xref: /linux/arch/arm/kernel/process.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12 
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/delay.h>
25 #include <linux/reboot.h>
26 #include <linux/interrupt.h>
27 #include <linux/kallsyms.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 
33 #include <asm/leds.h>
34 #include <asm/processor.h>
35 #include <asm/system.h>
36 #include <asm/thread_notify.h>
37 #include <asm/uaccess.h>
38 #include <asm/mach/time.h>
39 
40 extern const char *processor_modes[];
41 extern void setup_mm_for_reboot(char mode);
42 
43 static volatile int hlt_counter;
44 
45 #include <asm/arch/system.h>
46 
47 void disable_hlt(void)
48 {
49 	hlt_counter++;
50 }
51 
52 EXPORT_SYMBOL(disable_hlt);
53 
54 void enable_hlt(void)
55 {
56 	hlt_counter--;
57 }
58 
59 EXPORT_SYMBOL(enable_hlt);
60 
61 static int __init nohlt_setup(char *__unused)
62 {
63 	hlt_counter = 1;
64 	return 1;
65 }
66 
67 static int __init hlt_setup(char *__unused)
68 {
69 	hlt_counter = 0;
70 	return 1;
71 }
72 
73 __setup("nohlt", nohlt_setup);
74 __setup("hlt", hlt_setup);
75 
76 void arm_machine_restart(char mode)
77 {
78 	/*
79 	 * Clean and disable cache, and turn off interrupts
80 	 */
81 	cpu_proc_fin();
82 
83 	/*
84 	 * Tell the mm system that we are going to reboot -
85 	 * we may need it to insert some 1:1 mappings so that
86 	 * soft boot works.
87 	 */
88 	setup_mm_for_reboot(mode);
89 
90 	/*
91 	 * Now call the architecture specific reboot code.
92 	 */
93 	arch_reset(mode);
94 
95 	/*
96 	 * Whoops - the architecture was unable to reboot.
97 	 * Tell the user!
98 	 */
99 	mdelay(1000);
100 	printk("Reboot failed -- System halted\n");
101 	while (1);
102 }
103 
104 /*
105  * Function pointers to optional machine specific functions
106  */
107 void (*pm_idle)(void);
108 EXPORT_SYMBOL(pm_idle);
109 
110 void (*pm_power_off)(void);
111 EXPORT_SYMBOL(pm_power_off);
112 
113 void (*arm_pm_restart)(char str) = arm_machine_restart;
114 EXPORT_SYMBOL_GPL(arm_pm_restart);
115 
116 
117 /*
118  * This is our default idle handler.  We need to disable
119  * interrupts here to ensure we don't miss a wakeup call.
120  */
121 static void default_idle(void)
122 {
123 	if (hlt_counter)
124 		cpu_relax();
125 	else {
126 		local_irq_disable();
127 		if (!need_resched()) {
128 			timer_dyn_reprogram();
129 			arch_idle();
130 		}
131 		local_irq_enable();
132 	}
133 }
134 
135 /*
136  * The idle thread.  We try to conserve power, while trying to keep
137  * overall latency low.  The architecture specific idle is passed
138  * a value to indicate the level of "idleness" of the system.
139  */
140 void cpu_idle(void)
141 {
142 	local_fiq_enable();
143 
144 	/* endless idle loop with no priority at all */
145 	while (1) {
146 		void (*idle)(void) = pm_idle;
147 
148 #ifdef CONFIG_HOTPLUG_CPU
149 		if (cpu_is_offline(smp_processor_id())) {
150 			leds_event(led_idle_start);
151 			cpu_die();
152 		}
153 #endif
154 
155 		if (!idle)
156 			idle = default_idle;
157 		leds_event(led_idle_start);
158 		while (!need_resched())
159 			idle();
160 		leds_event(led_idle_end);
161 		preempt_enable_no_resched();
162 		schedule();
163 		preempt_disable();
164 	}
165 }
166 
167 static char reboot_mode = 'h';
168 
169 int __init reboot_setup(char *str)
170 {
171 	reboot_mode = str[0];
172 	return 1;
173 }
174 
175 __setup("reboot=", reboot_setup);
176 
177 void machine_halt(void)
178 {
179 }
180 
181 
182 void machine_power_off(void)
183 {
184 	if (pm_power_off)
185 		pm_power_off();
186 }
187 
188 void machine_restart(char * __unused)
189 {
190 	arm_pm_restart(reboot_mode);
191 }
192 
193 void __show_regs(struct pt_regs *regs)
194 {
195 	unsigned long flags = condition_codes(regs);
196 
197 	printk("CPU: %d\n", smp_processor_id());
198 	print_symbol("PC is at %s\n", instruction_pointer(regs));
199 	print_symbol("LR is at %s\n", regs->ARM_lr);
