1 /* 2 * linux/arch/arm/kernel/ptrace.c 3 * 4 * By Ross Biro 1/23/92 5 * edited by Linus Torvalds 6 * ARM modifications Copyright (C) 2000 Russell King 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/mm.h> 15 #include <linux/elf.h> 16 #include <linux/smp.h> 17 #include <linux/ptrace.h> 18 #include <linux/user.h> 19 #include <linux/security.h> 20 #include <linux/init.h> 21 #include <linux/signal.h> 22 #include <linux/uaccess.h> 23 #include <linux/perf_event.h> 24 #include <linux/hw_breakpoint.h> 25 #include <linux/regset.h> 26 #include <linux/audit.h> 27 #include <linux/tracehook.h> 28 29 #include <asm/pgtable.h> 30 #include <asm/traps.h> 31 32 #define REG_PC 15 33 #define REG_PSR 16 34 /* 35 * does not yet catch signals sent when the child dies. 36 * in exit.c or in signal.c. 37 */ 38 39 #if 0 40 /* 41 * Breakpoint SWI instruction: SWI &9F0001 42 */ 43 #define BREAKINST_ARM 0xef9f0001 44 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 45 #else 46 /* 47 * New breakpoints - use an undefined instruction. The ARM architecture 48 * reference manual guarantees that the following instruction space 49 * will produce an undefined instruction exception on all CPUs: 50 * 51 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 52 * Thumb: 1101 1110 xxxx xxxx 53 */ 54 #define BREAKINST_ARM 0xe7f001f0 55 #define BREAKINST_THUMB 0xde01 56 #endif 57 58 struct pt_regs_offset { 59 const char *name; 60 int offset; 61 }; 62 63 #define REG_OFFSET_NAME(r) \ 64 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 65 #define REG_OFFSET_END {.name = NULL, .offset = 0} 66 67 static const struct pt_regs_offset regoffset_table[] = { 68 REG_OFFSET_NAME(r0), 69 REG_OFFSET_NAME(r1), 70 REG_OFFSET_NAME(r2), 71 REG_OFFSET_NAME(r3), 72 REG_OFFSET_NAME(r4), 73 REG_OFFSET_NAME(r5), 74 REG_OFFSET_NAME(r6), 75 REG_OFFSET_NAME(r7), 76 REG_OFFSET_NAME(r8), 77 REG_OFFSET_NAME(r9), 78 REG_OFFSET_NAME(r10), 79 REG_OFFSET_NAME(fp), 80 REG_OFFSET_NAME(ip), 81 REG_OFFSET_NAME(sp), 82 REG_OFFSET_NAME(lr), 83 REG_OFFSET_NAME(pc), 84 REG_OFFSET_NAME(cpsr), 85 REG_OFFSET_NAME(ORIG_r0), 86 REG_OFFSET_END, 87 }; 88 89 /** 90 * regs_query_register_offset() - query register offset from its name 91 * @name: the name of a register 92 * 93 * regs_query_register_offset() returns the offset of a register in struct 94 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 95 */ 96 int regs_query_register_offset(const char *name) 97 { 98 const struct pt_regs_offset *roff; 99 for (roff = regoffset_table; roff->name != NULL; roff++) 100 if (!strcmp(roff->name, name)) 101 return roff->offset; 102 return -EINVAL; 103 } 104 105 /** 106 * regs_query_register_name() - query register name from its offset 107 * @offset: the offset of a register in struct pt_regs. 108 * 109 * regs_query_register_name() returns the name of a register from its 110 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 111 */ 112 const char *regs_query_register_name(unsigned int offset) 113 { 114 const struct pt_regs_offset *roff; 115 for (roff = regoffset_table; roff->name != NULL; roff++) 116 if (roff->offset == offset) 117 return roff->name; 118 return NULL; 119 } 120 121 /** 122 * regs_within_kernel_stack() - check the address in the stack 123 * @regs: pt_regs which contains kernel stack pointer. 124 * @addr: address which is checked. 125 * 126 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 127 * If @addr is within the kernel stack, it returns true. If not, returns false. 