xref: /linux/arch/arm/kernel/ptrace.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/uaccess.h>
22 #include <linux/perf_event.h>
23 #include <linux/hw_breakpoint.h>
24 #include <linux/regset.h>
25 
26 #include <asm/pgtable.h>
27 #include <asm/system.h>
28 #include <asm/traps.h>
29 
30 #define REG_PC	15
31 #define REG_PSR	16
32 /*
33  * does not yet catch signals sent when the child dies.
34  * in exit.c or in signal.c.
35  */
36 
37 #if 0
38 /*
39  * Breakpoint SWI instruction: SWI &9F0001
40  */
41 #define BREAKINST_ARM	0xef9f0001
42 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
43 #else
44 /*
45  * New breakpoints - use an undefined instruction.  The ARM architecture
46  * reference manual guarantees that the following instruction space
47  * will produce an undefined instruction exception on all CPUs:
48  *
49  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
50  *  Thumb: 1101 1110 xxxx xxxx
51  */
52 #define BREAKINST_ARM	0xe7f001f0
53 #define BREAKINST_THUMB	0xde01
54 #endif
55 
56 struct pt_regs_offset {
57 	const char *name;
58 	int offset;
59 };
60 
61 #define REG_OFFSET_NAME(r) \
62 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
63 #define REG_OFFSET_END {.name = NULL, .offset = 0}
64 
65 static const struct pt_regs_offset regoffset_table[] = {
66 	REG_OFFSET_NAME(r0),
67 	REG_OFFSET_NAME(r1),
68 	REG_OFFSET_NAME(r2),
69 	REG_OFFSET_NAME(r3),
70 	REG_OFFSET_NAME(r4),
71 	REG_OFFSET_NAME(r5),
72 	REG_OFFSET_NAME(r6),
73 	REG_OFFSET_NAME(r7),
74 	REG_OFFSET_NAME(r8),
75 	REG_OFFSET_NAME(r9),
76 	REG_OFFSET_NAME(r10),
77 	REG_OFFSET_NAME(fp),
78 	REG_OFFSET_NAME(ip),
79 	REG_OFFSET_NAME(sp),
80 	REG_OFFSET_NAME(lr),
81 	REG_OFFSET_NAME(pc),
82 	REG_OFFSET_NAME(cpsr),
83 	REG_OFFSET_NAME(ORIG_r0),
84 	REG_OFFSET_END,
85 };
86 
87 /**
88  * regs_query_register_offset() - query register offset from its name
89  * @name:	the name of a register
90  *
91  * regs_query_register_offset() returns the offset of a register in struct
92  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
93  */
94 int regs_query_register_offset(const char *name)
95 {
96 	const struct pt_regs_offset *roff;
97 	for (roff = regoffset_table; roff->name != NULL; roff++)
98 		if (!strcmp(roff->name, name))
99 			return roff->offset;
100 	return -EINVAL;
101 }
102 
103 /**
104  * regs_query_register_name() - query register name from its offset
105  * @offset:	the offset of a register in struct pt_regs.
106  *
107  * regs_query_register_name() returns the name of a register from its
108  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
109  */
110 const char *regs_query_register_name(unsigned int offset)
111 {
112 	const struct pt_regs_offset *roff;
113 	for (roff = regoffset_table; roff->name != NULL; roff++)
114 		if (roff->offset == offset)
115 			return roff->name;
116 	return NULL;
117 }
118 
119 /**
120  * regs_within_kernel_stack() - check the address in the stack
121  * @regs:      pt_regs which contains kernel stack pointer.
122  * @addr:      address which is checked.
123  *
124  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125  * If @addr is within the kernel stack, it returns true. If not, returns false.
126  */
127 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
128 {
129 	return ((addr & ~(THREAD_SIZE - 1))  ==
130 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
131 }
132 
133 /**
134  * regs_get_kernel_stack_nth() - get Nth entry of the stack
135  * @regs:	pt_regs which contains kernel stack pointer.
136  * @n:		stack entry number.
137  *
138  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
140  * this returns 0.
