xref: /linux/arch/arm/kernel/process.c (revision 026dadad6b44f0469a475efb4cae48269d8848bd)
1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12 
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/hw_breakpoint.h>
33 #include <linux/cpuidle.h>
34 #include <linux/leds.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/idmap.h>
38 #include <asm/processor.h>
39 #include <asm/thread_notify.h>
40 #include <asm/stacktrace.h>
41 #include <asm/mach/time.h>
42 #include <asm/tls.h>
43 
44 #ifdef CONFIG_CC_STACKPROTECTOR
45 #include <linux/stackprotector.h>
46 unsigned long __stack_chk_guard __read_mostly;
47 EXPORT_SYMBOL(__stack_chk_guard);
48 #endif
49 
50 static const char *processor_modes[] = {
51   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
52   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
53   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
54   "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
55 };
56 
57 static const char *isa_modes[] = {
58   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
59 };
60 
61 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
62 typedef void (*phys_reset_t)(unsigned long);
63 
64 /*
65  * A temporary stack to use for CPU reset. This is static so that we
66  * don't clobber it with the identity mapping. When running with this
67  * stack, any references to the current task *will not work* so you
68  * should really do as little as possible before jumping to your reset
69  * code.
70  */
71 static u64 soft_restart_stack[16];
72 
73 static void __soft_restart(void *addr)
74 {
75 	phys_reset_t phys_reset;
76 
77 	/* Take out a flat memory mapping. */
78 	setup_mm_for_reboot();
79 
80 	/* Clean and invalidate caches */
81 	flush_cache_all();
82 
83 	/* Turn off caching */
84 	cpu_proc_fin();
85 
86 	/* Push out any further dirty data, and ensure cache is empty */
87 	flush_cache_all();
88 
89 	/* Switch to the identity mapping. */
90 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
91 	phys_reset((unsigned long)addr);
92 
93 	/* Should never get here. */
94 	BUG();
95 }
96 
97 void soft_restart(unsigned long addr)
98 {
99 	u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
100 
101 	/* Disable interrupts first */
102 	local_irq_disable();
103 	local_fiq_disable();
104 
105 	/* Disable the L2 if we're the last man standing. */
106 	if (num_online_cpus() == 1)
107 		outer_disable();
108 
109 	/* Change to the new stack and continue with the reset. */
110 	call_with_stack(__soft_restart, (void *)addr, (void *)stack);
111 
112 	/* Should never get here. */
113 	BUG();
114 }
115 
116 static void null_restart(char mode, const char *cmd)
117 {
118 }
119 
120 /*
121  * Function pointers to optional machine specific functions
122  */
123 void (*pm_power_off)(void);
124 EXPORT_SYMBOL(pm_power_off);
125 
126 void (*arm_pm_restart)(char str, const char *cmd) = null_restart;
127 EXPORT_SYMBOL_GPL(arm_pm_restart);
128 
129 /*
130  * This is our default idle handler.
131  */
132 
133 void (*arm_pm_idle)(void);
134 
135 static void default_idle(void)
136 {
137 	if (arm_pm_idle)
138 		arm_pm_idle();
139 	else
140 		cpu_do_idle();
141 	local_irq_enable();
142 }
143 
144 void arch_cpu_idle_prepare(void)
145 {
146 	local_fiq_enable();
147 }
148 
149 void arch_cpu_idle_enter(void)
150 {
151 	ledtrig_cpu(CPU_LED_IDLE_START);
152 #ifdef CONFIG_PL310_ERRATA_769419
153 	wmb();
154 #endif
155 }
156 
157 void arch_cpu_idle_exit(void)
158 {
159 	ledtrig_cpu(CPU_LED_IDLE_END);
160 }
161 
162 #ifdef CONFIG_HOTPLUG_CPU
163 void arch_cpu_idle_dead(void)
164 {
165 	cpu_die();
166 }
167 #endif
168 
169 /*
170  * Called from the core idle loop.
171  */
172 void arch_cpu_idle(void)
173 {
174 	if (cpuidle_idle_call())
175 		default_idle();
176 }
177 
178 static char reboot_mode = 'h';
179 
180 int __init reboot_setup(char *str)
181 {
182 	reboot_mode = str[0];
183 	return 1;
184 }
185 
186 __setup("reboot=", reboot_setup);
187 
188 /*
189  * Called by kexec, immediately prior to machine_kexec().