128 */ 129 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 130 { 131 return ((addr & ~(THREAD_SIZE - 1)) == 132 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 133 } 134 135 /** 136 * regs_get_kernel_stack_nth() - get Nth entry of the stack 137 * @regs: pt_regs which contains kernel stack pointer. 138 * @n: stack entry number. 139 * 140 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 141 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 142 * this returns 0. 143 */ 144 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 145 { 146 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 147 addr += n; 148 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 149 return *addr; 150 else 151 return 0; 152 } 153 154 /* 155 * this routine will get a word off of the processes privileged stack. 156 * the offset is how far from the base addr as stored in the THREAD. 157 * this routine assumes that all the privileged stacks are in our 158 * data space. 159 */ 160 static inline long get_user_reg(struct task_struct *task, int offset) 161 { 162 return task_pt_regs(task)->uregs[offset]; 163 } 164 165 /* 166 * this routine will put a word on the processes privileged stack. 167 * the offset is how far from the base addr as stored in the THREAD. 168 * this routine assumes that all the privileged stacks are in our 169 * data space. 170 */ 171 static inline int 172 put_user_reg(struct task_struct *task, int offset, long data) 173 { 174 struct pt_regs newregs, *regs = task_pt_regs(task); 175 int ret = -EINVAL; 176 177 newregs = *regs; 178 newregs.uregs[offset] = data; 179 180 if (valid_user_regs(&newregs)) { 181 regs->uregs[offset] = data; 182 ret = 0; 183 } 184 185 return ret; 186 } 187 188 /* 189 * Called by kernel/ptrace.c when detaching.. 190 */ 191 void ptrace_disable(struct task_struct *child) 192 { 193 /* Nothing to do. */ 194 } 195 196 /* 197 * Handle hitting a breakpoint. 198 */ 199 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) 200 { 201 siginfo_t info; 202 203 info.si_signo = SIGTRAP; 204 info.si_errno = 0; 205 info.si_code = TRAP_BRKPT; 206 info.si_addr = (void __user *)instruction_pointer(regs); 207 208 force_sig_info(SIGTRAP, &info, tsk); 209 } 210 211 static int break_trap(struct pt_regs *regs, unsigned int instr) 212 { 213 ptrace_break(current, regs); 214 return 0; 215 } 216 217 static struct undef_hook arm_break_hook = { 218 .instr_mask = 0x0fffffff, 219 .instr_val = 0x07f001f0, 220 .cpsr_mask = PSR_T_BIT, 221 .cpsr_val = 0, 222 .fn = break_trap, 223 }; 224 225 static struct undef_hook thumb_break_hook = { 226 .instr_mask = 0xffff, 227 .instr_val = 0xde01, 228 .cpsr_mask = PSR_T_BIT, 229 .cpsr_val = PSR_T_BIT, 230 .fn = break_trap, 231 }; 232 233 static struct undef_hook thumb2_break_hook = { 234 .instr_mask = 0xffffffff, 235 .instr_val = 0xf7f0a000, 236 .cpsr_mask = PSR_T_BIT, 237 .cpsr_val = PSR_T_BIT, 238 .fn = break_trap, 239 }; 240 241 static int __init ptrace_break_init(void) 242 { 243 register_undef_hook(&arm_break_hook); 244 register_undef_hook(&thumb_break_hook); 245 register_undef_hook(&thumb2_break_hook); 246 return 0; 247 } 248 249 core_initcall(ptrace_break_init); 250 251 /* 252 * Read the word at offset "off" into the "struct user". We 253 * actually access the pt_regs stored on the kernel stack. 