141  */
142 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
143 {
144 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
145 	addr += n;
146 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
147 		return *addr;
148 	else
149 		return 0;
150 }
151 
152 /*
153  * this routine will get a word off of the processes privileged stack.
154  * the offset is how far from the base addr as stored in the THREAD.
155  * this routine assumes that all the privileged stacks are in our
156  * data space.
157  */
158 static inline long get_user_reg(struct task_struct *task, int offset)
159 {
160 	return task_pt_regs(task)->uregs[offset];
161 }
162 
163 /*
164  * this routine will put a word on the processes privileged stack.
165  * the offset is how far from the base addr as stored in the THREAD.
166  * this routine assumes that all the privileged stacks are in our
167  * data space.
168  */
169 static inline int
170 put_user_reg(struct task_struct *task, int offset, long data)
171 {
172 	struct pt_regs newregs, *regs = task_pt_regs(task);
173 	int ret = -EINVAL;
174 
175 	newregs = *regs;
176 	newregs.uregs[offset] = data;
177 
178 	if (valid_user_regs(&newregs)) {
179 		regs->uregs[offset] = data;
180 		ret = 0;
181 	}
182 
183 	return ret;
184 }
185 
186 /*
187  * Called by kernel/ptrace.c when detaching..
188  */
189 void ptrace_disable(struct task_struct *child)
190 {
191 	/* Nothing to do. */
192 }
193 
194 /*
195  * Handle hitting a breakpoint.
196  */
197 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
198 {
199 	siginfo_t info;
200 
201 	info.si_signo = SIGTRAP;
202 	info.si_errno = 0;
203 	info.si_code  = TRAP_BRKPT;
204 	info.si_addr  = (void __user *)instruction_pointer(regs);
205 
206 	force_sig_info(SIGTRAP, &info, tsk);
207 }
208 
209 static int break_trap(struct pt_regs *regs, unsigned int instr)
210 {
211 	ptrace_break(current, regs);
212 	return 0;
213 }
214 
215 static struct undef_hook arm_break_hook = {
216 	.instr_mask	= 0x0fffffff,
217 	.instr_val	= 0x07f001f0,
218 	.cpsr_mask	= PSR_T_BIT,
219 	.cpsr_val	= 0,
220 	.fn		= break_trap,
221 };
222 
223 static struct undef_hook thumb_break_hook = {
224 	.instr_mask	= 0xffff,
225 	.instr_val	= 0xde01,
226 	.cpsr_mask	= PSR_T_BIT,
227 	.cpsr_val	= PSR_T_BIT,
228 	.fn		= break_trap,
229 };
230 
231 static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr)
232 {
233 	unsigned int instr2;
234 	void __user *pc;
235 
236 	/* Check the second half of the instruction.  */
237 	pc = (void __user *)(instruction_pointer(regs) + 2);
238 
239 	if (processor_mode(regs) == SVC_MODE) {
240 		instr2 = *(u16 *) pc;
241 	} else {
242 		get_user(instr2, (u16 __user *)pc);
243 	}
244 
245 	if (instr2 == 0xa000) {
246 		ptrace_break(current, regs);
247 		return 0;
248 	} else {
249 		return 1;
250 	}
251 }
252 
253 static struct undef_hook thumb2_break_hook = {
254 	.instr_mask	= 0xffff,
255 	.instr_val	= 0xf7f0,
256 	.cpsr_mask	= PSR_T_BIT,
257 	.cpsr_val	= PSR_T_BIT,
258 	.fn		= thumb2_break_trap,
259 };
260 
261 static int __init ptrace_break_init(void)
262 {
263 	register_undef_hook(&arm_break_hook);
264 	register_undef_hook(&thumb_break_hook);
265 	register_undef_hook(&thumb2_break_hook);
266 	return 0;
267 }
268 
269 core_initcall(ptrace_break_init);
270 
271 /*
272  * Read the word at offset "off" into the "struct user".  We
273  * actually access the pt_regs stored on the kernel stack.