190  *
191  * This must completely disable all secondary CPUs; simply causing those CPUs
192  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
193  * kexec'd kernel to use any and all RAM as it sees fit, without having to
194  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
195  * functionality embodied in disable_nonboot_cpus() to achieve this.
196  */
197 void machine_shutdown(void)
198 {
199 	disable_nonboot_cpus();
200 }
201 
202 /*
203  * Halting simply requires that the secondary CPUs stop performing any
204  * activity (executing tasks, handling interrupts). smp_send_stop()
205  * achieves this.
206  */
207 void machine_halt(void)
208 {
209 	smp_send_stop();
210 
211 	local_irq_disable();
212 	while (1);
213 }
214 
215 /*
216  * Power-off simply requires that the secondary CPUs stop performing any
217  * activity (executing tasks, handling interrupts). smp_send_stop()
218  * achieves this. When the system power is turned off, it will take all CPUs
219  * with it.
220  */
221 void machine_power_off(void)
222 {
223 	smp_send_stop();
224 
225 	if (pm_power_off)
226 		pm_power_off();
227 }
228 
229 /*
230  * Restart requires that the secondary CPUs stop performing any activity
231  * while the primary CPU resets the system. Systems with a single CPU can
232  * use soft_restart() as their machine descriptor's .restart hook, since that
233  * will cause the only available CPU to reset. Systems with multiple CPUs must
234  * provide a HW restart implementation, to ensure that all CPUs reset at once.
235  * This is required so that any code running after reset on the primary CPU
236  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
237  * executing pre-reset code, and using RAM that the primary CPU's code wishes
238  * to use. Implementing such co-ordination would be essentially impossible.
239  */
240 void machine_restart(char *cmd)
241 {
242 	smp_send_stop();
243 
244 	arm_pm_restart(reboot_mode, cmd);
245 
246 	/* Give a grace period for failure to restart of 1s */
247 	mdelay(1000);
248 
249 	/* Whoops - the platform was unable to reboot. Tell the user! */
250 	printk("Reboot failed -- System halted\n");
251 	local_irq_disable();
252 	while (1);
253 }
254 
255 void __show_regs(struct pt_regs *regs)
256 {
257 	unsigned long flags;
258 	char buf[64];
259 
260 	show_regs_print_info(KERN_DEFAULT);
261 
262 	print_symbol("PC is at %s\n", instruction_pointer(regs));
263 	print_symbol("LR is at %s\n", regs->ARM_lr);
264 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
265 	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
266 		regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
267 		regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
268 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
269 		regs->ARM_r10, regs->ARM_r9,
270 		regs->ARM_r8);
271 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
272 		regs->ARM_r7, regs->ARM_r6,
273 		regs->ARM_r5, regs->ARM_r4);
274 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
275 		regs->ARM_r3, regs->ARM_r2,
276 		regs->ARM_r1, regs->ARM_r0);
277 
278 	flags = regs->ARM_cpsr;
279 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
280 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
281 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
282 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
283 	buf[4] = '\0';
284 
285 	printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
286 		buf, interrupts_enabled(regs) ? "n" : "ff",
287 		fast_interrupts_enabled(regs) ? "n" : "ff",
288 		processor_modes[processor_mode(regs)],
289 		isa_modes[isa_mode(regs)],
290 		get_fs() == get_ds() ? "kernel" : "user");
291 #ifdef CONFIG_CPU_CP15
292 	{
293 		unsigned int ctrl;
294 
295 		buf[0] = '\0';
296 #ifdef CONFIG_CPU_CP15_MMU
297 		{
298 			unsigned int transbase, dac;
299 			asm("mrc p15, 0, %0, c2, c0\n\t"
300 			    "mrc p15, 0, %1, c3, c0\n"
301 			    : "=r" (transbase), "=r" (dac));
302 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
303 			  	transbase, dac);
304 		}
305 #endif
306 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
307 
308 		printk("Control: %08x%s\n", ctrl, buf);
309 	}
310 #endif
311 }
312 
313 void show_regs(struct pt_regs * regs)
314 {
315 	printk("\n");
316 	__show_regs(regs);
317 	dump_stack();
318 }
319 
320 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
321 
322 EXPORT_SYMBOL_GPL(thread_notify_head);
323 
324 /*
325  * Free current thread data structures etc..