254 */ 255 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 256 unsigned long __user *ret) 257 { 258 unsigned long tmp; 259 260 if (off & 3) 261 return -EIO; 262 263 tmp = 0; 264 if (off == PT_TEXT_ADDR) 265 tmp = tsk->mm->start_code; 266 else if (off == PT_DATA_ADDR) 267 tmp = tsk->mm->start_data; 268 else if (off == PT_TEXT_END_ADDR) 269 tmp = tsk->mm->end_code; 270 else if (off < sizeof(struct pt_regs)) 271 tmp = get_user_reg(tsk, off >> 2); 272 else if (off >= sizeof(struct user)) 273 return -EIO; 274 275 return put_user(tmp, ret); 276 } 277 278 /* 279 * Write the word at offset "off" into "struct user". We 280 * actually access the pt_regs stored on the kernel stack. 281 */ 282 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 283 unsigned long val) 284 { 285 if (off & 3 || off >= sizeof(struct user)) 286 return -EIO; 287 288 if (off >= sizeof(struct pt_regs)) 289 return 0; 290 291 return put_user_reg(tsk, off >> 2, val); 292 } 293 294 #ifdef CONFIG_IWMMXT 295 296 /* 297 * Get the child iWMMXt state. 298 */ 299 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 300 { 301 struct thread_info *thread = task_thread_info(tsk); 302 303 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 304 return -ENODATA; 305 iwmmxt_task_disable(thread); /* force it to ram */ 306 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 307 ? -EFAULT : 0; 308 } 309 310 /* 311 * Set the child iWMMXt state. 312 */ 313 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 314 { 315 struct thread_info *thread = task_thread_info(tsk); 316 317 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 318 return -EACCES; 319 iwmmxt_task_release(thread); /* force a reload */ 320 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 321 ? -EFAULT : 0; 322 } 323 324 #endif 325 326 #ifdef CONFIG_CRUNCH 327 /* 328 * Get the child Crunch state. 329 */ 330 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 331 { 332 struct thread_info *thread = task_thread_info(tsk); 333 334 crunch_task_disable(thread); /* force it to ram */ 335 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 336 ? -EFAULT : 0; 337 } 338 339 /* 340 * Set the child Crunch state. 341 */ 342 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 343 { 344 struct thread_info *thread = task_thread_info(tsk); 345 346 crunch_task_release(thread); /* force a reload */ 347 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 348 ? -EFAULT : 0; 349 } 350 #endif 351 352 #ifdef CONFIG_HAVE_HW_BREAKPOINT 353 /* 354 * Convert a virtual register number into an index for a thread_info 355 * breakpoint array. Breakpoints are identified using positive numbers 356 * whilst watchpoints are negative. The registers are laid out as pairs 357 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 358 * Register 0 is reserved for describing resource information. 359 */ 360 static int ptrace_hbp_num_to_idx(long num) 361 { 362 if (num < 0) 363 num = (ARM_MAX_BRP << 1) - num; 364 return (num - 1) >> 1; 365 } 366 367 /* 368 * Returns the virtual register number for the address of the 369 * breakpoint at index idx. 370 */ 371 static long ptrace_hbp_idx_to_num(int idx) 372 { 373 long mid = ARM_MAX_BRP << 1; 374 long num = (idx << 1) + 1; 375 return num > mid ? mid - num : num; 376 } 377 378 /* 379 * Handle hitting a HW-breakpoint. 