1 /* 2 * linux/arch/arm/kernel/ptrace.c 3 * 4 * By Ross Biro 1/23/92 5 * edited by Linus Torvalds 6 * ARM modifications Copyright (C) 2000 Russell King 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/mm.h> 15 #include <linux/smp.h> 16 #include <linux/ptrace.h> 17 #include <linux/user.h> 18 #include <linux/security.h> 19 #include <linux/init.h> 20 #include <linux/signal.h> 21 #include <linux/uaccess.h> 22 #include <linux/perf_event.h> 23 #include <linux/hw_breakpoint.h> 24 #include <linux/regset.h> 25 26 #include <asm/pgtable.h> 27 #include <asm/system.h> 28 #include <asm/traps.h> 29 30 #define REG_PC 15 31 #define REG_PSR 16 32 /* 33 * does not yet catch signals sent when the child dies. 34 * in exit.c or in signal.c. 35 */ 36 37 #if 0 38 /* 39 * Breakpoint SWI instruction: SWI &9F0001 40 */ 41 #define BREAKINST_ARM 0xef9f0001 42 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 43 #else 44 /* 45 * New breakpoints - use an undefined instruction. The ARM architecture 46 * reference manual guarantees that the following instruction space 47 * will produce an undefined instruction exception on all CPUs: 48 * 49 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 50 * Thumb: 1101 1110 xxxx xxxx 51 */ 52 #define BREAKINST_ARM 0xe7f001f0 53 #define BREAKINST_THUMB 0xde01 54 #endif 55 56 struct pt_regs_offset { 57 const char *name; 58 int offset; 59 }; 60 61 #define REG_OFFSET_NAME(r) \ 62 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 63 #define REG_OFFSET_END {.name = NULL, .offset = 0} 64 65 static const struct pt_regs_offset regoffset_table[] = { 66 REG_OFFSET_NAME(r0), 67 REG_OFFSET_NAME(r1), 68 REG_OFFSET_NAME(r2), 69 REG_OFFSET_NAME(r3), 70 REG_OFFSET_NAME(r4), 71 REG_OFFSET_NAME(r5), 72 REG_OFFSET_NAME(r6), 73 REG_OFFSET_NAME(r7), 74 REG_OFFSET_NAME(r8), 75 REG_OFFSET_NAME(r9), 76 REG_OFFSET_NAME(r10), 77 REG_OFFSET_NAME(fp), 78 REG_OFFSET_NAME(ip), 79 REG_OFFSET_NAME(sp), 80 REG_OFFSET_NAME(lr), 81 REG_OFFSET_NAME(pc), 82 REG_OFFSET_NAME(cpsr), 83 REG_OFFSET_NAME(ORIG_r0), 84 REG_OFFSET_END, 85 }; 86 87 /** 88 * regs_query_register_offset() - query register offset from its name 89 * @name: the name of a register 90 * 91 * regs_query_register_offset() returns the offset of a register in struct 92 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 93 */ 94 int regs_query_register_offset(const char *name) 95 { 96 const struct pt_regs_offset *roff; 97 for (roff = regoffset_table; roff->name != NULL; roff++) 98 if (!strcmp(roff->name, name)) 99 return roff->offset; 100 return -EINVAL; 101 } 102 103 /** 104 * regs_query_register_name() - query register name from its offset 105 * @offset: the offset of a register in struct pt_regs. 106 * 107 * regs_query_register_name() returns the name of a register from its 108 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 109 */ 110 const char *regs_query_register_name(unsigned int offset) 111 { 112 const struct pt_regs_offset *roff; 113 for (roff = regoffset_table; roff->name != NULL; roff++) 114 if (roff->offset == offset) 115 return roff->name; 116 return NULL; 117 } 118 119 /** 120 * regs_within_kernel_stack() - check the address in the stack 121 * @regs: pt_regs which contains kernel stack pointer. 122 * @addr: address which is checked. 123 * 124 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 125 * If @addr is within the kernel stack, it returns true. If not, returns false. 