1 /* 2 * linux/arch/arm/kernel/process.c 3 * 4 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 5 * Original Copyright (C) 1995 Linus Torvalds 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <stdarg.h> 12 13 #include <linux/config.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/stddef.h> 19 #include <linux/unistd.h> 20 #include <linux/ptrace.h> 21 #include <linux/slab.h> 22 #include <linux/user.h> 23 #include <linux/a.out.h> 24 #include <linux/delay.h> 25 #include <linux/reboot.h> 26 #include <linux/interrupt.h> 27 #include <linux/kallsyms.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 33 #include <asm/leds.h> 34 #include <asm/processor.h> 35 #include <asm/system.h> 36 #include <asm/thread_notify.h> 37 #include <asm/uaccess.h> 38 #include <asm/mach/time.h> 39 40 extern const char *processor_modes[]; 41 extern void setup_mm_for_reboot(char mode); 42 43 static volatile int hlt_counter; 44 45 #include <asm/arch/system.h> 46 47 void disable_hlt(void) 48 { 49 hlt_counter++; 50 } 51 52 EXPORT_SYMBOL(disable_hlt); 53 54 void enable_hlt(void) 55 { 56 hlt_counter--; 57 } 58 59 EXPORT_SYMBOL(enable_hlt); 60 61 static int __init nohlt_setup(char *__unused) 62 { 63 hlt_counter = 1; 64 return 1; 65 } 66 67 static int __init hlt_setup(char *__unused) 68 { 69 hlt_counter = 0; 70 return 1; 71 } 72 73 __setup("nohlt", nohlt_setup); 74 __setup("hlt", hlt_setup); 75 76 void arm_machine_restart(char mode) 77 { 78 /* 79 * Clean and disable cache, and turn off interrupts 80 */ 81 cpu_proc_fin(); 82 83 /* 84 * Tell the mm system that we are going to reboot - 85 * we may need it to insert some 1:1 mappings so that 86 * soft boot works. 87 */ 88 setup_mm_for_reboot(mode); 89 90 /* 91 * Now call the architecture specific reboot code. 92 */ 93 arch_reset(mode); 94 95 /* 96 * Whoops - the architecture was unable to reboot. 97 * Tell the user! 98 */ 99 mdelay(1000); 100 printk("Reboot failed -- System halted\n"); 101 while (1); 102 } 103 104 /* 105 * Function pointers to optional machine specific functions 106 */ 107 void (*pm_idle)(void); 108 EXPORT_SYMBOL(pm_idle); 109 110 void (*pm_power_off)(void); 111 EXPORT_SYMBOL(pm_power_off); 112 113 void (*arm_pm_restart)(char str) = arm_machine_restart; 114 EXPORT_SYMBOL_GPL(arm_pm_restart); 115 116 117 /* 118 * This is our default idle handler. We need to disable 119 * interrupts here to ensure we don't miss a wakeup call. 120 */ 121 static void default_idle(void) 122 { 123 if (hlt_counter) 124 cpu_relax(); 125 else { 126 local_irq_disable(); 127 if (!need_resched()) { 128 timer_dyn_reprogram(); 129 arch_idle(); 130 } 131 local_irq_enable(); 132 } 133 } 134 135 /* 136 * The idle thread. We try to conserve power, while trying to keep 137 * overall latency low. The architecture specific idle is passed 138 * a value to indicate the level of "idleness" of the system. 