380 */ 381 static void ptrace_hbptriggered(struct perf_event *bp, 382 struct perf_sample_data *data, 383 struct pt_regs *regs) 384 { 385 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 386 long num; 387 int i; 388 siginfo_t info; 389 390 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 391 if (current->thread.debug.hbp[i] == bp) 392 break; 393 394 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 395 396 info.si_signo = SIGTRAP; 397 info.si_errno = (int)num; 398 info.si_code = TRAP_HWBKPT; 399 info.si_addr = (void __user *)(bkpt->trigger); 400 401 force_sig_info(SIGTRAP, &info, current); 402 } 403 404 /* 405 * Set ptrace breakpoint pointers to zero for this task. 406 * This is required in order to prevent child processes from unregistering 407 * breakpoints held by their parent. 408 */ 409 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 410 { 411 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 412 } 413 414 /* 415 * Unregister breakpoints from this task and reset the pointers in 416 * the thread_struct. 417 */ 418 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 419 { 420 int i; 421 struct thread_struct *t = &tsk->thread; 422 423 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 424 if (t->debug.hbp[i]) { 425 unregister_hw_breakpoint(t->debug.hbp[i]); 426 t->debug.hbp[i] = NULL; 427 } 428 } 429 } 430 431 static u32 ptrace_get_hbp_resource_info(void) 432 { 433 u8 num_brps, num_wrps, debug_arch, wp_len; 434 u32 reg = 0; 435 436 num_brps = hw_breakpoint_slots(TYPE_INST); 437 num_wrps = hw_breakpoint_slots(TYPE_DATA); 438 debug_arch = arch_get_debug_arch(); 439 wp_len = arch_get_max_wp_len(); 440 441 reg |= debug_arch; 442 reg <<= 8; 443 reg |= wp_len; 444 reg <<= 8; 445 reg |= num_wrps; 446 reg <<= 8; 447 reg |= num_brps; 448 449 return reg; 450 } 451 452 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 453 { 454 struct perf_event_attr attr; 455 456 ptrace_breakpoint_init(&attr); 457 458 /* Initialise fields to sane defaults. */ 459 attr.bp_addr = 0; 460 attr.bp_len = HW_BREAKPOINT_LEN_4; 461 attr.bp_type = type; 462 attr.disabled = 1; 463 464 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 465 tsk); 466 } 467 468 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 469 unsigned long __user *data) 470 { 471 u32 reg; 472 int idx, ret = 0; 473 struct perf_event *bp; 474 struct arch_hw_breakpoint_ctrl arch_ctrl; 475 476 if (num == 0) { 477 reg = ptrace_get_hbp_resource_info(); 478 } else { 479 idx = ptrace_hbp_num_to_idx(num); 480 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 481 ret = -EINVAL; 482 goto out; 483 } 484 485 bp = tsk->thread.debug.hbp[idx]; 486 if (!bp) { 487 reg = 0; 488 goto put; 489 } 490 491 arch_ctrl = counter_arch_bp(bp)->ctrl; 492 493 /* 494 * Fix up the len because we may have adjusted it 495 * to compensate for an unaligned address. 496 */ 497 while (!(arch_ctrl.len & 0x1)) 498 arch_ctrl.len >>= 1; 499 500 if (num & 0x1) 501 reg = bp->attr.bp_addr; 502 else 503 reg = encode_ctrl_reg(arch_ctrl); 504 } 505 506 put: 507 if (put_user(reg, data)) 508 ret = -EFAULT; 509 510 out: 511 return ret; 512 } 513 514 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 515 unsigned long __user *data) 516 { 517 int idx, gen_len, gen_type, implied_type, ret = 0; 518 u32 user_val; 519 struct perf_event *bp; 520 struct arch_hw_breakpoint_ctrl ctrl; 521 struct perf_event_attr attr; 522 523 if (num == 0) 524 goto out; 525 else if (num < 0) 526 implied_type = HW_BREAKPOINT_RW; 527 else 528 implied_type = HW_BREAKPOINT_X; 529 530 idx = ptrace_hbp_num_to_idx(num); 531 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 532 ret = -EINVAL; 