274  */
275 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
276 			    unsigned long __user *ret)
277 {
278 	unsigned long tmp;
279 
280 	if (off & 3 || off >= sizeof(struct user))
281 		return -EIO;
282 
283 	tmp = 0;
284 	if (off == PT_TEXT_ADDR)
285 		tmp = tsk->mm->start_code;
286 	else if (off == PT_DATA_ADDR)
287 		tmp = tsk->mm->start_data;
288 	else if (off == PT_TEXT_END_ADDR)
289 		tmp = tsk->mm->end_code;
290 	else if (off < sizeof(struct pt_regs))
291 		tmp = get_user_reg(tsk, off >> 2);
292 
293 	return put_user(tmp, ret);
294 }
295 
296 /*
297  * Write the word at offset "off" into "struct user".  We
298  * actually access the pt_regs stored on the kernel stack.
299  */
300 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
301 			     unsigned long val)
302 {
303 	if (off & 3 || off >= sizeof(struct user))
304 		return -EIO;
305 
306 	if (off >= sizeof(struct pt_regs))
307 		return 0;
308 
309 	return put_user_reg(tsk, off >> 2, val);
310 }
311 
312 #ifdef CONFIG_IWMMXT
313 
314 /*
315  * Get the child iWMMXt state.
316  */
317 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
318 {
319 	struct thread_info *thread = task_thread_info(tsk);
320 
321 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
322 		return -ENODATA;
323 	iwmmxt_task_disable(thread);  /* force it to ram */
324 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
325 		? -EFAULT : 0;
326 }
327 
328 /*
329  * Set the child iWMMXt state.
330  */
331 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
332 {
333 	struct thread_info *thread = task_thread_info(tsk);
334 
335 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
336 		return -EACCES;
337 	iwmmxt_task_release(thread);  /* force a reload */
338 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
339 		? -EFAULT : 0;
340 }
341 
342 #endif
343 
344 #ifdef CONFIG_CRUNCH
345 /*
346  * Get the child Crunch state.
347  */
348 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
349 {
350 	struct thread_info *thread = task_thread_info(tsk);
351 
352 	crunch_task_disable(thread);  /* force it to ram */
353 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
354 		? -EFAULT : 0;
355 }
356 
357 /*
358  * Set the child Crunch state.
359  */
360 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
361 {
362 	struct thread_info *thread = task_thread_info(tsk);
363 
364 	crunch_task_release(thread);  /* force a reload */
365 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
366 		? -EFAULT : 0;
367 }
368 #endif
369 
370 #ifdef CONFIG_HAVE_HW_BREAKPOINT
371 /*
372  * Convert a virtual register number into an index for a thread_info
373  * breakpoint array. Breakpoints are identified using positive numbers
374  * whilst watchpoints are negative. The registers are laid out as pairs
375  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
376  * Register 0 is reserved for describing resource information.
377  */
378 static int ptrace_hbp_num_to_idx(long num)
379 {
380 	if (num < 0)
381 		num = (ARM_MAX_BRP << 1) - num;
382 	return (num - 1) >> 1;
383 }
384 
385 /*
386  * Returns the virtual register number for the address of the
387  * breakpoint at index idx.
388  */
389 static long ptrace_hbp_idx_to_num(int idx)
390 {
391 	long mid = ARM_MAX_BRP << 1;
392 	long num = (idx << 1) + 1;
393 	return num > mid ? mid - num : num;
394 }
395 
396 /*
397  * Handle hitting a HW-breakpoint.
398  */
399 static void ptrace_hbptriggered(struct perf_event *bp, int unused,
400 				     struct perf_sample_data *data,
401 				     struct pt_regs *regs)
402 {
403 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
404 	long num;
405 	int i;
406 	siginfo_t info;
407 
408 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
409 		if (current->thread.debug.hbp[i] == bp)
410 			break;
411 
412 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
413 
414 	info.si_signo	= SIGTRAP;
415 	info.si_errno	= (int)num;
416 	info.si_code	= TRAP_HWBKPT;
417 	info.si_addr	= (void __user *)(bkpt->trigger);
418 
419 	force_sig_info(SIGTRAP, &info, current);
420 }
421 
422 /*
423  * Set ptrace breakpoint pointers to zero for this task.