200 	printk("pc : [<%08lx>]    lr : [<%08lx>]    %s\n"
201 	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
202 		instruction_pointer(regs),
203 		regs->ARM_lr, print_tainted(), regs->ARM_sp,
204 		regs->ARM_ip, regs->ARM_fp);
205 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
206 		regs->ARM_r10, regs->ARM_r9,
207 		regs->ARM_r8);
208 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
209 		regs->ARM_r7, regs->ARM_r6,
210 		regs->ARM_r5, regs->ARM_r4);
211 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
212 		regs->ARM_r3, regs->ARM_r2,
213 		regs->ARM_r1, regs->ARM_r0);
214 	printk("Flags: %c%c%c%c",
215 		flags & PSR_N_BIT ? 'N' : 'n',
216 		flags & PSR_Z_BIT ? 'Z' : 'z',
217 		flags & PSR_C_BIT ? 'C' : 'c',
218 		flags & PSR_V_BIT ? 'V' : 'v');
219 	printk("  IRQs o%s  FIQs o%s  Mode %s%s  Segment %s\n",
220 		interrupts_enabled(regs) ? "n" : "ff",
221 		fast_interrupts_enabled(regs) ? "n" : "ff",
222 		processor_modes[processor_mode(regs)],
223 		thumb_mode(regs) ? " (T)" : "",
224 		get_fs() == get_ds() ? "kernel" : "user");
225 	{
226 		unsigned int ctrl, transbase, dac;
227 		  __asm__ (
228 		"	mrc p15, 0, %0, c1, c0\n"
229 		"	mrc p15, 0, %1, c2, c0\n"
230 		"	mrc p15, 0, %2, c3, c0\n"
231 		: "=r" (ctrl), "=r" (transbase), "=r" (dac));
232 		printk("Control: %04X  Table: %08X  DAC: %08X\n",
233 		  	ctrl, transbase, dac);
234 	}
235 }
236 
237 void show_regs(struct pt_regs * regs)
238 {
239 	printk("\n");
240 	printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
241 	__show_regs(regs);
242 	__backtrace();
243 }
244 
245 void show_fpregs(struct user_fp *regs)
246 {
247 	int i;
248 
249 	for (i = 0; i < 8; i++) {
250 		unsigned long *p;
251 		char type;
252 
253 		p = (unsigned long *)(regs->fpregs + i);
254 
255 		switch (regs->ftype[i]) {
256 			case 1: type = 'f'; break;
257 			case 2: type = 'd'; break;
258 			case 3: type = 'e'; break;
259 			default: type = '?'; break;
260 		}
261 		if (regs->init_flag)
262 			type = '?';
263 
264 		printk("  f%d(%c): %08lx %08lx %08lx%c",
265 			i, type, p[0], p[1], p[2], i & 1 ? '\n' : ' ');
266 	}
267 
268 
269 	printk("FPSR: %08lx FPCR: %08lx\n",
270 		(unsigned long)regs->fpsr,
271 		(unsigned long)regs->fpcr);
272 }
273 
274 /*
275  * Task structure and kernel stack allocation.
276  */
277 struct thread_info_list {
278 	unsigned long *head;
279 	unsigned int nr;
280 };
281 
282 static DEFINE_PER_CPU(struct thread_info_list, thread_info_list) = { NULL, 0 };
283 
284 #define EXTRA_TASK_STRUCT	4
285 
286 struct thread_info *alloc_thread_info(struct task_struct *task)
287 {
288 	struct thread_info *thread = NULL;
289 
290 	if (EXTRA_TASK_STRUCT) {
291 		struct thread_info_list *th = &get_cpu_var(thread_info_list);
292 		unsigned long *p = th->head;
293 
294 		if (p) {
295 			th->head = (unsigned long *)p[0];
296 			th->nr -= 1;
297 		}
298 		put_cpu_var(thread_info_list);
299 
300 		thread = (struct thread_info *)p;
301 	}
302 
303 	if (!thread)
304 		thread = (struct thread_info *)
305 			   __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
306 
307 #ifdef CONFIG_DEBUG_STACK_USAGE
308 	/*
309 	 * The stack must be cleared if you want SYSRQ-T to
310 	 * give sensible stack usage information
311 	 */
312 	if (thread)
313 		memzero(thread, THREAD_SIZE);
314 #endif
315 	return thread;
316 }
317 
318 void free_thread_info(struct thread_info *thread)
319 {
320 	if (EXTRA_TASK_STRUCT) {
321 		struct thread_info_list *th = &get_cpu_var(thread_info_list);
322 		if (th->nr < EXTRA_TASK_STRUCT) {
323 			unsigned long *p = (unsigned long *)thread;
324 			p[0] = (unsigned long)th->head;
325 			th->head = p;
326 			th->nr += 1;
327 			put_cpu_var(thread_info_list);
328 			return;
329 		}
330 		put_cpu_var(thread_info_list);
331 	}
332 	free_pages((unsigned long)thread, THREAD_SIZE_ORDER);
333 }
334 
335 /*
336  * Free current thread data structures etc..