533 goto out; 534 } 535 536 if (get_user(user_val, data)) { 537 ret = -EFAULT; 538 goto out; 539 } 540 541 bp = tsk->thread.debug.hbp[idx]; 542 if (!bp) { 543 bp = ptrace_hbp_create(tsk, implied_type); 544 if (IS_ERR(bp)) { 545 ret = PTR_ERR(bp); 546 goto out; 547 } 548 tsk->thread.debug.hbp[idx] = bp; 549 } 550 551 attr = bp->attr; 552 553 if (num & 0x1) { 554 /* Address */ 555 attr.bp_addr = user_val; 556 } else { 557 /* Control */ 558 decode_ctrl_reg(user_val, &ctrl); 559 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 560 if (ret) 561 goto out; 562 563 if ((gen_type & implied_type) != gen_type) { 564 ret = -EINVAL; 565 goto out; 566 } 567 568 attr.bp_len = gen_len; 569 attr.bp_type = gen_type; 570 attr.disabled = !ctrl.enabled; 571 } 572 573 ret = modify_user_hw_breakpoint(bp, &attr); 574 out: 575 return ret; 576 } 577 #endif 578 579 /* regset get/set implementations */ 580 581 static int gpr_get(struct task_struct *target, 582 const struct user_regset *regset, 583 unsigned int pos, unsigned int count, 584 void *kbuf, void __user *ubuf) 585 { 586 struct pt_regs *regs = task_pt_regs(target); 587 588 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 589 regs, 590 0, sizeof(*regs)); 591 } 592 593 static int gpr_set(struct task_struct *target, 594 const struct user_regset *regset, 595 unsigned int pos, unsigned int count, 596 const void *kbuf, const void __user *ubuf) 597 { 598 int ret; 599 struct pt_regs newregs; 600 601 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 602 &newregs, 603 0, sizeof(newregs)); 604 if (ret) 605 return ret; 606 607 if (!valid_user_regs(&newregs)) 608 return -EINVAL; 609 610 *task_pt_regs(target) = newregs; 611 return 0; 612 } 613 614 static int fpa_get(struct task_struct *target, 615 const struct user_regset *regset, 616 unsigned int pos, unsigned int count, 617 void *kbuf, void __user *ubuf) 618 { 619 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 620 &task_thread_info(target)->fpstate, 621 0, sizeof(struct user_fp)); 622 } 623 624 static int fpa_set(struct task_struct *target, 625 const struct user_regset *regset, 626 unsigned int pos, unsigned int count, 627 const void *kbuf, const void __user *ubuf) 628 { 629 struct thread_info *thread = task_thread_info(target); 630 631 thread->used_cp[1] = thread->used_cp[2] = 1; 632 633 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 634 &thread->fpstate, 635 0, sizeof(struct user_fp)); 636 } 637 638 #ifdef CONFIG_VFP 639 /* 640 * VFP register get/set implementations. 641 * 642 * With respect to the kernel, struct user_fp is divided into three chunks: 643 * 16 or 32 real VFP registers (d0-d15 or d0-31) 644 * These are transferred to/from the real registers in the task's 645 * vfp_hard_struct. The number of registers depends on the kernel 646 * configuration. 647 * 648 * 16 or 0 fake VFP registers (d16-d31 or empty) 649 * i.e., the user_vfp structure has space for 32 registers even if 650 * the kernel doesn't have them all. 651 * 652 * vfp_get() reads this chunk as zero where applicable 653 * vfp_set() ignores this chunk 654 * 655 * 1 word for the FPSCR 656 * 657 * The bounds-checking logic built into user_regset_copyout and friends 658 * means that we can make a simple sequence of calls to map the relevant data 659 * to/from the specified slice of the user regset structure. 