424  * This is required in order to prevent child processes from unregistering
425  * breakpoints held by their parent.
426  */
427 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
428 {
429 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
430 }
431 
432 /*
433  * Unregister breakpoints from this task and reset the pointers in
434  * the thread_struct.
435  */
436 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
437 {
438 	int i;
439 	struct thread_struct *t = &tsk->thread;
440 
441 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
442 		if (t->debug.hbp[i]) {
443 			unregister_hw_breakpoint(t->debug.hbp[i]);
444 			t->debug.hbp[i] = NULL;
445 		}
446 	}
447 }
448 
449 static u32 ptrace_get_hbp_resource_info(void)
450 {
451 	u8 num_brps, num_wrps, debug_arch, wp_len;
452 	u32 reg = 0;
453 
454 	num_brps	= hw_breakpoint_slots(TYPE_INST);
455 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
456 	debug_arch	= arch_get_debug_arch();
457 	wp_len		= arch_get_max_wp_len();
458 
459 	reg		|= debug_arch;
460 	reg		<<= 8;
461 	reg		|= wp_len;
462 	reg		<<= 8;
463 	reg		|= num_wrps;
464 	reg		<<= 8;
465 	reg		|= num_brps;
466 
467 	return reg;
468 }
469 
470 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
471 {
472 	struct perf_event_attr attr;
473 
474 	ptrace_breakpoint_init(&attr);
475 
476 	/* Initialise fields to sane defaults. */
477 	attr.bp_addr	= 0;
478 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
479 	attr.bp_type	= type;
480 	attr.disabled	= 1;
481 
482 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, tsk);
483 }
484 
485 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
486 			     unsigned long  __user *data)
487 {
488 	u32 reg;
489 	int idx, ret = 0;
490 	struct perf_event *bp;
491 	struct arch_hw_breakpoint_ctrl arch_ctrl;
492 
493 	if (num == 0) {
494 		reg = ptrace_get_hbp_resource_info();
495 	} else {
496 		idx = ptrace_hbp_num_to_idx(num);
497 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
498 			ret = -EINVAL;
499 			goto out;
500 		}
501 
502 		bp = tsk->thread.debug.hbp[idx];
503 		if (!bp) {
504 			reg = 0;
505 			goto put;
506 		}
507 
508 		arch_ctrl = counter_arch_bp(bp)->ctrl;
509 
510 		/*
511 		 * Fix up the len because we may have adjusted it
512 		 * to compensate for an unaligned address.
513 		 */
514 		while (!(arch_ctrl.len & 0x1))
515 			arch_ctrl.len >>= 1;
516 
517 		if (num & 0x1)
518 			reg = bp->attr.bp_addr;
519 		else
520 			reg = encode_ctrl_reg(arch_ctrl);
521 	}
522 
523 put:
524 	if (put_user(reg, data))
525 		ret = -EFAULT;
526 
527 out:
528 	return ret;
529 }
530 
531 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
532 			     unsigned long __user *data)
533 {
534 	int idx, gen_len, gen_type, implied_type, ret = 0;
535 	u32 user_val;
536 	struct perf_event *bp;
537 	struct arch_hw_breakpoint_ctrl ctrl;
538 	struct perf_event_attr attr;
539 
540 	if (num == 0)
541 		goto out;
542 	else if (num < 0)
543 		implied_type = HW_BREAKPOINT_RW;
544 	else
545 		implied_type = HW_BREAKPOINT_X;
546 
547 	idx = ptrace_hbp_num_to_idx(num);
548 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
549 		ret = -EINVAL;
550 		goto out;
551 	}
552 
553 	if (get_user(user_val, data)) {
554 		ret = -EFAULT;
555 		goto out;
556 	}
557 
558 	bp = tsk->thread.debug.hbp[idx];
559 	if (!bp) {
560 		bp = ptrace_hbp_create(tsk, implied_type);
561 		if (IS_ERR(bp)) {
562 			ret = PTR_ERR(bp);
563 			goto out;
564 		}
565 		tsk->thread.debug.hbp[idx] = bp;
566 	}
567 
568 	attr = bp->attr;
569 
570 	if (num & 0x1) {
571 		/* Address */
572 		attr.bp_addr	= user_val;
573 	} else {
574 		/* Control */
575 		decode_ctrl_reg(user_val, &ctrl);
576 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
577 		if (ret)
578 			goto out;
579 
580 		if ((gen_type & implied_type) != gen_type) {
581 			ret = -EINVAL;
582 			goto out;
583 		}
584 
585 		attr.bp_len	= gen_len;
586 		attr.bp_type	= gen_type;
587 		attr.disabled	= !ctrl.enabled;