326  */
327 void exit_thread(void)
328 {
329 	thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
330 }
331 
332 void flush_thread(void)
333 {
334 	struct thread_info *thread = current_thread_info();
335 	struct task_struct *tsk = current;
336 
337 	flush_ptrace_hw_breakpoint(tsk);
338 
339 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
340 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
341 	memset(&thread->fpstate, 0, sizeof(union fp_state));
342 
343 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
344 }
345 
346 void release_thread(struct task_struct *dead_task)
347 {
348 }
349 
350 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
351 
352 int
353 copy_thread(unsigned long clone_flags, unsigned long stack_start,
354 	    unsigned long stk_sz, struct task_struct *p)
355 {
356 	struct thread_info *thread = task_thread_info(p);
357 	struct pt_regs *childregs = task_pt_regs(p);
358 
359 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
360 
361 	if (likely(!(p->flags & PF_KTHREAD))) {
362 		*childregs = *current_pt_regs();
363 		childregs->ARM_r0 = 0;
364 		if (stack_start)
365 			childregs->ARM_sp = stack_start;
366 	} else {
367 		memset(childregs, 0, sizeof(struct pt_regs));
368 		thread->cpu_context.r4 = stk_sz;
369 		thread->cpu_context.r5 = stack_start;
370 		childregs->ARM_cpsr = SVC_MODE;
371 	}
372 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
373 	thread->cpu_context.sp = (unsigned long)childregs;
374 
375 	clear_ptrace_hw_breakpoint(p);
376 
377 	if (clone_flags & CLONE_SETTLS)
378 		thread->tp_value[0] = childregs->ARM_r3;
379 	thread->tp_value[1] = get_tpuser();
380 
381 	thread_notify(THREAD_NOTIFY_COPY, thread);
382 
383 	return 0;
384 }
385 
386 /*
387  * Fill in the task's elfregs structure for a core dump.
388  */
389 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
390 {
391 	elf_core_copy_regs(elfregs, task_pt_regs(t));
392 	return 1;
393 }
394 
395 /*
396  * fill in the fpe structure for a core dump...
397  */
398 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
399 {
400 	struct thread_info *thread = current_thread_info();
401 	int used_math = thread->used_cp[1] | thread->used_cp[2];
402 
403 	if (used_math)
404 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
405 
406 	return used_math != 0;
407 }
408 EXPORT_SYMBOL(dump_fpu);
409 
410 unsigned long get_wchan(struct task_struct *p)
411 {
412 	struct stackframe frame;
413 	int count = 0;
414 	if (!p || p == current || p->state == TASK_RUNNING)
415 		return 0;
416 
417 	frame.fp = thread_saved_fp(p);
418 	frame.sp = thread_saved_sp(p);
419 	frame.lr = 0;			/* recovered from the stack */
420 	frame.pc = thread_saved_pc(p);
421 	do {
422 		int ret = unwind_frame(&frame);
423 		if (ret < 0)
424 			return 0;
425 		if (!in_sched_functions(frame.pc))
426 			return frame.pc;
427 	} while (count ++ < 16);
428 	return 0;
429 }
430 
431 unsigned long arch_randomize_brk(struct mm_struct *mm)
432 {
433 	unsigned long range_end = mm->brk + 0x02000000;
434 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
435 }
436 
437 #ifdef CONFIG_MMU
438 /*
439  * The vectors page is always readable from user space for the
440  * atomic helpers and the signal restart code. Insert it into the
441  * gate_vma so that it is visible through ptrace and /proc/<pid>/mem.
442  */
443 static struct vm_area_struct gate_vma = {
444 	.vm_start	= 0xffff0000,
445 	.vm_end		= 0xffff0000 + PAGE_SIZE,
446 	.vm_flags	= VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
447 };
448 
449 static int __init gate_vma_init(void)
450 {
451 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
452 	return 0;
453 }
454 arch_initcall(gate_vma_init);
455 
456 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
457 {
458 	return &gate_vma;
459 }
460 
461 int in_gate_area(struct mm_struct *mm, unsigned long addr)
462 {
463 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
464 }
465 
466 int in_gate_area_no_mm(unsigned long addr)
467 {
468 	return in_gate_area(NULL, addr);
469 }
470 
471 const char *arch_vma_name(struct vm_area_struct *vma)
472 {
473 	return (vma == &gate_vma) ? "[vectors]" : NULL;
474 }
475 #endif
476