139 */ 140 void cpu_idle(void) 141 { 142 local_fiq_enable(); 143 144 /* endless idle loop with no priority at all */ 145 while (1) { 146 void (*idle)(void) = pm_idle; 147 148 #ifdef CONFIG_HOTPLUG_CPU 149 if (cpu_is_offline(smp_processor_id())) { 150 leds_event(led_idle_start); 151 cpu_die(); 152 } 153 #endif 154 155 if (!idle) 156 idle = default_idle; 157 leds_event(led_idle_start); 158 while (!need_resched()) 159 idle(); 160 leds_event(led_idle_end); 161 preempt_enable_no_resched(); 162 schedule(); 163 preempt_disable(); 164 } 165 } 166 167 static char reboot_mode = 'h'; 168 169 int __init reboot_setup(char *str) 170 { 171 reboot_mode = str[0]; 172 return 1; 173 } 174 175 __setup("reboot=", reboot_setup); 176 177 void machine_halt(void) 178 { 179 } 180 181 182 void machine_power_off(void) 183 { 184 if (pm_power_off) 185 pm_power_off(); 186 } 187 188 void machine_restart(char * __unused) 189 { 190 arm_pm_restart(reboot_mode); 191 } 192 193 void __show_regs(struct pt_regs *regs) 194 { 195 unsigned long flags = condition_codes(regs); 196 197 printk("CPU: %d\n", smp_processor_id()); 198 print_symbol("PC is at %s\n", instruction_pointer(regs)); 199 print_symbol("LR is at %s\n", regs->ARM_lr); 200 printk("pc : [<%08lx>] lr : [<%08lx>] %s\n" 201 "sp : %08lx ip : %08lx fp : %08lx\n", 202 instruction_pointer(regs), 203 regs->ARM_lr, print_tainted(), regs->ARM_sp, 204 regs->ARM_ip, regs->ARM_fp); 205 printk("r10: %08lx r9 : %08lx r8 : %08lx\n", 206 regs->ARM_r10, regs->ARM_r9, 207 regs->ARM_r8); 208 printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n", 209 regs->ARM_r7, regs->ARM_r6, 210 regs->ARM_r5, regs->ARM_r4); 211 printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n", 212 regs->ARM_r3, regs->ARM_r2, 213 regs->ARM_r1, regs->ARM_r0); 214 printk("Flags: %c%c%c%c", 215 flags & PSR_N_BIT ? 'N' : 'n', 216 flags & PSR_Z_BIT ? 'Z' : 'z', 217 flags & PSR_C_BIT ? 'C' : 'c', 218 flags & PSR_V_BIT ? 'V' : 'v'); 219 printk(" IRQs o%s FIQs o%s Mode %s%s Segment %s\n", 220 interrupts_enabled(regs) ? "n" : "ff", 221 fast_interrupts_enabled(regs) ? "n" : "ff", 222 processor_modes[processor_mode(regs)], 223 thumb_mode(regs) ? " (T)" : "", 224 get_fs() == get_ds() ? "kernel" : "user"); 225 { 226 unsigned int ctrl, transbase, dac; 227 __asm__ ( 228 " mrc p15, 0, %0, c1, c0\n" 229 " mrc p15, 0, %1, c2, c0\n" 230 " mrc p15, 0, %2, c3, c0\n" 231 : "=r" (ctrl), "=r" (transbase), "=r" (dac)); 232 printk("Control: %04X Table: %08X DAC: %08X\n", 233 ctrl, transbase, dac); 234 } 235 } 236 237 void show_regs(struct pt_regs * regs) 238 { 239 printk("\n"); 240 printk("Pid: %d, comm: %20s\n", current->pid, current->comm); 241 __show_regs(regs); 242 __backtrace(); 243 } 244 245 void show_fpregs(struct user_fp *regs) 246 { 247 int i; 248 249 for (i = 0; i < 8; i++) { 250 unsigned long *p; 251 char type; 252 253 p = (unsigned long *)(regs->fpregs + i); 254 255 switch (regs->ftype[i]) { 256 case 1: type = 'f'; break; 257 case 2: type = 'd'; break; 258 case 3: type = 'e'; break; 259 default: type = '?'; break; 260 } 261 if (regs->init_flag) 262 type = '?'; 263 264 printk(" f%d(%c): %08lx %08lx %08lx%c", 265 i, type, p[0], p[1], p[2], i & 1 ? '\n' : ' '); 266 } 267 268 269 printk("FPSR: %08lx FPCR: %08lx\n", 270 (unsigned long)regs->fpsr, 271 (unsigned long)regs->fpcr); 272 } 273 274 /* 275 * Task structure and kernel stack allocation. 