126 */ 127 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 128 { 129 return ((addr & ~(THREAD_SIZE - 1)) == 130 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 131 } 132 133 /** 134 * regs_get_kernel_stack_nth() - get Nth entry of the stack 135 * @regs: pt_regs which contains kernel stack pointer. 136 * @n: stack entry number. 137 * 138 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 139 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 140 * this returns 0. 141 */ 142 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 143 { 144 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 145 addr += n; 146 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 147 return *addr; 148 else 149 return 0; 150 } 151 152 /* 153 * this routine will get a word off of the processes privileged stack. 154 * the offset is how far from the base addr as stored in the THREAD. 155 * this routine assumes that all the privileged stacks are in our 156 * data space. 157 */ 158 static inline long get_user_reg(struct task_struct *task, int offset) 159 { 160 return task_pt_regs(task)->uregs[offset]; 161 } 162 163 /* 164 * this routine will put a word on the processes privileged stack. 165 * the offset is how far from the base addr as stored in the THREAD. 166 * this routine assumes that all the privileged stacks are in our 167 * data space. 168 */ 169 static inline int 170 put_user_reg(struct task_struct *task, int offset, long data) 171 { 172 struct pt_regs newregs, *regs = task_pt_regs(task); 173 int ret = -EINVAL; 174 175 newregs = *regs; 176 newregs.uregs[offset] = data; 177 178 if (valid_user_regs(&newregs)) { 179 regs->uregs[offset] = data; 180 ret = 0; 181 } 182 183 return ret; 184 } 185 186 /* 187 * Called by kernel/ptrace.c when detaching.. 188 */ 189 void ptrace_disable(struct task_struct *child) 190 { 191 /* Nothing to do. */ 192 } 193 194 /* 195 * Handle hitting a breakpoint. 196 */ 197 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) 198 { 199 siginfo_t info; 200 201 info.si_signo = SIGTRAP; 202 info.si_errno = 0; 203 info.si_code = TRAP_BRKPT; 204 info.si_addr = (void __user *)instruction_pointer(regs); 205 206 force_sig_info(SIGTRAP, &info, tsk); 207 } 208 209 static int break_trap(struct pt_regs *regs, unsigned int instr) 210 { 211 ptrace_break(current, regs); 212 return 0; 213 } 214 215 static struct undef_hook arm_break_hook = { 216 .instr_mask = 0x0fffffff, 217 .instr_val = 0x07f001f0, 218 .cpsr_mask = PSR_T_BIT, 219 .cpsr_val = 0, 220 .fn = break_trap, 221 }; 222 223 static struct undef_hook thumb_break_hook = { 224 .instr_mask = 0xffff, 225 .instr_val = 0xde01, 226 .cpsr_mask = PSR_T_BIT, 227 .cpsr_val = PSR_T_BIT, 228 .fn = break_trap, 229 }; 230 231 static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr) 232 { 233 unsigned int instr2; 234 void __user *pc; 235 236 /* Check the second half of the instruction. */ 237 pc = (void __user *)(instruction_pointer(regs) + 2); 238 239 if (processor_mode(regs) == SVC_MODE) { 240 instr2 = *(u16 *) pc; 241 } else { 242 get_user(instr2, (u16 __user *)pc); 243 } 244 245 if (instr2 == 0xa000) { 246 ptrace_break(current, regs); 247 return 0; 248 } else { 249 return 1; 250 } 251 } 252 253 static struct undef_hook thumb2_break_hook = { 254 .instr_mask = 0xffff, 255 .instr_val = 0xf7f0, 256 .cpsr_mask = PSR_T_BIT, 257 .cpsr_val = PSR_T_BIT, 258 .fn = thumb2_break_trap, 259 }; 260 261 static int __init ptrace_break_init(void) 262 { 263 register_undef_hook(&arm_break_hook); 264 register_undef_hook(&thumb_break_hook); 265 register_undef_hook(&thumb2_break_hook); 266 return 0; 267 } 268 269 core_initcall(ptrace_break_init); 270 271 /* 272 * Read the word at offset "off" into the "struct user". We 273 * actually access the pt_regs stored on the kernel stack. 