660 */ 661 static int vfp_get(struct task_struct *target, 662 const struct user_regset *regset, 663 unsigned int pos, unsigned int count, 664 void *kbuf, void __user *ubuf) 665 { 666 int ret; 667 struct thread_info *thread = task_thread_info(target); 668 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 669 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 670 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 671 672 vfp_sync_hwstate(thread); 673 674 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 675 &vfp->fpregs, 676 user_fpregs_offset, 677 user_fpregs_offset + sizeof(vfp->fpregs)); 678 if (ret) 679 return ret; 680 681 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 682 user_fpregs_offset + sizeof(vfp->fpregs), 683 user_fpscr_offset); 684 if (ret) 685 return ret; 686 687 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 688 &vfp->fpscr, 689 user_fpscr_offset, 690 user_fpscr_offset + sizeof(vfp->fpscr)); 691 } 692 693 /* 694 * For vfp_set() a read-modify-write is done on the VFP registers, 695 * in order to avoid writing back a half-modified set of registers on 696 * failure. 697 */ 698 static int vfp_set(struct task_struct *target, 699 const struct user_regset *regset, 700 unsigned int pos, unsigned int count, 701 const void *kbuf, const void __user *ubuf) 702 { 703 int ret; 704 struct thread_info *thread = task_thread_info(target); 705 struct vfp_hard_struct new_vfp; 706 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 707 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 708 709 vfp_sync_hwstate(thread); 710 new_vfp = thread->vfpstate.hard; 711 712 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 713 &new_vfp.fpregs, 714 user_fpregs_offset, 715 user_fpregs_offset + sizeof(new_vfp.fpregs)); 716 if (ret) 717 return ret; 718 719 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 720 user_fpregs_offset + sizeof(new_vfp.fpregs), 721 user_fpscr_offset); 722 if (ret) 723 return ret; 724 725 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 726 &new_vfp.fpscr, 727 user_fpscr_offset, 728 user_fpscr_offset + sizeof(new_vfp.fpscr)); 729 if (ret) 730 return ret; 731 732 vfp_flush_hwstate(thread); 733 thread->vfpstate.hard = new_vfp; 734 735 return 0; 736 } 737 #endif /* CONFIG_VFP */ 738 739 enum arm_regset { 740 REGSET_GPR, 741 REGSET_FPR, 742 #ifdef CONFIG_VFP 743 REGSET_VFP, 744 #endif 745 }; 746 747 static const struct user_regset arm_regsets[] = { 748 [REGSET_GPR] = { 749 .core_note_type = NT_PRSTATUS, 750 .n = ELF_NGREG, 751 .size = sizeof(u32), 752 .align = sizeof(u32), 753 .get = gpr_get, 754 .set = gpr_set 755 }, 756 [REGSET_FPR] = { 757 /* 758 * For the FPA regs in fpstate, the real fields are a mixture 759 * of sizes, so pretend that the registers are word-sized: 760 */ 761 .core_note_type = NT_PRFPREG, 762 .n = sizeof(struct user_fp) / sizeof(u32), 763 .size = sizeof(u32), 764 .align = sizeof(u32), 765 .get = fpa_get, 766 .set = fpa_set 767 }, 768 #ifdef CONFIG_VFP 769 [REGSET_VFP] = { 770 /* 771 * Pretend that the VFP regs are word-sized, since the FPSCR is 772 * a single word dangling at the end of struct user_vfp: 773 */ 774 .core_note_type = NT_ARM_VFP, 775 .n = ARM_VFPREGS_SIZE / sizeof(u32), 776 .size = sizeof(u32), 777 .align = sizeof(u32), 778 .get = vfp_get, 779 .set = vfp_set 780 }, 781 #endif /* CONFIG_VFP */ 782 }; 783 784 static const struct user_regset_view user_arm_view = { 785 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 786 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 787 }; 788 789 