276 */ 277 struct thread_info_list { 278 unsigned long *head; 279 unsigned int nr; 280 }; 281 282 static DEFINE_PER_CPU(struct thread_info_list, thread_info_list) = { NULL, 0 }; 283 284 #define EXTRA_TASK_STRUCT 4 285 286 struct thread_info *alloc_thread_info(struct task_struct *task) 287 { 288 struct thread_info *thread = NULL; 289 290 if (EXTRA_TASK_STRUCT) { 291 struct thread_info_list *th = &get_cpu_var(thread_info_list); 292 unsigned long *p = th->head; 293 294 if (p) { 295 th->head = (unsigned long *)p[0]; 296 th->nr -= 1; 297 } 298 put_cpu_var(thread_info_list); 299 300 thread = (struct thread_info *)p; 301 } 302 303 if (!thread) 304 thread = (struct thread_info *) 305 __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); 306 307 #ifdef CONFIG_DEBUG_STACK_USAGE 308 /* 309 * The stack must be cleared if you want SYSRQ-T to 310 * give sensible stack usage information 311 */ 312 if (thread) 313 memzero(thread, THREAD_SIZE); 314 #endif 315 return thread; 316 } 317 318 void free_thread_info(struct thread_info *thread) 319 { 320 if (EXTRA_TASK_STRUCT) { 321 struct thread_info_list *th = &get_cpu_var(thread_info_list); 322 if (th->nr < EXTRA_TASK_STRUCT) { 323 unsigned long *p = (unsigned long *)thread; 324 p[0] = (unsigned long)th->head; 325 th->head = p; 326 th->nr += 1; 327 put_cpu_var(thread_info_list); 328 return; 329 } 330 put_cpu_var(thread_info_list); 331 } 332 free_pages((unsigned long)thread, THREAD_SIZE_ORDER); 333 } 334 335 /* 336 * Free current thread data structures etc.. 337 */ 338 void exit_thread(void) 339 { 340 } 341 342 ATOMIC_NOTIFIER_HEAD(thread_notify_head); 343 344 EXPORT_SYMBOL_GPL(thread_notify_head); 345 346 void flush_thread(void) 347 { 348 struct thread_info *thread = current_thread_info(); 349 struct task_struct *tsk = current; 350 351 memset(thread->used_cp, 0, sizeof(thread->used_cp)); 352 memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); 353 memset(&thread->fpstate, 0, sizeof(union fp_state)); 354 355 thread_notify(THREAD_NOTIFY_FLUSH, thread); 356 #if defined(CONFIG_IWMMXT) 357 iwmmxt_task_release(thread); 358 #endif 359 } 360 361 void release_thread(struct task_struct *dead_task) 362 { 363 struct thread_info *thread = task_thread_info(dead_task); 364 365 thread_notify(THREAD_NOTIFY_RELEASE, thread); 366 #if defined(CONFIG_IWMMXT) 367 iwmmxt_task_release(thread); 368 #endif 369 } 370 371 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 372 373 int 374 copy_thread(int nr, unsigned long clone_flags, unsigned long stack_start, 375 unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs) 376 { 377 struct thread_info *thread = task_thread_info(p); 378 struct pt_regs *childregs = task_pt_regs(p); 379 380 *childregs = *regs; 381 childregs->ARM_r0 = 0; 382 childregs->ARM_sp = stack_start; 383 384 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save)); 385 thread->cpu_context.sp = (unsigned long)childregs; 386 thread->cpu_context.pc = (unsigned long)ret_from_fork; 387 388 if (clone_flags & CLONE_SETTLS) 389 thread->tp_value = regs->ARM_r3; 