1 /* 2 * linux/arch/arm/kernel/process.c 3 * 4 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 5 * Original Copyright (C) 1995 Linus Torvalds 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <stdarg.h> 12 13 #include <linux/export.h> 14 #include <linux/sched.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/stddef.h> 18 #include <linux/unistd.h> 19 #include <linux/user.h> 20 #include <linux/delay.h> 21 #include <linux/reboot.h> 22 #include <linux/interrupt.h> 23 #include <linux/kallsyms.h> 24 #include <linux/init.h> 25 #include <linux/cpu.h> 26 #include <linux/elfcore.h> 27 #include <linux/pm.h> 28 #include <linux/tick.h> 29 #include <linux/utsname.h> 30 #include <linux/uaccess.h> 31 #include <linux/random.h> 32 #include <linux/hw_breakpoint.h> 33 #include <linux/leds.h> 34 #include <linux/reboot.h> 35 36 #include <asm/cacheflush.h> 37 #include <asm/idmap.h> 38 #include <asm/processor.h> 39 #include <asm/thread_notify.h> 40 #include <asm/stacktrace.h> 41 #include <asm/system_misc.h> 42 #include <asm/mach/time.h> 43 #include <asm/tls.h> 44 45 #ifdef CONFIG_CC_STACKPROTECTOR 46 #include <linux/stackprotector.h> 47 unsigned long __stack_chk_guard __read_mostly; 48 EXPORT_SYMBOL(__stack_chk_guard); 49 #endif 50 51 static const char *processor_modes[] __maybe_unused = { 52 "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" , 53 "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26", 54 "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" , 55 "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32" 56 }; 57 58 static const char *isa_modes[] __maybe_unused = { 59 "ARM" , "Thumb" , "Jazelle", "ThumbEE" 60 }; 61 62 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 63 typedef void (*phys_reset_t)(unsigned long); 64 65 /* 66 * A temporary stack to use for CPU reset. This is static so that we 67 * don't clobber it with the identity mapping. When running with this 68 * stack, any references to the current task *will not work* so you 69 * should really do as little as possible before jumping to your reset 70 * code. 71 */ 72 static u64 soft_restart_stack[16]; 73 74 static void __soft_restart(void *addr) 75 { 76 phys_reset_t phys_reset; 77 78 /* Take out a flat memory mapping. */ 79 setup_mm_for_reboot(); 80 81 /* Clean and invalidate caches */ 82 flush_cache_all(); 83 84 /* Turn off caching */ 85 cpu_proc_fin(); 86 87 /* Push out any further dirty data, and ensure cache is empty */ 88 flush_cache_all(); 89 90 /* Switch to the identity mapping. */ 91 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset); 92 phys_reset((unsigned long)addr); 93 94 /* Should never get here. */ 95 BUG(); 96 } 97 98 void soft_restart(unsigned long addr) 99 { 100 u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack); 101 102 /* Disable interrupts first */ 103 raw_local_irq_disable(); 104 local_fiq_disable(); 105 106 /* Disable the L2 if we're the last man standing. */ 107 if (num_online_cpus() == 1) 108 outer_disable(); 109 110 /* Change to the new stack and continue with the reset. */ 111 call_with_stack(__soft_restart, (void *)addr, (void *)stack); 112 113 /* Should never get here. */ 114 BUG(); 115 } 116 117 /* 118 * Function pointers to optional machine specific functions 119 */ 120 void (*pm_power_off)(void); 121 EXPORT_SYMBOL(pm_power_off); 122 123 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 124 125 /* 126 * This is our default idle handler. 