274 */ 275 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 276 unsigned long __user *ret) 277 { 278 unsigned long tmp; 279 280 if (off & 3 || off >= sizeof(struct user)) 281 return -EIO; 282 283 tmp = 0; 284 if (off == PT_TEXT_ADDR) 285 tmp = tsk->mm->start_code; 286 else if (off == PT_DATA_ADDR) 287 tmp = tsk->mm->start_data; 288 else if (off == PT_TEXT_END_ADDR) 289 tmp = tsk->mm->end_code; 290 else if (off < sizeof(struct pt_regs)) 291 tmp = get_user_reg(tsk, off >> 2); 292 293 return put_user(tmp, ret); 294 } 295 296 /* 297 * Write the word at offset "off" into "struct user". We 298 * actually access the pt_regs stored on the kernel stack. 299 */ 300 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 301 unsigned long val) 302 { 303 if (off & 3 || off >= sizeof(struct user)) 304 return -EIO; 305 306 if (off >= sizeof(struct pt_regs)) 307 return 0; 308 309 return put_user_reg(tsk, off >> 2, val); 310 } 311 312 #ifdef CONFIG_IWMMXT 313 314 /* 315 * Get the child iWMMXt state. 316 */ 317 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 318 { 319 struct thread_info *thread = task_thread_info(tsk); 320 321 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 322 return -ENODATA; 323 iwmmxt_task_disable(thread); /* force it to ram */ 324 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 325 ? -EFAULT : 0; 326 } 327 328 /* 329 * Set the child iWMMXt state. 330 */ 331 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 332 { 333 struct thread_info *thread = task_thread_info(tsk); 334 335 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 336 return -EACCES; 337 iwmmxt_task_release(thread); /* force a reload */ 338 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 339 ? -EFAULT : 0; 340 } 341 342 #endif 343 344 #ifdef CONFIG_CRUNCH 345 /* 346 * Get the child Crunch state. 347 */ 348 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 349 { 350 struct thread_info *thread = task_thread_info(tsk); 351 352 crunch_task_disable(thread); /* force it to ram */ 353 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 354 ? -EFAULT : 0; 355 } 356 357 /* 358 * Set the child Crunch state. 359 */ 360 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 361 { 362 struct thread_info *thread = task_thread_info(tsk); 363 364 crunch_task_release(thread); /* force a reload */ 365 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 366 ? -EFAULT : 0; 367 } 368 #endif 369 370 #ifdef CONFIG_HAVE_HW_BREAKPOINT 371 /* 372 * Convert a virtual register number into an index for a thread_info 373 * breakpoint array. Breakpoints are identified using positive numbers 374 * whilst watchpoints are negative. The registers are laid out as pairs 375 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 376 * Register 0 is reserved for describing resource information. 377 */ 378 static int ptrace_hbp_num_to_idx(long num) 379 { 380 if (num < 0) 381 num = (ARM_MAX_BRP << 1) - num; 382 return (num - 1) >> 1; 383 } 384 385 /* 386 * Returns the virtual register number for the address of the 387 * breakpoint at index idx. 388 */ 389 static long ptrace_hbp_idx_to_num(int idx) 390 { 391 long mid = ARM_MAX_BRP << 1; 392 long num = (idx << 1) + 1; 393 return num > mid ? mid - num : num; 394 } 395 396 /* 397 * Handle hitting a HW-breakpoint. 