xref: /linux/arch/arm/kernel/process.c (revision 767bf7e7a1e82a81c59778348d156993d0a6175d)
1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12 
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/hw_breakpoint.h>
33 #include <linux/leds.h>
34 #include <linux/reboot.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/idmap.h>
38 #include <asm/processor.h>
39 #include <asm/thread_notify.h>
40 #include <asm/stacktrace.h>
41 #include <asm/system_misc.h>
42 #include <asm/mach/time.h>
43 #include <asm/tls.h>
44 #include "reboot.h"
45 
46 #ifdef CONFIG_CC_STACKPROTECTOR
47 #include <linux/stackprotector.h>
48 unsigned long __stack_chk_guard __read_mostly;
49 EXPORT_SYMBOL(__stack_chk_guard);
50 #endif
51 
52 static const char *processor_modes[] __maybe_unused = {
53   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
54   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
55   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
56   "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
57 };
58 
59 static const char *isa_modes[] __maybe_unused = {
60   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
61 };
62 
63 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
64 typedef void (*phys_reset_t)(unsigned long);
65 
66 /*
67  * A temporary stack to use for CPU reset. This is static so that we
68  * don't clobber it with the identity mapping. When running with this
69  * stack, any references to the current task *will not work* so you
70  * should really do as little as possible before jumping to your reset
71  * code.
72  */
73 static u64 soft_restart_stack[16];
74 
75 static void __soft_restart(void *addr)
76 {
77 	phys_reset_t phys_reset;
78 
79 	/* Take out a flat memory mapping. */
80 	setup_mm_for_reboot();
81 
82 	/* Clean and invalidate caches */
83 	flush_cache_all();
84 
85 	/* Turn off caching */
86 	cpu_proc_fin();
87 
88 	/* Push out any further dirty data, and ensure cache is empty */
89 	flush_cache_all();
90 
91 	/* Switch to the identity mapping. */
92 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
93 	phys_reset((unsigned long)addr);
94 
95 	/* Should never get here. */
96 	BUG();
97 }
98 
99 void _soft_restart(unsigned long addr, bool disable_l2)
100 {
101 	u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
102 
103 	/* Disable interrupts first */
104 	raw_local_irq_disable();
105 	local_fiq_disable();
106 
107 	/* Disable the L2 if we're the last man standing. */
108 	if (disable_l2)
109 		outer_disable();
110 
111 	/* Change to the new stack and continue with the reset. */
112 	call_with_stack(__soft_restart, (void *)addr, (void *)stack);
113 
114 	/* Should never get here. */
115 	BUG();
116 }
117 
118 void soft_restart(unsigned long addr)
119 {
120 	_soft_restart(addr, num_online_cpus() == 1);
121 }
122 
123 /*
124  * Function pointers to optional machine specific functions
125  */
126 void (*pm_power_off)(void);
127 EXPORT_SYMBOL(pm_power_off);
128 
129 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
130 
131 /*
132  * This is our default idle handler.
133  */
134 
135 void (*arm_pm_idle)(void);
136 
137 /*
138  * Called from the core idle loop.
139  */
140 
141 void arch_cpu_idle(void)
142 {
143 	if (arm_pm_idle)
144 		arm_pm_idle();
145 	else
146 		cpu_do_idle();
147 	local_irq_enable();
148 }
149 
150 void arch_cpu_idle_prepare(void)
151 {
152 	local_fiq_enable();
153 }
154 
155 void arch_cpu_idle_enter(void)
156 {
157 	ledtrig_cpu(CPU_LED_IDLE_START);
158 #ifdef CONFIG_PL310_ERRATA_769419
159 	wmb();
160 #endif
161 }
162 
163 void arch_cpu_idle_exit(void)
164 {
165 	ledtrig_cpu(CPU_LED_IDLE_END);
166 }
167 
168 #ifdef CONFIG_HOTPLUG_CPU
169 void arch_cpu_idle_dead(void)
170 {
171 	cpu_die();
172 }
173 #endif
174 
175 /*
176  * Called by kexec, immediately prior to machine_kexec().