127 */ 128 129 void (*arm_pm_idle)(void); 130 131 /* 132 * Called from the core idle loop. 133 */ 134 135 void arch_cpu_idle(void) 136 { 137 if (arm_pm_idle) 138 arm_pm_idle(); 139 else 140 cpu_do_idle(); 141 local_irq_enable(); 142 } 143 144 void arch_cpu_idle_prepare(void) 145 { 146 local_fiq_enable(); 147 } 148 149 void arch_cpu_idle_enter(void) 150 { 151 ledtrig_cpu(CPU_LED_IDLE_START); 152 #ifdef CONFIG_PL310_ERRATA_769419 153 wmb(); 154 #endif 155 } 156 157 void arch_cpu_idle_exit(void) 158 { 159 ledtrig_cpu(CPU_LED_IDLE_END); 160 } 161 162 #ifdef CONFIG_HOTPLUG_CPU 163 void arch_cpu_idle_dead(void) 164 { 165 cpu_die(); 166 } 167 #endif 168 169 /* 170 * Called by kexec, immediately prior to machine_kexec(). 171 * 172 * This must completely disable all secondary CPUs; simply causing those CPUs 173 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 174 * kexec'd kernel to use any and all RAM as it sees fit, without having to 175 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 176 * functionality embodied in disable_nonboot_cpus() to achieve this. 177 */ 178 void machine_shutdown(void) 179 { 180 disable_nonboot_cpus(); 181 } 182 183 /* 184 * Halting simply requires that the secondary CPUs stop performing any 185 * activity (executing tasks, handling interrupts). smp_send_stop() 186 * achieves this. 187 */ 188 void machine_halt(void) 189 { 190 local_irq_disable(); 191 smp_send_stop(); 192 193 local_irq_disable(); 194 while (1); 195 } 196 197 /* 198 * Power-off simply requires that the secondary CPUs stop performing any 199 * activity (executing tasks, handling interrupts). smp_send_stop() 200 * achieves this. When the system power is turned off, it will take all CPUs 201 * with it. 202 */ 203 void machine_power_off(void) 204 { 205 local_irq_disable(); 206 smp_send_stop(); 207 208 if (pm_power_off) 209 pm_power_off(); 210 } 211 212 /* 213 * Restart requires that the secondary CPUs stop performing any activity 214 * while the primary CPU resets the system. Systems with a single CPU can 215 * use soft_restart() as their machine descriptor's .restart hook, since that 216 * will cause the only available CPU to reset. Systems with multiple CPUs must 217 * provide a HW restart implementation, to ensure that all CPUs reset at once. 218 * This is required so that any code running after reset on the primary CPU 219 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 220 * executing pre-reset code, and using RAM that the primary CPU's code wishes 221 * to use. Implementing such co-ordination would be essentially impossible. 222 */ 223 void machine_restart(char *cmd) 224 { 225 local_irq_disable(); 226 smp_send_stop(); 227 228 if (arm_pm_restart) 229 arm_pm_restart(reboot_mode, cmd); 230 else 231 do_kernel_restart(cmd); 232 233 /* Give a grace period for failure to restart of 1s */ 234 mdelay(1000); 235 236 /* Whoops - the platform was unable to reboot. Tell the user! */ 237 printk("Reboot failed -- System halted\n"); 238 local_irq_disable(); 239 while (1); 240 } 241 242 void __show_regs(struct pt_regs *regs) 243 { 244 unsigned long flags; 245 char buf[64]; 246 247 show_regs_print_info(KERN_DEFAULT); 248 249 print_symbol("PC is at %s\n", instruction_pointer(regs)); 250 print_symbol("LR is at %s\n", regs->ARM_lr); 251 printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n" 252 "sp : %08lx ip : %08lx fp : %08lx\n", 253 regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr, 254 regs->ARM_sp, regs->ARM_ip, regs->ARM_fp); 255 printk("r10: %08lx r9 : %08lx r8 : %08lx\n", 256 regs->ARM_r10, regs->ARM_r9, 257 regs->ARM_r8); 258 printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n", 259 regs->ARM_r7, regs->ARM_r6, 260 regs->ARM_r5, regs->ARM_r4); 261 printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n", 262 regs->ARM_r3, regs->ARM_r2, 263 regs->ARM_r1, regs->ARM_r0); 264 265 flags = regs->ARM_cpsr; 266 buf[0] = flags & PSR_N_BIT ? 