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 790 { 791 return &user_arm_view; 792 } 793 794 long arch_ptrace(struct task_struct *child, long request, 795 unsigned long addr, unsigned long data) 796 { 797 int ret; 798 unsigned long __user *datap = (unsigned long __user *) data; 799 800 switch (request) { 801 case PTRACE_PEEKUSR: 802 ret = ptrace_read_user(child, addr, datap); 803 break; 804 805 case PTRACE_POKEUSR: 806 ret = ptrace_write_user(child, addr, data); 807 break; 808 809 case PTRACE_GETREGS: 810 ret = copy_regset_to_user(child, 811 &user_arm_view, REGSET_GPR, 812 0, sizeof(struct pt_regs), 813 datap); 814 break; 815 816 case PTRACE_SETREGS: 817 ret = copy_regset_from_user(child, 818 &user_arm_view, REGSET_GPR, 819 0, sizeof(struct pt_regs), 820 datap); 821 break; 822 823 case PTRACE_GETFPREGS: 824 ret = copy_regset_to_user(child, 825 &user_arm_view, REGSET_FPR, 826 0, sizeof(union fp_state), 827 datap); 828 break; 829 830 case PTRACE_SETFPREGS: 831 ret = copy_regset_from_user(child, 832 &user_arm_view, REGSET_FPR, 833 0, sizeof(union fp_state), 834 datap); 835 break; 836 837 #ifdef CONFIG_IWMMXT 838 case PTRACE_GETWMMXREGS: 839 ret = ptrace_getwmmxregs(child, datap); 840 break; 841 842 case PTRACE_SETWMMXREGS: 843 ret = ptrace_setwmmxregs(child, datap); 844 break; 845 #endif 846 847 case PTRACE_GET_THREAD_AREA: 848 ret = put_user(task_thread_info(child)->tp_value, 849 datap); 850 break; 851 852 case PTRACE_SET_SYSCALL: 853 task_thread_info(child)->syscall = data; 854 ret = 0; 855 break; 856 857 #ifdef CONFIG_CRUNCH 858 case PTRACE_GETCRUNCHREGS: 859 ret = ptrace_getcrunchregs(child, datap); 860 break; 861 862 case PTRACE_SETCRUNCHREGS: 863 ret = ptrace_setcrunchregs(child, datap); 864 break; 865 #endif 866 867 #ifdef CONFIG_VFP 868 case PTRACE_GETVFPREGS: 869 ret = copy_regset_to_user(child, 870 &user_arm_view, REGSET_VFP, 871 0, ARM_VFPREGS_SIZE, 872 datap); 873 break; 874 875 case PTRACE_SETVFPREGS: 876 ret = copy_regset_from_user(child, 877 &user_arm_view, REGSET_VFP, 878 0, ARM_VFPREGS_SIZE, 879 datap); 880 break; 881 #endif 882 883 #ifdef CONFIG_HAVE_HW_BREAKPOINT 884 case PTRACE_GETHBPREGS: 885 if (ptrace_get_breakpoints(child) < 0) 886 return -ESRCH; 887 888 ret = ptrace_gethbpregs(child, addr, 889 (unsigned long __user *)data); 890 ptrace_put_breakpoints(child); 891 break; 892 case PTRACE_SETHBPREGS: 893 if (ptrace_get_breakpoints(child) < 0) 894 return -ESRCH; 895 896 ret = ptrace_sethbpregs(child, addr, 897 (unsigned long __user *)data); 898 ptrace_put_breakpoints(child); 899 break; 900 #endif 901 902 default: 903 ret = ptrace_request(child, request, addr, data); 904 break; 905 } 906 907 return ret; 908 } 909 910 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) 911 { 912 unsigned long ip; 913 914 if (why) 915 audit_syscall_exit(regs); 916 else 917 audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0, 918 regs->ARM_r1, regs->ARM_r2, regs->ARM_r3); 919 920 if (!test_thread_flag(TIF_SYSCALL_TRACE)) 921 return scno; 922 923 current_thread_info()->syscall = scno; 924 925 /* 926 * IP is used to denote syscall entry/exit: 927 * IP = 0 -> entry, =1 -> exit 928 */ 929 ip = regs->ARM_ip; 930 regs->ARM_ip = why; 931 932 if (why) 933 tracehook_report_syscall_exit(regs, 0); 934 else if (tracehook_report_syscall_entry(regs)) 935 current_thread_info()->syscall = -1; 936 937 regs->ARM_ip = ip; 938 939 return current_thread_info()->syscall; 940 } 941