398 */ 399 static void ptrace_hbptriggered(struct perf_event *bp, int unused, 400 struct perf_sample_data *data, 401 struct pt_regs *regs) 402 { 403 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 404 long num; 405 int i; 406 siginfo_t info; 407 408 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 409 if (current->thread.debug.hbp[i] == bp) 410 break; 411 412 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 413 414 info.si_signo = SIGTRAP; 415 info.si_errno = (int)num; 416 info.si_code = TRAP_HWBKPT; 417 info.si_addr = (void __user *)(bkpt->trigger); 418 419 force_sig_info(SIGTRAP, &info, current); 420 } 421 422 /* 423 * Set ptrace breakpoint pointers to zero for this task. 424 * This is required in order to prevent child processes from unregistering 425 * breakpoints held by their parent. 426 */ 427 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 428 { 429 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 430 } 431 432 /* 433 * Unregister breakpoints from this task and reset the pointers in 434 * the thread_struct. 435 */ 436 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 437 { 438 int i; 439 struct thread_struct *t = &tsk->thread; 440 441 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 442 if (t->debug.hbp[i]) { 443 unregister_hw_breakpoint(t->debug.hbp[i]); 444 t->debug.hbp[i] = NULL; 445 } 446 } 447 } 448 449 static u32 ptrace_get_hbp_resource_info(void) 450 { 451 u8 num_brps, num_wrps, debug_arch, wp_len; 452 u32 reg = 0; 453 454 num_brps = hw_breakpoint_slots(TYPE_INST); 455 num_wrps = hw_breakpoint_slots(TYPE_DATA); 456 debug_arch = arch_get_debug_arch(); 457 wp_len = arch_get_max_wp_len(); 458 459 reg |= debug_arch; 460 reg <<= 8; 461 reg |= wp_len; 462 reg <<= 8; 463 reg |= num_wrps; 464 reg <<= 8; 465 reg |= num_brps; 466 467 return reg; 468 } 469 470 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 471 { 472 struct perf_event_attr attr; 473 474 ptrace_breakpoint_init(&attr); 475 476 /* Initialise fields to sane defaults. */ 477 attr.bp_addr = 0; 478 attr.bp_len = HW_BREAKPOINT_LEN_4; 479 attr.bp_type = type; 480 attr.disabled = 1; 481 482 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, tsk); 483 } 484 485 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 486 unsigned long __user *data) 487 { 488 u32 reg; 489 int idx, ret = 0; 490 struct perf_event *bp; 491 struct arch_hw_breakpoint_ctrl arch_ctrl; 492 493 if (num == 0) { 494 reg = ptrace_get_hbp_resource_info(); 495 } else { 496 idx = ptrace_hbp_num_to_idx(num); 497 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 498 ret = -EINVAL; 499 goto out; 500 } 501 502 bp = tsk->thread.debug.hbp[idx]; 503 if (!bp) { 504 reg = 0; 505 goto put; 506 } 507 508 arch_ctrl = counter_arch_bp(bp)->ctrl; 509 510 /* 511 * Fix up the len because we may have adjusted it 512 * to compensate for an unaligned address. 513 */ 514 while (!(arch_ctrl.len & 0x1)) 515 arch_ctrl.len >>= 1; 516 517 if (num & 0x1) 518 reg = bp->attr.bp_addr; 519 else 520 reg = encode_ctrl_reg(arch_ctrl); 521 } 522 523 put: 524 if (put_user(reg, data)) 525 ret = -EFAULT; 526 527 out: 528 return ret; 529 } 530 531 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 532 unsigned long __user *data) 533 { 534 int idx, gen_len, gen_type, implied_type, ret = 0; 535 u32 user_val; 536 struct perf_event *bp; 537 struct arch_hw_breakpoint_ctrl ctrl; 538 struct perf_event_attr attr; 539 540 if (num == 0) 541 goto out; 542 else if (num < 0) 543 implied_type = HW_BREAKPOINT_RW; 544 else 545 implied_type = HW_BREAKPOINT_X; 546 547 idx = ptrace_hbp_num_to_idx(num); 548 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 