588 	}
589 
590 	ret = modify_user_hw_breakpoint(bp, &attr);
591 out:
592 	return ret;
593 }
594 #endif
595 
596 /* regset get/set implementations */
597 
598 static int gpr_get(struct task_struct *target,
599 		   const struct user_regset *regset,
600 		   unsigned int pos, unsigned int count,
601 		   void *kbuf, void __user *ubuf)
602 {
603 	struct pt_regs *regs = task_pt_regs(target);
604 
605 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
606 				   regs,
607 				   0, sizeof(*regs));
608 }
609 
610 static int gpr_set(struct task_struct *target,
611 		   const struct user_regset *regset,
612 		   unsigned int pos, unsigned int count,
613 		   const void *kbuf, const void __user *ubuf)
614 {
615 	int ret;
616 	struct pt_regs newregs;
617 
618 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
619 				 &newregs,
620 				 0, sizeof(newregs));
621 	if (ret)
622 		return ret;
623 
624 	if (!valid_user_regs(&newregs))
625 		return -EINVAL;
626 
627 	*task_pt_regs(target) = newregs;
628 	return 0;
629 }
630 
631 static int fpa_get(struct task_struct *target,
632 		   const struct user_regset *regset,
633 		   unsigned int pos, unsigned int count,
634 		   void *kbuf, void __user *ubuf)
635 {
636 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
637 				   &task_thread_info(target)->fpstate,
638 				   0, sizeof(struct user_fp));
639 }
640 
641 static int fpa_set(struct task_struct *target,
642 		   const struct user_regset *regset,
643 		   unsigned int pos, unsigned int count,
644 		   const void *kbuf, const void __user *ubuf)
645 {
646 	struct thread_info *thread = task_thread_info(target);
647 
648 	thread->used_cp[1] = thread->used_cp[2] = 1;
649 
650 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
651 		&thread->fpstate,
652 		0, sizeof(struct user_fp));
653 }
654 
655 #ifdef CONFIG_VFP
656 /*
657  * VFP register get/set implementations.
658  *
659  * With respect to the kernel, struct user_fp is divided into three chunks:
660  * 16 or 32 real VFP registers (d0-d15 or d0-31)
661  *	These are transferred to/from the real registers in the task's
662  *	vfp_hard_struct.  The number of registers depends on the kernel
663  *	configuration.
664  *
665  * 16 or 0 fake VFP registers (d16-d31 or empty)
666  *	i.e., the user_vfp structure has space for 32 registers even if
667  *	the kernel doesn't have them all.
668  *
669  *	vfp_get() reads this chunk as zero where applicable
670  *	vfp_set() ignores this chunk
671  *
672  * 1 word for the FPSCR
673  *
674  * The bounds-checking logic built into user_regset_copyout and friends
675  * means that we can make a simple sequence of calls to map the relevant data
676  * to/from the specified slice of the user regset structure.
677  */
678 static int vfp_get(struct task_struct *target,
679 		   const struct user_regset *regset,
680 		   unsigned int pos, unsigned int count,
681 		   void *kbuf, void __user *ubuf)
682 {
683 	int ret;
684 	struct thread_info *thread = task_thread_info(target);
685 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
686 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
687 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
688 
689 	vfp_sync_hwstate(thread);
690 
691 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
692 				  &vfp->fpregs,
693 				  user_fpregs_offset,
694 				  user_fpregs_offset + sizeof(vfp->fpregs));
695 	if (ret)
696 		return ret;
697 
698 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
699 				       user_fpregs_offset + sizeof(vfp->fpregs),
700 				       user_fpscr_offset);
701 	if (ret)
702 		return ret;
703 
704 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
705 				   &vfp->fpscr,
706 				   user_fpscr_offset,
707 				   user_fpscr_offset + sizeof(vfp->fpscr));
708 }
709 
710 /*
711  * For vfp_set() a read-modify-write is done on the VFP registers,
712  * in order to avoid writing back a half-modified set of registers on
713  * failure.