'N' : 'n'; 267 buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z'; 268 buf[2] = flags & PSR_C_BIT ? 'C' : 'c'; 269 buf[3] = flags & PSR_V_BIT ? 'V' : 'v'; 270 buf[4] = '\0'; 271 272 #ifndef CONFIG_CPU_V7M 273 printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n", 274 buf, interrupts_enabled(regs) ? "n" : "ff", 275 fast_interrupts_enabled(regs) ? "n" : "ff", 276 processor_modes[processor_mode(regs)], 277 isa_modes[isa_mode(regs)], 278 get_fs() == get_ds() ? "kernel" : "user"); 279 #else 280 printk("xPSR: %08lx\n", regs->ARM_cpsr); 281 #endif 282 283 #ifdef CONFIG_CPU_CP15 284 { 285 unsigned int ctrl; 286 287 buf[0] = '\0'; 288 #ifdef CONFIG_CPU_CP15_MMU 289 { 290 unsigned int transbase, dac; 291 asm("mrc p15, 0, %0, c2, c0\n\t" 292 "mrc p15, 0, %1, c3, c0\n" 293 : "=r" (transbase), "=r" (dac)); 294 snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x", 295 transbase, dac); 296 } 297 #endif 298 asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl)); 299 300 printk("Control: %08x%s\n", ctrl, buf); 301 } 302 #endif 303 } 304 305 void show_regs(struct pt_regs * regs) 306 { 307 __show_regs(regs); 308 dump_stack(); 309 } 310 311 ATOMIC_NOTIFIER_HEAD(thread_notify_head); 312 313 EXPORT_SYMBOL_GPL(thread_notify_head); 314 315 /* 316 * Free current thread data structures etc.. 317 */ 318 void exit_thread(void) 319 { 320 thread_notify(THREAD_NOTIFY_EXIT, current_thread_info()); 321 } 322 323 void flush_thread(void) 324 { 325 struct thread_info *thread = current_thread_info(); 326 struct task_struct *tsk = current; 327 328 flush_ptrace_hw_breakpoint(tsk); 329 330 memset(thread->used_cp, 0, sizeof(thread->used_cp)); 331 memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); 332 memset(&thread->fpstate, 0, sizeof(union fp_state)); 333 334 flush_tls(); 335 336 thread_notify(THREAD_NOTIFY_FLUSH, thread); 337 } 338 339 void release_thread(struct task_struct *dead_task) 340 { 341 } 342 343 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 344 345 int 346 copy_thread(unsigned long clone_flags, unsigned long stack_start, 347 unsigned long stk_sz, struct task_struct *p) 348 { 349 struct thread_info *thread = task_thread_info(p); 350 struct pt_regs *childregs = task_pt_regs(p); 351 352 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save)); 353 354 if (likely(!(p->flags & PF_KTHREAD))) { 355 *childregs = *current_pt_regs(); 356 childregs->ARM_r0 = 0; 357 if (stack_start) 358 childregs->ARM_sp = stack_start; 359 } else { 360 memset(childregs, 0, sizeof(struct pt_regs)); 361 thread->cpu_context.r4 = stk_sz; 362 thread->cpu_context.r5 = stack_start; 363 childregs->ARM_cpsr = SVC_MODE; 364 } 365 thread->cpu_context.pc = (unsigned long)ret_from_fork; 366 thread->cpu_context.sp = (unsigned long)childregs; 367 368 clear_ptrace_hw_breakpoint(p); 369 370 if (clone_flags & CLONE_SETTLS) 371 thread->tp_value[0] = childregs->ARM_r3; 372 thread->tp_value[1] = get_tpuser(); 373 374 thread_notify(THREAD_NOTIFY_COPY, thread); 375 376 return 0; 377 } 378 379 /* 380 * Fill in the task's elfregs structure for a core dump. 381 */ 382 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs) 383 { 384 elf_core_copy_regs(elfregs, task_pt_regs(t)); 385 return 1; 386 } 387 388 /* 389 * fill in the fpe structure for a core dump... 390 */ 391 int dump_fpu (struct pt_regs *regs, struct user_fp *fp) 392 { 393 struct thread_info *thread = current_thread_info(); 394 int used_math = thread->used_cp[1] | thread->used_cp[2]; 395 396 if (used_math) 397 memcpy(fp, &thread->fpstate.soft, sizeof (*fp)); 398 399 return used_math != 0; 400 } 401 EXPORT_SYMBOL(dump_fpu); 402 403 unsigned long get_wchan(struct task_struct *p) 404 { 405 struct stackframe frame; 406 unsigned long stack_page; 