337  */
338 void exit_thread(void)
339 {
340 }
341 
342 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
343 
344 EXPORT_SYMBOL_GPL(thread_notify_head);
345 
346 void flush_thread(void)
347 {
348 	struct thread_info *thread = current_thread_info();
349 	struct task_struct *tsk = current;
350 
351 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
352 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
353 	memset(&thread->fpstate, 0, sizeof(union fp_state));
354 
355 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
356 #if defined(CONFIG_IWMMXT)
357 	iwmmxt_task_release(thread);
358 #endif
359 }
360 
361 void release_thread(struct task_struct *dead_task)
362 {
363 	struct thread_info *thread = task_thread_info(dead_task);
364 
365 	thread_notify(THREAD_NOTIFY_RELEASE, thread);
366 #if defined(CONFIG_IWMMXT)
367 	iwmmxt_task_release(thread);
368 #endif
369 }
370 
371 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
372 
373 int
374 copy_thread(int nr, unsigned long clone_flags, unsigned long stack_start,
375 	    unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
376 {
377 	struct thread_info *thread = task_thread_info(p);
378 	struct pt_regs *childregs = task_pt_regs(p);
379 
380 	*childregs = *regs;
381 	childregs->ARM_r0 = 0;
382 	childregs->ARM_sp = stack_start;
383 
384 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
385 	thread->cpu_context.sp = (unsigned long)childregs;
386 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
387 
388 	if (clone_flags & CLONE_SETTLS)
389 		thread->tp_value = regs->ARM_r3;
390 
391 	return 0;
392 }
393 
394 /*
395  * fill in the fpe structure for a core dump...
396  */
397 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
398 {
399 	struct thread_info *thread = current_thread_info();
400 	int used_math = thread->used_cp[1] | thread->used_cp[2];
401 
402 	if (used_math)
403 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
404 
405 	return used_math != 0;
406 }
407 EXPORT_SYMBOL(dump_fpu);
408 
409 /*
410  * fill in the user structure for a core dump..
411  */
412 void dump_thread(struct pt_regs * regs, struct user * dump)
413 {
414 	struct task_struct *tsk = current;
415 
416 	dump->magic = CMAGIC;
417 	dump->start_code = tsk->mm->start_code;
418 	dump->start_stack = regs->ARM_sp & ~(PAGE_SIZE - 1);
419 
420 	dump->u_tsize = (tsk->mm->end_code - tsk->mm->start_code) >> PAGE_SHIFT;
421 	dump->u_dsize = (tsk->mm->brk - tsk->mm->start_data + PAGE_SIZE - 1) >> PAGE_SHIFT;
422 	dump->u_ssize = 0;
423 
424 	dump->u_debugreg[0] = tsk->thread.debug.bp[0].address;
425 	dump->u_debugreg[1] = tsk->thread.debug.bp[1].address;
426 	dump->u_debugreg[2] = tsk->thread.debug.bp[0].insn.arm;
427 	dump->u_debugreg[3] = tsk->thread.debug.bp[1].insn.arm;
428 	dump->u_debugreg[4] = tsk->thread.debug.nsaved;
429 
430 	if (dump->start_stack < 0x04000000)
431 		dump->u_ssize = (0x04000000 - dump->start_stack) >> PAGE_SHIFT;
432 
433 	dump->regs = *regs;
434 	dump->u_fpvalid = dump_fpu (regs, &dump->u_fp);
435 }
436 EXPORT_SYMBOL(dump_thread);
437 
438 /*
439  * Shuffle the argument into the correct register before calling the
440  * thread function.  r1 is the thread argument, r2 is the pointer to
441  * the thread function, and r3 points to the exit function.
442  */
443 extern void kernel_thread_helper(void);
444 asm(	".section .text\n"
445 "	.align\n"
446 "	.type	kernel_thread_helper, #function\n"
447 "kernel_thread_helper:\n"
448 "	mov	r0, r1\n"
449 "	mov	lr, r3\n"
450 "	mov	pc, r2\n"
451 "	.size	kernel_thread_helper, . - kernel_thread_helper\n"
452 "	.previous");
453 
454 /*
455  * Create a kernel thread.
456  */
457 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
458 {
459 	struct pt_regs regs;
460 
461 	memset(&regs, 0, sizeof(regs));
462 
463 	regs.ARM_r1 = (unsigned long)arg;
464 	regs.ARM_r2 = (unsigned long)fn;
465 	regs.ARM_r3 = (unsigned long)do_exit;
466 	regs.ARM_pc = (unsigned long)kernel_thread_helper;
467 	regs.ARM_cpsr = SVC_MODE;
468 
469 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
470 }
471 EXPORT_SYMBOL(kernel_thread);
472 
473 unsigned long get_wchan(struct task_struct *p)
474 {
475 	unsigned long fp, lr;
476 	unsigned long stack_start, stack_end;
477 	int count = 0;
478 	if (!p || p == current || p->state == TASK_RUNNING)
479 		return 0;
480 
481 	stack_start = (unsigned long)end_of_stack(p);
482 	stack_end = (unsigned long)task_stack_page(p) + THREAD_SIZE;
483 
484 	fp = thread_saved_fp(p);
485 	do {
486 		if (fp < stack_start || fp > stack_end)
487 			return 0;
488 		lr = pc_pointer (((unsigned long *)fp)[-1]);
489 		if (!in_sched_functions(lr))
490 			return lr;
491 		fp = *(unsigned long *) (fp - 12);
492 	} while (count ++ < 16);
493 	return 0;
494 }
495