714  */
715 static int vfp_set(struct task_struct *target,
716 			  const struct user_regset *regset,
717 			  unsigned int pos, unsigned int count,
718 			  const void *kbuf, const void __user *ubuf)
719 {
720 	int ret;
721 	struct thread_info *thread = task_thread_info(target);
722 	struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
723 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
724 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
725 
726 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
727 				  &new_vfp.fpregs,
728 				  user_fpregs_offset,
729 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
730 	if (ret)
731 		return ret;
732 
733 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
734 				user_fpregs_offset + sizeof(new_vfp.fpregs),
735 				user_fpscr_offset);
736 	if (ret)
737 		return ret;
738 
739 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
740 				 &new_vfp.fpscr,
741 				 user_fpscr_offset,
742 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
743 	if (ret)
744 		return ret;
745 
746 	vfp_sync_hwstate(thread);
747 	thread->vfpstate.hard = new_vfp;
748 	vfp_flush_hwstate(thread);
749 
750 	return 0;
751 }
752 #endif /* CONFIG_VFP */
753 
754 enum arm_regset {
755 	REGSET_GPR,
756 	REGSET_FPR,
757 #ifdef CONFIG_VFP
758 	REGSET_VFP,
759 #endif
760 };
761 
762 static const struct user_regset arm_regsets[] = {
763 	[REGSET_GPR] = {
764 		.core_note_type = NT_PRSTATUS,
765 		.n = ELF_NGREG,
766 		.size = sizeof(u32),
767 		.align = sizeof(u32),
768 		.get = gpr_get,
769 		.set = gpr_set
770 	},
771 	[REGSET_FPR] = {
772 		/*
773 		 * For the FPA regs in fpstate, the real fields are a mixture
774 		 * of sizes, so pretend that the registers are word-sized:
775 		 */
776 		.core_note_type = NT_PRFPREG,
777 		.n = sizeof(struct user_fp) / sizeof(u32),
778 		.size = sizeof(u32),
779 		.align = sizeof(u32),
780 		.get = fpa_get,
781 		.set = fpa_set
782 	},
783 #ifdef CONFIG_VFP
784 	[REGSET_VFP] = {
785 		/*
786 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
787 		 * a single word dangling at the end of struct user_vfp:
788 		 */
789 		.core_note_type = NT_ARM_VFP,
790 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
791 		.size = sizeof(u32),
792 		.align = sizeof(u32),
793 		.get = vfp_get,
794 		.set = vfp_set
795 	},
796 #endif /* CONFIG_VFP */
797 };
798 
799 static const struct user_regset_view user_arm_view = {
800 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
801 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
802 };
803 
804 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
805 {
806 	return &user_arm_view;
807 }
808 
809 long arch_ptrace(struct task_struct *child, long request,
810 		 unsigned long addr, unsigned long data)
811 {
812 	int ret;
813 	unsigned long __user *datap = (unsigned long __user *) data;
814 
815 	switch (request) {
816 		case PTRACE_PEEKUSR:
817 			ret = ptrace_read_user(child, addr, datap);
818 			break;
819 
820 		case PTRACE_POKEUSR:
821 			ret = ptrace_write_user(child, addr, data);
822 			break;
823 
824 		case PTRACE_GETREGS:
825 			ret = copy_regset_to_user(child,
826 						  &user_arm_view, REGSET_GPR,
827 						  0, sizeof(struct pt_regs),
828 						  datap);
829 			break;
830 
831 		case PTRACE_SETREGS:
832 			ret = copy_regset_from_user(child,