407 int count = 0; 408 if (!p || p == current || p->state == TASK_RUNNING) 409 return 0; 410 411 frame.fp = thread_saved_fp(p); 412 frame.sp = thread_saved_sp(p); 413 frame.lr = 0; /* recovered from the stack */ 414 frame.pc = thread_saved_pc(p); 415 stack_page = (unsigned long)task_stack_page(p); 416 do { 417 if (frame.sp < stack_page || 418 frame.sp >= stack_page + THREAD_SIZE || 419 unwind_frame(&frame) < 0) 420 return 0; 421 if (!in_sched_functions(frame.pc)) 422 return frame.pc; 423 } while (count ++ < 16); 424 return 0; 425 } 426 427 unsigned long arch_randomize_brk(struct mm_struct *mm) 428 { 429 unsigned long range_end = mm->brk + 0x02000000; 430 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 431 } 432 433 #ifdef CONFIG_MMU 434 #ifdef CONFIG_KUSER_HELPERS 435 /* 436 * The vectors page is always readable from user space for the 437 * atomic helpers. Insert it into the gate_vma so that it is visible 438 * through ptrace and /proc/<pid>/mem. 439 */ 440 static struct vm_area_struct gate_vma = { 441 .vm_start = 0xffff0000, 442 .vm_end = 0xffff0000 + PAGE_SIZE, 443 .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC, 444 }; 445 446 static int __init gate_vma_init(void) 447 { 448 gate_vma.vm_page_prot = PAGE_READONLY_EXEC; 449 return 0; 450 } 451 arch_initcall(gate_vma_init); 452 453 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 454 { 455 return &gate_vma; 456 } 457 458 int in_gate_area(struct mm_struct *mm, unsigned long addr) 459 { 460 return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end); 461 } 462 463 int in_gate_area_no_mm(unsigned long addr) 464 { 465 return in_gate_area(NULL, addr); 466 } 467 #define is_gate_vma(vma) ((vma) == &gate_vma) 468 #else 469 #define is_gate_vma(vma) 0 470 #endif 471 472 const char *arch_vma_name(struct vm_area_struct *vma) 473 { 474 return is_gate_vma(vma) ? "[vectors]" : NULL; 475 } 476 477 /* If possible, provide a placement hint at a random offset from the 478 * stack for the signal page. 479 */ 480 static unsigned long sigpage_addr(const struct mm_struct *mm, 481 unsigned int npages) 482 { 483 unsigned long offset; 484 unsigned long first; 485 unsigned long last; 486 unsigned long addr; 487 unsigned int slots; 488 489 first = PAGE_ALIGN(mm->start_stack); 490 491 last = TASK_SIZE - (npages << PAGE_SHIFT); 492 493 /* No room after stack? */ 494 if (first > last) 495 return 0; 496 497 /* Just enough room? */ 498 if (first == last) 499 return first; 500 501 slots = ((last - first) >> PAGE_SHIFT) + 1; 502 503 offset = get_random_int() % slots; 504 505 addr = first + (offset << PAGE_SHIFT); 506 507 return addr; 508 } 509 510 static struct page *signal_page; 511 extern struct page *get_signal_page(void); 512 513 static const struct vm_special_mapping sigpage_mapping = { 514 .name = "[sigpage]", 515 .pages = &signal_page, 516 }; 517 518 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) 519 { 520 struct mm_struct *mm = current->mm; 521 struct vm_area_struct *vma; 522 unsigned long addr; 523 unsigned long hint; 524 int ret = 0; 525 526 if (!signal_page) 527 signal_page = get_signal_page(); 528 if (!signal_page) 529 return -ENOMEM; 530 531 down_write(&mm->mmap_sem); 532 hint = sigpage_addr(mm, 1); 533 addr = get_unmapped_area(NULL, hint, PAGE_SIZE, 0, 0); 534 if (IS_ERR_VALUE(addr)) { 535 ret = addr; 536 goto up_fail; 537 } 538 539 vma = _install_special_mapping(mm, addr, PAGE_SIZE, 540 VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC, 541 &sigpage_mapping); 542 543 if (IS_ERR(vma)) { 544 ret = PTR_ERR(vma); 545 goto up_fail; 546 } 547 548 mm->context.sigpage = addr; 549 550 up_fail: 551 up_write(&mm->mmap_sem); 552 return ret; 553 } 554 #endif 555