177  *
178  * This must completely disable all secondary CPUs; simply causing those CPUs
179  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
180  * kexec'd kernel to use any and all RAM as it sees fit, without having to
181  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
182  * functionality embodied in disable_nonboot_cpus() to achieve this.
183  */
184 void machine_shutdown(void)
185 {
186 	disable_nonboot_cpus();
187 }
188 
189 /*
190  * Halting simply requires that the secondary CPUs stop performing any
191  * activity (executing tasks, handling interrupts). smp_send_stop()
192  * achieves this.
193  */
194 void machine_halt(void)
195 {
196 	local_irq_disable();
197 	smp_send_stop();
198 
199 	local_irq_disable();
200 	while (1);
201 }
202 
203 /*
204  * Power-off simply requires that the secondary CPUs stop performing any
205  * activity (executing tasks, handling interrupts). smp_send_stop()
206  * achieves this. When the system power is turned off, it will take all CPUs
207  * with it.
208  */
209 void machine_power_off(void)
210 {
211 	local_irq_disable();
212 	smp_send_stop();
213 
214 	if (pm_power_off)
215 		pm_power_off();
216 }
217 
218 /*
219  * Restart requires that the secondary CPUs stop performing any activity
220  * while the primary CPU resets the system. Systems with a single CPU can
221  * use soft_restart() as their machine descriptor's .restart hook, since that
222  * will cause the only available CPU to reset. Systems with multiple CPUs must
223  * provide a HW restart implementation, to ensure that all CPUs reset at once.
224  * This is required so that any code running after reset on the primary CPU
225  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
226  * executing pre-reset code, and using RAM that the primary CPU's code wishes
227  * to use. Implementing such co-ordination would be essentially impossible.
228  */
229 void machine_restart(char *cmd)
230 {
231 	local_irq_disable();
232 	smp_send_stop();
233 
234 	if (arm_pm_restart)
235 		arm_pm_restart(reboot_mode, cmd);
236 	else
237 		do_kernel_restart(cmd);
238 
239 	/* Give a grace period for failure to restart of 1s */
240 	mdelay(1000);
241 
242 	/* Whoops - the platform was unable to reboot. Tell the user! */
243 	printk("Reboot failed -- System halted\n");
244 	local_irq_disable();
245 	while (1);
246 }
247 
248 void __show_regs(struct pt_regs *regs)
249 {
250 	unsigned long flags;
251 	char buf[64];
252 
253 	show_regs_print_info(KERN_DEFAULT);
254 
255 	print_symbol("PC is at %s\n", instruction_pointer(regs));
256 	print_symbol("LR is at %s\n", regs->ARM_lr);
257 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
258 	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
259 		regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
260 		regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
261 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
262 		regs->ARM_r10, regs->ARM_r9,
263 		regs->ARM_r8);
264 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
265 		regs->ARM_r7, regs->ARM_r6,
266 		regs->ARM_r5, regs->ARM_r4);
267 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
268 		regs->ARM_r3, regs->ARM_r2,
269 		regs->ARM_r1, regs->ARM_r0);
270 
271 	flags = regs->ARM_cpsr;
272 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
273 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
274 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
275 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
276 	buf[4] = '\0';
277 
278 #ifndef CONFIG_CPU_V7M
279 	printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
280 		buf, interrupts_enabled(regs) ? "n" : "ff",
281 		fast_interrupts_enabled(regs) ? "n" : "ff",
282 		processor_modes[processor_mode(regs)],
283 		isa_modes[isa_mode(regs)],
284 		get_fs() == get_ds() ? "kernel" : "user");
285 #else
286 	printk("xPSR: %08lx\n", regs->ARM_cpsr);
287 #endif
288 
289 #ifdef CONFIG_CPU_CP15
290 	{
291 		unsigned int ctrl;
292 
293 		buf[0] = '\0';
294 #ifdef CONFIG_CPU_CP15_MMU
295 		{
296 			unsigned int transbase, dac;
297 			asm("mrc p15, 0, %0, c2, c0\n\t"
298 			    "mrc p15, 0, %1, c3, c0\n"
299 			    : "=r" (transbase), "=r" (dac));
300 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
301 			  	transbase, dac);
302 		}
303 #endif
304 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
305 
306 		printk("Control: %08x%s\n", ctrl, buf);
307 	}
308 #endif
309 }
310 
311 void show_regs(struct pt_regs * regs)
312 {
313 	__show_regs(regs);
314 	dump_stack();
315 }
316 
317 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
318 
319 EXPORT_SYMBOL_GPL(thread_notify_head);
320 
321 /*
322  * Free current thread data structures etc..