549 ret = -EINVAL; 550 goto out; 551 } 552 553 if (get_user(user_val, data)) { 554 ret = -EFAULT; 555 goto out; 556 } 557 558 bp = tsk->thread.debug.hbp[idx]; 559 if (!bp) { 560 bp = ptrace_hbp_create(tsk, implied_type); 561 if (IS_ERR(bp)) { 562 ret = PTR_ERR(bp); 563 goto out; 564 } 565 tsk->thread.debug.hbp[idx] = bp; 566 } 567 568 attr = bp->attr; 569 570 if (num & 0x1) { 571 /* Address */ 572 attr.bp_addr = user_val; 573 } else { 574 /* Control */ 575 decode_ctrl_reg(user_val, &ctrl); 576 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 577 if (ret) 578 goto out; 579 580 if ((gen_type & implied_type) != gen_type) { 581 ret = -EINVAL; 582 goto out; 583 } 584 585 attr.bp_len = gen_len; 586 attr.bp_type = gen_type; 587 attr.disabled = !ctrl.enabled; 588 } 589 590 ret = modify_user_hw_breakpoint(bp, &attr); 591 out: 592 return ret; 593 } 594 #endif 595 596 /* regset get/set implementations */ 597 598 static int gpr_get(struct task_struct *target, 599 const struct user_regset *regset, 600 unsigned int pos, unsigned int count, 601 void *kbuf, void __user *ubuf) 602 { 603 struct pt_regs *regs = task_pt_regs(target); 604 605 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 606 regs, 607 0, sizeof(*regs)); 608 } 609 610 static int gpr_set(struct task_struct *target, 611 const struct user_regset *regset, 612 unsigned int pos, unsigned int count, 613 const void *kbuf, const void __user *ubuf) 614 { 615 int ret; 616 struct pt_regs newregs; 617 618 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 619 &newregs, 620 0, sizeof(newregs)); 621 if (ret) 622 return ret; 623 624 if (!valid_user_regs(&newregs)) 625 return -EINVAL; 626 627 *task_pt_regs(target) = newregs; 628 return 0; 629 } 630 631 static int fpa_get(struct task_struct *target, 632 const struct user_regset *regset, 633 unsigned int pos, unsigned int count, 634 void *kbuf, void __user *ubuf) 635 { 636 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 637 &task_thread_info(target)->fpstate, 638 0, sizeof(struct user_fp)); 639 } 640 641 static int fpa_set(struct task_struct *target, 642 const struct user_regset *regset, 643 unsigned int pos, unsigned int count, 644 const void *kbuf, const void __user *ubuf) 645 { 646 struct thread_info *thread = task_thread_info(target); 647 648 thread->used_cp[1] = thread->used_cp[2] = 1; 649 650 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 651 &thread->fpstate, 652 0, sizeof(struct user_fp)); 653 } 654 655 #ifdef CONFIG_VFP 656 /* 657 * VFP register get/set implementations. 658 * 659 * With respect to the kernel, struct user_fp is divided into three chunks: 660 * 16 or 32 real VFP registers (d0-d15 or d0-31) 661 * These are transferred to/from the real registers in the task's 662 * vfp_hard_struct. The number of registers depends on the kernel 663 * configuration. 664 * 665 * 16 or 0 fake VFP registers (d16-d31 or empty) 666 * i.e., the user_vfp structure has space for 32 registers even if 667 * the kernel doesn't have them all. 668 * 669 * vfp_get() reads this chunk as zero where applicable 670 * vfp_set() ignores this chunk 671 * 672 * 1 word for the FPSCR 673 * 674 * The bounds-checking logic built into user_regset_copyout and friends 675 * means that we can make a simple sequence of calls to map the relevant data 676 * to/from the specified slice of the user regset structure. 