 	struct pt_regs *regs = task_pt_regs(target);
587 
588 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
589 				   regs,
590 				   0, sizeof(*regs));
591 }
592 
593 static int gpr_set(struct task_struct *target,
594 		   const struct user_regset *regset,
595 		   unsigned int pos, unsigned int count,
596 		   const void *kbuf, const void __user *ubuf)
597 {
598 	int ret;
599 	struct pt_regs newregs;
600 
601 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
602 				 &newregs,
603 				 0, sizeof(newregs));
604 	if (ret)
605 		return ret;
606 
607 	if (!valid_user_regs(&newregs))
608 		return -EINVAL;
609 
610 	*task_pt_regs(target) = newregs;
611 	return 0;
612 }
613 
614 static int fpa_get(struct task_struct *target,
615 		   const struct user_regset *regset,
616 		   unsigned int pos, unsigned int count,
617 		   void *kbuf, void __user *ubuf)
618 {
619 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
620 				   &task_thread_info(target)->fpstate,
621 				   0, sizeof(struct user_fp));
622 }
623 
624 static int fpa_set(struct task_struct *target,
625 		   const struct user_regset *regset,
626 		   unsigned int pos, unsigned int count,
627 		   const void *kbuf, const void __user *ubuf)
628 {
629 	struct thread_info *thread = task_thread_info(target);
630 
631 	thread->used_cp[1] = thread->used_cp[2] = 1;
632 
633 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
634 		&thread->fpstate,
635 		0, sizeof(struct user_fp));
636 }
637 
638 #ifdef CONFIG_VFP
639 /*
640  * VFP register get/set implementations.
641  *
642  * With respect to the kernel, struct user_fp is divided into three chunks:
643  * 16 or 32 real VFP registers (d0-d15 or d0-31)
644  *	These are transferred to/from the real registers in the task's
645  *	vfp_hard_struct.  The number of registers depends on the kernel
646  *	configuration.
647  *
648  * 16 or 0 fake VFP registers (d16-d31 or empty)
649  *	i.e., the user_vfp structure has space for 32 registers even if
650  *	the kernel doesn't have them all.
651  *
652  *	vfp_get() reads this chunk as zero where applicable
653  *	vfp_set() ignores this chunk
654  *
655  * 1 word for the FPSCR
656  *
657  * The bounds-checking logic built into user_regset_copyout and friends
658  * means that we can make a simple sequence of calls to map the relevant data
659  * to/from the specified slice of the user regset structure.
660  */
661 static int vfp_get(struct task_struct *target,
662 		   const struct user_regset *regset,
663 		   unsigned int pos, unsigned int count,
664 		   void *kbuf, void __user *ubuf)
665 {
666 	int ret;
667 	struct thread_info *thread = task_thread_info(target);
668 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
669 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
670 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
671 
672 	vfp_sync_hwstate(thread);
673 
674 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
675 				  &vfp->fpregs,
676 				  user_fpregs_offset,
677 				  user_fpregs_offset + sizeof(vfp->fpregs));
678 	if (ret)
679 		return ret;
680 
681 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
682 				       user_fpregs_offset + sizeof(vfp->fpregs),
683 				       user_fpscr_offset);
684 	if (ret)
685 		return ret;
686 
687 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
688 				   &vfp->fpscr,
689 				   user_fpscr_offset,
690 				   user_fpscr_offset + sizeof(vfp->fpscr));
691 }
692 
693 /*
694  * For vfp_set() a read-modify-write is done on the VFP registers,
695  * in order to avoid writing back a half-modified set of registers on
696  * failure.
697  */
698 static int vfp_set(struct task_struct *target,
699 			  const struct user_regset *regset,
700 			  unsigned int pos, unsigned int count,
701 			  const void *kbuf, const void __user *ubuf)
702 {
703 	int ret;
704 	struct thread_info *thread = task_thread_info(target);
705 	struct vfp_hard_struct new_vfp;
706 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
707 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
708 
709 	vfp_sync_hwstate(thread);
710 	new_vfp = thread->vfpstate.hard;
711 
712 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
713 				  &new_vfp.fpregs,
714 				  user_fpregs_offset,
715 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
716 	if (ret)
717 		return ret;
718 
719 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
720 				user_fpregs_offset + sizeof(new_vfp.fpregs),
721 				user_fpscr_offset);
722 	if (ret)
723 		return ret;
724 
725 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
726 				 &new_vfp.fpscr,
727 				 user_fpscr_offset,
728 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
729 	if (ret)
730 		return ret;
731 
732 	vfp_flush_hwstate(thread);
733 	thread->vfpstate.hard = new_vfp;
734 
735 	return 0;
736 }
737 #endif /* CONFIG_VFP */
738 
739 enum arm_regset {
740 	REGSET_GPR,
741 	REGSET_FPR,
742 #ifdef CONFIG_VFP
743 	REGSET_VFP,
744 #endif
745 };
746 
747 static const struct user_regset arm_regsets[] = {
748 	[REGSET_GPR] = {