323  */
324 void exit_thread(void)
325 {
326 	thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
327 }
328 
329 void flush_thread(void)
330 {
331 	struct thread_info *thread = current_thread_info();
332 	struct task_struct *tsk = current;
333 
334 	flush_ptrace_hw_breakpoint(tsk);
335 
336 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
337 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
338 	memset(&thread->fpstate, 0, sizeof(union fp_state));
339 
340 	flush_tls();
341 
342 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
343 }
344 
345 void release_thread(struct task_struct *dead_task)
346 {
347 }
348 
349 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
350 
351 int
352 copy_thread(unsigned long clone_flags, unsigned long stack_start,
353 	    unsigned long stk_sz, struct task_struct *p)
354 {
355 	struct thread_info *thread = task_thread_info(p);
356 	struct pt_regs *childregs = task_pt_regs(p);
357 
358 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
359 
360 	if (likely(!(p->flags & PF_KTHREAD))) {
361 		*childregs = *current_pt_regs();
362 		childregs->ARM_r0 = 0;
363 		if (stack_start)
364 			childregs->ARM_sp = stack_start;
365 	} else {
366 		memset(childregs, 0, sizeof(struct pt_regs));
367 		thread->cpu_context.r4 = stk_sz;
368 		thread->cpu_context.r5 = stack_start;
369 		childregs->ARM_cpsr = SVC_MODE;
370 	}
371 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
372 	thread->cpu_context.sp = (unsigned long)childregs;
373 
374 	clear_ptrace_hw_breakpoint(p);
375 
376 	if (clone_flags & CLONE_SETTLS)
377 		thread->tp_value[0] = childregs->ARM_r3;
378 	thread->tp_value[1] = get_tpuser();
379 
380 	thread_notify(THREAD_NOTIFY_COPY, thread);
381 
382 	return 0;
383 }
384 
385 /*
386  * Fill in the task's elfregs structure for a core dump.
387  */
388 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
389 {
390 	elf_core_copy_regs(elfregs, task_pt_regs(t));
391 	return 1;
392 }
393 
394 /*
395  * fill in the fpe structure for a core dump...
396  */
397 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
398 {
399 	struct thread_info *thread = current_thread_info();
400 	int used_math = thread->used_cp[1] | thread->used_cp[2];
401 
402 	if (used_math)
403 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
404 
405 	return used_math != 0;
406 }
407 EXPORT_SYMBOL(dump_fpu);
408 
409 unsigned long get_wchan(struct task_struct *p)
410 {
411 	struct stackframe frame;
412 	unsigned long stack_page;
413 	int count = 0;
414 	if (!p || p == current || p->state == TASK_RUNNING)
415 		return 0;
416 
417 	frame.fp = thread_saved_fp(p);
418 	frame.sp = thread_saved_sp(p);
419 	frame.lr = 0;			/* recovered from the stack */
420 	frame.pc = thread_saved_pc(p);
421 	stack_page = (unsigned long)task_stack_page(p);
422 	do {
423 		if (frame.sp < stack_page ||
424 		    frame.sp >= stack_page + THREAD_SIZE ||
425 		    unwind_frame(&frame) < 0)
426 			return 0;
427 		if (!in_sched_functions(frame.pc))
428 			return frame.pc;
429 	} while (count ++ < 16);
430 	return 0;
431 }
432 
433 unsigned long arch_randomize_brk(struct mm_struct *mm)
434 {
435 	unsigned long range_end = mm->brk + 0x02000000;
436 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
437 }
438 
439 #ifdef CONFIG_MMU
440 #ifdef CONFIG_KUSER_HELPERS
441 /*
442  * The vectors page is always readable from user space for the
443  * atomic helpers. Insert it into the gate_vma so that it is visible
444  * through ptrace and /proc/<pid>/mem.