677 */ 678 static int vfp_get(struct task_struct *target, 679 const struct user_regset *regset, 680 unsigned int pos, unsigned int count, 681 void *kbuf, void __user *ubuf) 682 { 683 int ret; 684 struct thread_info *thread = task_thread_info(target); 685 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 686 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 687 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 688 689 vfp_sync_hwstate(thread); 690 691 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 692 &vfp->fpregs, 693 user_fpregs_offset, 694 user_fpregs_offset + sizeof(vfp->fpregs)); 695 if (ret) 696 return ret; 697 698 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 699 user_fpregs_offset + sizeof(vfp->fpregs), 700 user_fpscr_offset); 701 if (ret) 702 return ret; 703 704 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 705 &vfp->fpscr, 706 user_fpscr_offset, 707 user_fpscr_offset + sizeof(vfp->fpscr)); 708 } 709 710 /* 711 * For vfp_set() a read-modify-write is done on the VFP registers, 712 * in order to avoid writing back a half-modified set of registers on 713 * failure. 714 */ 715 static int vfp_set(struct task_struct *target, 716 const struct user_regset *regset, 717 unsigned int pos, unsigned int count, 718 const void *kbuf, const void __user *ubuf) 719 { 720 int ret; 721 struct thread_info *thread = task_thread_info(target); 722 struct vfp_hard_struct new_vfp = thread->vfpstate.hard; 723 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 724 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 725 726 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 727 &new_vfp.fpregs, 728 user_fpregs_offset, 729 user_fpregs_offset + sizeof(new_vfp.fpregs)); 730 if (ret) 731 return ret; 732 733 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 734 user_fpregs_offset + sizeof(new_vfp.fpregs), 735 user_fpscr_offset); 736 if (ret) 737 return ret; 738 739 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 740 &new_vfp.fpscr, 741 user_fpscr_offset, 742 user_fpscr_offset + sizeof(new_vfp.fpscr)); 743 if (ret) 744 return ret; 745 746 vfp_sync_hwstate(thread); 747 thread->vfpstate.hard = new_vfp; 748 vfp_flush_hwstate(thread); 749 750 return 0; 751 } 752 #endif /* CONFIG_VFP */ 753 754 enum arm_regset { 755 REGSET_GPR, 756 REGSET_FPR, 757 #ifdef CONFIG_VFP 758 REGSET_VFP, 759 #endif 760 }; 761 762 static const struct user_regset arm_regsets[] = { 763 [REGSET_GPR] = { 764 .core_note_type = NT_PRSTATUS, 765 .n = ELF_NGREG, 766 .size = sizeof(u32), 767 .align = sizeof(u32), 768 .get = gpr_get, 769 .set = gpr_set 770 }, 771 [REGSET_FPR] = { 772 /* 773 * For the FPA regs in fpstate, the real fields are a mixture 774 * of sizes, so pretend that the registers are word-sized: 775 */ 776 .core_note_type = NT_PRFPREG, 777 .n = sizeof(struct user_fp) / sizeof(u32), 778 .size = sizeof(u32), 779 .align = sizeof(u32), 780 .get = fpa_get, 781 .set = fpa_set 782 }, 783 #ifdef CONFIG_VFP 784 [REGSET_VFP] = { 785 /* 786 * Pretend that the VFP regs are word-sized, since the FPSCR is 787 * a single word dangling at the end of struct user_vfp: 788 */ 789 .core_note_type = NT_ARM_VFP, 790 .n = ARM_VFPREGS_SIZE / sizeof(u32), 791 .size = sizeof(u32), 792 .align = sizeof(u32), 793 .get = vfp_get, 794 .set = vfp_set 795 }, 796 #endif /* CONFIG_VFP */ 797 }; 798 799 static const struct user_regset_view user_arm_view = { 800 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 801 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 802 }; 803 804 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 805 { 806 return &user_arm_view; 807 } 808 809 long arch_ptrace(struct task_struct *child, long request, 