390 391 return 0; 392 } 393 394 /* 395 * fill in the fpe structure for a core dump... 396 */ 397 int dump_fpu (struct pt_regs *regs, struct user_fp *fp) 398 { 399 struct thread_info *thread = current_thread_info(); 400 int used_math = thread->used_cp[1] | thread->used_cp[2]; 401 402 if (used_math) 403 memcpy(fp, &thread->fpstate.soft, sizeof (*fp)); 404 405 return used_math != 0; 406 } 407 EXPORT_SYMBOL(dump_fpu); 408 409 /* 410 * fill in the user structure for a core dump.. 411 */ 412 void dump_thread(struct pt_regs * regs, struct user * dump) 413 { 414 struct task_struct *tsk = current; 415 416 dump->magic = CMAGIC; 417 dump->start_code = tsk->mm->start_code; 418 dump->start_stack = regs->ARM_sp & ~(PAGE_SIZE - 1); 419 420 dump->u_tsize = (tsk->mm->end_code - tsk->mm->start_code) >> PAGE_SHIFT; 421 dump->u_dsize = (tsk->mm->brk - tsk->mm->start_data + PAGE_SIZE - 1) >> PAGE_SHIFT; 422 dump->u_ssize = 0; 423 424 dump->u_debugreg[0] = tsk->thread.debug.bp[0].address; 425 dump->u_debugreg[1] = tsk->thread.debug.bp[1].address; 426 dump->u_debugreg[2] = tsk->thread.debug.bp[0].insn.arm; 427 dump->u_debugreg[3] = tsk->thread.debug.bp[1].insn.arm; 428 dump->u_debugreg[4] = tsk->thread.debug.nsaved; 429 430 if (dump->start_stack < 0x04000000) 431 dump->u_ssize = (0x04000000 - dump->start_stack) >> PAGE_SHIFT; 432 433 dump->regs = *regs; 434 dump->u_fpvalid = dump_fpu (regs, &dump->u_fp); 435 } 436 EXPORT_SYMBOL(dump_thread); 437 438 /* 439 * Shuffle the argument into the correct register before calling the 440 * thread function. r1 is the thread argument, r2 is the pointer to 441 * the thread function, and r3 points to the exit function. 442 */ 443 extern void kernel_thread_helper(void); 444 asm( ".section .text\n" 445 " .align\n" 446 " .type kernel_thread_helper, #function\n" 447 "kernel_thread_helper:\n" 448 " mov r0, r1\n" 449 " mov lr, r3\n" 450 " mov pc, r2\n" 451 " .size kernel_thread_helper, . - kernel_thread_helper\n" 452 " .previous"); 453 454 /* 455 * Create a kernel thread. 456 */ 457 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 458 { 459 struct pt_regs regs; 460 461 memset(®s, 0, sizeof(regs)); 462 463 regs.ARM_r1 = (unsigned long)arg; 464 regs.ARM_r2 = (unsigned long)fn; 465 regs.ARM_r3 = (unsigned long)do_exit; 466 regs.ARM_pc = (unsigned long)kernel_thread_helper; 467 regs.ARM_cpsr = SVC_MODE; 468 469 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); 470 } 471 EXPORT_SYMBOL(kernel_thread); 472 473 unsigned long get_wchan(struct task_struct *p) 474 { 475 unsigned long fp, lr; 476 unsigned long stack_start, stack_end; 477 int count = 0; 478 if (!p || p == current || p->state == TASK_RUNNING) 479 return 0; 480 481 stack_start = (unsigned long)end_of_stack(p); 482 stack_end = (unsigned long)task_stack_page(p) + THREAD_SIZE; 483 484 fp = thread_saved_fp(p); 485 do { 486 if (fp < stack_start || fp > stack_end) 487 return 0; 488 lr = pc_pointer (((unsigned long *)fp)[-1]); 489 if (!in_sched_functions(lr)) 490 return lr; 491 fp = *(unsigned long *) (fp - 12); 492 } while (count ++ < 16); 493 return 0; 494 } 495