445  */
446 static struct vm_area_struct gate_vma = {
447 	.vm_start	= 0xffff0000,
448 	.vm_end		= 0xffff0000 + PAGE_SIZE,
449 	.vm_flags	= VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
450 };
451 
452 static int __init gate_vma_init(void)
453 {
454 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
455 	return 0;
456 }
457 arch_initcall(gate_vma_init);
458 
459 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
460 {
461 	return &gate_vma;
462 }
463 
464 int in_gate_area(struct mm_struct *mm, unsigned long addr)
465 {
466 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
467 }
468 
469 int in_gate_area_no_mm(unsigned long addr)
470 {
471 	return in_gate_area(NULL, addr);
472 }
473 #define is_gate_vma(vma)	((vma) == &gate_vma)
474 #else
475 #define is_gate_vma(vma)	0
476 #endif
477 
478 const char *arch_vma_name(struct vm_area_struct *vma)
479 {
480 	return is_gate_vma(vma) ? "[vectors]" : NULL;
481 }
482 
483 /* If possible, provide a placement hint at a random offset from the
484  * stack for the signal page.
485  */
486 static unsigned long sigpage_addr(const struct mm_struct *mm,
487 				  unsigned int npages)
488 {
489 	unsigned long offset;
490 	unsigned long first;
491 	unsigned long last;
492 	unsigned long addr;
493 	unsigned int slots;
494 
495 	first = PAGE_ALIGN(mm->start_stack);
496 
497 	last = TASK_SIZE - (npages << PAGE_SHIFT);
498 
499 	/* No room after stack? */
500 	if (first > last)
501 		return 0;
502 
503 	/* Just enough room? */
504 	if (first == last)
505 		return first;
506 
507 	slots = ((last - first) >> PAGE_SHIFT) + 1;
508 
509 	offset = get_random_int() % slots;
510 
511 	addr = first + (offset << PAGE_SHIFT);
512 
513 	return addr;
514 }
515 
516 static struct page *signal_page;
517 extern struct page *get_signal_page(void);
518 
519 static const struct vm_special_mapping sigpage_mapping = {
520 	.name = "[sigpage]",
521 	.pages = &signal_page,
522 };
523 
524 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
525 {
526 	struct mm_struct *mm = current->mm;
527 	struct vm_area_struct *vma;
528 	unsigned long addr;
529 	unsigned long hint;
530 	int ret = 0;
531 
532 	if (!signal_page)
533 		signal_page = get_signal_page();
534 	if (!signal_page)
535 		return -ENOMEM;
536 
537 	down_write(&mm->mmap_sem);
538 	hint = sigpage_addr(mm, 1);
539 	addr = get_unmapped_area(NULL, hint, PAGE_SIZE, 0, 0);
540 	if (IS_ERR_VALUE(addr)) {
541 		ret = addr;
542 		goto up_fail;
543 	}
544 
545 	vma = _install_special_mapping(mm, addr, PAGE_SIZE,
546 		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
547 		&sigpage_mapping);
548 
549 	if (IS_ERR(vma)) {
550 		ret = PTR_ERR(vma);
551 		goto up_fail;
552 	}
553 
554 	mm->context.sigpage = addr;
555 
556  up_fail:
557 	up_write(&mm->mmap_sem);
558 	return ret;
559 }
560 #endif
561