749 		.core_note_type = NT_PRSTATUS,
750 		.n = ELF_NGREG,
751 		.size = sizeof(u32),
752 		.align = sizeof(u32),
753 		.get = gpr_get,
754 		.set = gpr_set
755 	},
756 	[REGSET_FPR] = {
757 		/*
758 		 * For the FPA regs in fpstate, the real fields are a mixture
759 		 * of sizes, so pretend that the registers are word-sized:
760 		 */
761 		.core_note_type = NT_PRFPREG,
762 		.n = sizeof(struct user_fp) / sizeof(u32),
763 		.size = sizeof(u32),
764 		.align = sizeof(u32),
765 		.get = fpa_get,
766 		.set = fpa_set
767 	},
768 #ifdef CONFIG_VFP
769 	[REGSET_VFP] = {
770 		/*
771 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
772 		 * a single word dangling at the end of struct user_vfp:
773 		 */
774 		.core_note_type = NT_ARM_VFP,
775 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
776 		.size = sizeof(u32),
777 		.align = sizeof(u32),
778 		.get = vfp_get,
779 		.set = vfp_set
780 	},
781 #endif /* CONFIG_VFP */
782 };
783 
784 static const struct user_regset_view user_arm_view = {
785 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
786 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
787 };
788 
789 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
790 {
791 	return &user_arm_view;
792 }
793 
794 long arch_ptrace(struct task_struct *child, long request,
795 		 unsigned long addr, unsigned long data)
796 {
797 	int ret;
798 	unsigned long __user *datap = (unsigned long __user *) data;
799 
800 	switch (request) {
801 		case PTRACE_PEEKUSR:
802 			ret = ptrace_read_user(child, addr, datap);
803 			break;
804 
805 		case PTRACE_POKEUSR:
806 			ret = ptrace_write_user(child, addr, data);
807 			break;
808 
809 		case PTRACE_GETREGS:
810 			ret = copy_regset_to_user(child,
811 						  &user_arm_view, REGSET_GPR,
812 						  0, sizeof(struct pt_regs),
813 						  datap);
814 			break;
815 
816 		case PTRACE_SETREGS:
817 			ret = copy_regset_from_user(child,
818 						    &user_arm_view, REGSET_GPR,
819 						    0, sizeof(struct pt_regs),
820 						    datap);
821 			break;
822 
823 		case PTRACE_GETFPREGS:
824 			ret = copy_regset_to_user(child,
825 						  &user_arm_view, REGSET_FPR,
826 						  0, sizeof(union fp_state),
827 						  datap);
828 			break;
829 
830 		case PTRACE_SETFPREGS:
831 			ret = copy_regset_from_user(child,
832 						    &user_arm_view, REGSET_FPR,
833 						    0, sizeof(union fp_state),
834 						    datap);
835 			break;
836 
837 #ifdef CONFIG_IWMMXT
838 		case PTRACE_GETWMMXREGS:
839 			ret = ptrace_getwmmxregs(child, datap);
840 			break;
841 
842 		case PTRACE_SETWMMXREGS:
843 			ret = ptrace_setwmmxregs(child, datap);
844 			break;
845 #endif
846 
847 		case PTRACE_GET_THREAD_AREA:
848 			ret = put_user(task_thread_info(child)->tp_value,
849 				       datap);
850 			break;
851 
852 		case PTRACE_SET_SYSCALL:
853 			task_thread_info(child)->syscall = data;
854 			ret = 0;
855 			break;
856 
857 #ifdef CONFIG_CRUNCH
858 		case PTRACE_GETCRUNCHREGS:
859 			ret = ptrace_getcrunchregs(child, datap);
860 			break;
861 
862 		case PTRACE_SETCRUNCHREGS:
863 			ret = ptrace_setcrunchregs(child, datap);
864 			break;
865 #endif
866 
867 #ifdef CONFIG_VFP
868 		case PTRACE_GETVFPREGS:
869 			ret = copy_regset_to_user(child,
870 						  &user_arm_view, REGSET_VFP,
871 						  0, ARM_VFPREGS_SIZE,
872 						  datap);
873 			break;
874 
875 		case PTRACE_SETVFPREGS:
876 			ret = copy_regset_from_user(child,
877 						    &user_arm_view, REGSET_VFP,
878 						    0, ARM_VFPREGS_SIZE,
879 						    datap);
880 			break;
881 #endif
882 
883 #ifdef CONFIG_HAVE_HW_BREAKPOINT
884 		case PTRACE_GETHBPREGS:
885 			if (ptrace_get_breakpoints(child) < 0)
886 				return -ESRCH;
887 
888 			ret = ptrace_gethbpregs(child, addr,
889 						(unsigned long __user *)data);
890 			ptrace_put_breakpoints(child);
891 			break;
892 		case PTRACE_SETHBPREGS:
893 			if (ptrace_get_breakpoints(child) < 0)
894 				return -ESRCH;
895 
896 			ret = ptrace_sethbpregs(child, addr,
897 						(unsigned long __user *)data);
898 			ptrace_put_breakpoints(child);
899 			break;
900 #endif
901 
902 		default:
903 			ret = ptrace_request(child, request, addr, data);
904 			break;
905 	}
906 
907 	return ret;
908 }
909 
910 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
911 {
912 	unsigned long ip;
913 
914 	if (why)
915 		audit_syscall_exit(regs);
916 	else
917 		audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
918 				    regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
919 
920 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
921 		return scno;
922 
923 	current_thread_info()->syscall = scno;
924 
925 	/*
926 	 * IP is used to denote syscall entry/exit:
927 	 * IP = 0 -> entry, =1 -> exit
928 	 */
929 	ip = regs->ARM_ip;
930 	regs->ARM_ip = why;
931 
932 	if (why)
933 		tracehook_report_syscall_exit(regs, 0);
934 	else if (tracehook_report_syscall_entry(regs))
935 		current_thread_info()->syscall = -1;
936 
937 	regs->ARM_ip = ip;
938 
939 	return current_thread_info()->syscall;
940 }
941