833 						    &user_arm_view, REGSET_GPR,
834 						    0, sizeof(struct pt_regs),
835 						    datap);
836 			break;
837 
838 		case PTRACE_GETFPREGS:
839 			ret = copy_regset_to_user(child,
840 						  &user_arm_view, REGSET_FPR,
841 						  0, sizeof(union fp_state),
842 						  datap);
843 			break;
844 
845 		case PTRACE_SETFPREGS:
846 			ret = copy_regset_from_user(child,
847 						    &user_arm_view, REGSET_FPR,
848 						    0, sizeof(union fp_state),
849 						    datap);
850 			break;
851 
852 #ifdef CONFIG_IWMMXT
853 		case PTRACE_GETWMMXREGS:
854 			ret = ptrace_getwmmxregs(child, datap);
855 			break;
856 
857 		case PTRACE_SETWMMXREGS:
858 			ret = ptrace_setwmmxregs(child, datap);
859 			break;
860 #endif
861 
862 		case PTRACE_GET_THREAD_AREA:
863 			ret = put_user(task_thread_info(child)->tp_value,
864 				       datap);
865 			break;
866 
867 		case PTRACE_SET_SYSCALL:
868 			task_thread_info(child)->syscall = data;
869 			ret = 0;
870 			break;
871 
872 #ifdef CONFIG_CRUNCH
873 		case PTRACE_GETCRUNCHREGS:
874 			ret = ptrace_getcrunchregs(child, datap);
875 			break;
876 
877 		case PTRACE_SETCRUNCHREGS:
878 			ret = ptrace_setcrunchregs(child, datap);
879 			break;
880 #endif
881 
882 #ifdef CONFIG_VFP
883 		case PTRACE_GETVFPREGS:
884 			ret = copy_regset_to_user(child,
885 						  &user_arm_view, REGSET_VFP,
886 						  0, ARM_VFPREGS_SIZE,
887 						  datap);
888 			break;
889 
890 		case PTRACE_SETVFPREGS:
891 			ret = copy_regset_from_user(child,
892 						    &user_arm_view, REGSET_VFP,
893 						    0, ARM_VFPREGS_SIZE,
894 						    datap);
895 			break;
896 #endif
897 
898 #ifdef CONFIG_HAVE_HW_BREAKPOINT
899 		case PTRACE_GETHBPREGS:
900 			if (ptrace_get_breakpoints(child) < 0)
901 				return -ESRCH;
902 
903 			ret = ptrace_gethbpregs(child, addr,
904 						(unsigned long __user *)data);
905 			ptrace_put_breakpoints(child);
906 			break;
907 		case PTRACE_SETHBPREGS:
908 			if (ptrace_get_breakpoints(child) < 0)
909 				return -ESRCH;
910 
911 			ret = ptrace_sethbpregs(child, addr,
912 						(unsigned long __user *)data);
913 			ptrace_put_breakpoints(child);
914 			break;
915 #endif
916 
917 		default:
918 			ret = ptrace_request(child, request, addr, data);
919 			break;
920 	}
921 
922 	return ret;
923 }
924 
925 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
926 {
927 	unsigned long ip;
928 
929 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
930 		return scno;
931 	if (!(current->ptrace & PT_PTRACED))
932 		return scno;
933 
934 	/*
935 	 * Save IP.  IP is used to denote syscall entry/exit:
936 	 *  IP = 0 -> entry, = 1 -> exit
937 	 */
938 	ip = regs->ARM_ip;
939 	regs->ARM_ip = why;
940 
941 	current_thread_info()->syscall = scno;
942 
943 	/* the 0x80 provides a way for the tracing parent to distinguish
944 	   between a syscall stop and SIGTRAP delivery */
945 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
946 				 ? 0x80 : 0));
947 	/*
948 	 * this isn't the same as continuing with a signal, but it will do
949 	 * for normal use.  strace only continues with a signal if the
950 	 * stopping signal is not SIGTRAP.  -brl
951 	 */
952 	if (current->exit_code) {
953 		send_sig(current->exit_code, current, 1);
954 		current->exit_code = 0;
955 	}
956 	regs->ARM_ip = ip;
957 
958 	return current_thread_info()->syscall;
959 }
960