810 unsigned long addr, unsigned long data) 811 { 812 int ret; 813 unsigned long __user *datap = (unsigned long __user *) data; 814 815 switch (request) { 816 case PTRACE_PEEKUSR: 817 ret = ptrace_read_user(child, addr, datap); 818 break; 819 820 case PTRACE_POKEUSR: 821 ret = ptrace_write_user(child, addr, data); 822 break; 823 824 case PTRACE_GETREGS: 825 ret = copy_regset_to_user(child, 826 &user_arm_view, REGSET_GPR, 827 0, sizeof(struct pt_regs), 828 datap); 829 break; 830 831 case PTRACE_SETREGS: 832 ret = copy_regset_from_user(child, 833 &user_arm_view, REGSET_GPR, 834 0, sizeof(struct pt_regs), 835 datap); 836 break; 837 838 case PTRACE_GETFPREGS: 839 ret = copy_regset_to_user(child, 840 &user_arm_view, REGSET_FPR, 841 0, sizeof(union fp_state), 842 datap); 843 break; 844 845 case PTRACE_SETFPREGS: 846 ret = copy_regset_from_user(child, 847 &user_arm_view, REGSET_FPR, 848 0, sizeof(union fp_state), 849 datap); 850 break; 851 852 #ifdef CONFIG_IWMMXT 853 case PTRACE_GETWMMXREGS: 854 ret = ptrace_getwmmxregs(child, datap); 855 break; 856 857 case PTRACE_SETWMMXREGS: 858 ret = ptrace_setwmmxregs(child, datap); 859 break; 860 #endif 861 862 case PTRACE_GET_THREAD_AREA: 863 ret = put_user(task_thread_info(child)->tp_value, 864 datap); 865 break; 866 867 case PTRACE_SET_SYSCALL: 868 task_thread_info(child)->syscall = data; 869 ret = 0; 870 break; 871 872 #ifdef CONFIG_CRUNCH 873 case PTRACE_GETCRUNCHREGS: 874 ret = ptrace_getcrunchregs(child, datap); 875 break; 876 877 case PTRACE_SETCRUNCHREGS: 878 ret = ptrace_setcrunchregs(child, datap); 879 break; 880 #endif 881 882 #ifdef CONFIG_VFP 883 case PTRACE_GETVFPREGS: 884 ret = copy_regset_to_user(child, 885 &user_arm_view, REGSET_VFP, 886 0, ARM_VFPREGS_SIZE, 887 datap); 888 break; 889 890 case PTRACE_SETVFPREGS: 891 ret = copy_regset_from_user(child, 892 &user_arm_view, REGSET_VFP, 893 0, ARM_VFPREGS_SIZE, 894 datap); 895 break; 896 #endif 897 898 #ifdef CONFIG_HAVE_HW_BREAKPOINT 899 case PTRACE_GETHBPREGS: 900 if (ptrace_get_breakpoints(child) < 0) 901 return -ESRCH; 902 903 ret = ptrace_gethbpregs(child, addr, 904 (unsigned long __user *)data); 905 ptrace_put_breakpoints(child); 906 break; 907 case PTRACE_SETHBPREGS: 908 if (ptrace_get_breakpoints(child) < 0) 909 return -ESRCH; 910 911 ret = ptrace_sethbpregs(child, addr, 912 (unsigned long __user *)data); 913 ptrace_put_breakpoints(child); 914 break; 915 #endif 916 917 default: 918 ret = ptrace_request(child, request, addr, data); 919 break; 920 } 921 922 return ret; 923 } 924 925 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) 926 { 927 unsigned long ip; 928 929 if (!test_thread_flag(TIF_SYSCALL_TRACE)) 930 return scno; 931 if (!(current->ptrace & PT_PTRACED)) 932 return scno; 933 934 /* 935 * Save IP. IP is used to denote syscall entry/exit: 936 * IP = 0 -> entry, = 1 -> exit 937 */ 938 ip = regs->ARM_ip; 939 regs->ARM_ip = why; 940 941 current_thread_info()->syscall = scno; 942 943 /* the 0x80 provides a way for the tracing parent to distinguish 944 between a syscall stop and SIGTRAP delivery */ 945 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) 946 ? 0x80 : 0)); 947 /* 948 * this isn't the same as continuing with a signal, but it will do 949 * for normal use. strace only continues with a signal if the 950 * stopping signal is not SIGTRAP. -brl 951 */ 952 if (current->exit_code) { 953 send_sig(current->exit_code, current, 1); 954 current->exit_code = 0; 955 } 956 regs->ARM_ip = ip; 957 958 return current_thread_info()->syscall; 959 } 960