xref: /linux/arch/arm/kernel/irq.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/arch/arm/kernel/irq.c
3  *
4  *  Copyright (C) 1992 Linus Torvalds
5  *  Modifications for ARM processor Copyright (C) 1995-2000 Russell King.
6  *
7  *  Support for Dynamic Tick Timer Copyright (C) 2004-2005 Nokia Corporation.
8  *  Dynamic Tick Timer written by Tony Lindgren <tony@atomide.com> and
9  *  Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  *  This file contains the code used by various IRQ handling routines:
16  *  asking for different IRQ's should be done through these routines
17  *  instead of just grabbing them. Thus setups with different IRQ numbers
18  *  shouldn't result in any weird surprises, and installing new handlers
19  *  should be easier.
20  *
21  *  IRQ's are in fact implemented a bit like signal handlers for the kernel.
22  *  Naturally it's not a 1:1 relation, but there are similarities.
23  */
24 #include <linux/config.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/signal.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/ptrace.h>
31 #include <linux/slab.h>
32 #include <linux/random.h>
33 #include <linux/smp.h>
34 #include <linux/init.h>
35 #include <linux/seq_file.h>
36 #include <linux/errno.h>
37 #include <linux/list.h>
38 #include <linux/kallsyms.h>
39 #include <linux/proc_fs.h>
40 
41 #include <asm/irq.h>
42 #include <asm/system.h>
43 #include <asm/mach/irq.h>
44 #include <asm/mach/time.h>
45 
46 /*
47  * Maximum IRQ count.  Currently, this is arbitary.  However, it should
48  * not be set too low to prevent false triggering.  Conversely, if it
49  * is set too high, then you could miss a stuck IRQ.
50  *
51  * Maybe we ought to set a timer and re-enable the IRQ at a later time?
52  */
53 #define MAX_IRQ_CNT	100000
54 
55 static int noirqdebug;
56 static volatile unsigned long irq_err_count;
57 static DEFINE_SPINLOCK(irq_controller_lock);
58 static LIST_HEAD(irq_pending);
59 
60 struct irqdesc irq_desc[NR_IRQS];
61 void (*init_arch_irq)(void) __initdata = NULL;
62 
63 /*
64  * No architecture-specific irq_finish function defined in arm/arch/irqs.h.
65  */
66 #ifndef irq_finish
67 #define irq_finish(irq) do { } while (0)
68 #endif
69 
70 /*
71  * Dummy mask/unmask handler
72  */
73 void dummy_mask_unmask_irq(unsigned int irq)
74 {
75 }
76 
77 irqreturn_t no_action(int irq, void *dev_id, struct pt_regs *regs)
78 {
79 	return IRQ_NONE;
80 }
81 
82 void do_bad_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
83 {
84 	irq_err_count += 1;
85 	printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq);
86 }
87 
88 static struct irqchip bad_chip = {
89 	.ack	= dummy_mask_unmask_irq,
90 	.mask	= dummy_mask_unmask_irq,
91 	.unmask = dummy_mask_unmask_irq,
92 };
93 
94 static struct irqdesc bad_irq_desc = {
95 	.chip		= &bad_chip,
96 	.handle		= do_bad_IRQ,
97 	.pend		= LIST_HEAD_INIT(bad_irq_desc.pend),
98 	.disable_depth	= 1,
99 };
100 
101 #ifdef CONFIG_SMP
102 void synchronize_irq(unsigned int irq)
103 {
104 	struct irqdesc *desc = irq_desc + irq;
105 
106 	while (desc->running)
107 		barrier();
108 }
109 EXPORT_SYMBOL(synchronize_irq);
110 
111 #define smp_set_running(desc)	do { desc->running = 1; } while (0)
112 #define smp_clear_running(desc)	do { desc->running = 0; } while (0)
113 #else
114 #define smp_set_running(desc)	do { } while (0)
115 #define smp_clear_running(desc)	do { } while (0)
116 #endif
117 
118 /**
119  *	disable_irq_nosync - disable an irq without waiting
120  *	@irq: Interrupt to disable
121  *
122  *	Disable the selected interrupt line.  Enables and disables
123  *	are nested.  We do this lazily.
124  *
125  *	This function may be called from IRQ context.
126  */
127 void disable_irq_nosync(unsigned int irq)
128 {
129 	struct irqdesc *desc = irq_desc + irq;
130 	unsigned long flags;
131 
132 	spin_lock_irqsave(&irq_controller_lock, flags);
133 	desc->disable_depth++;
134 	list_del_init(&desc->pend);
135 	spin_unlock_irqrestore(&irq_controller_lock, flags);
136 }
137 EXPORT_SYMBOL(disable_irq_nosync);
138 
139 /**
140  *	disable_irq - disable an irq and wait for completion
141  *	@irq: Interrupt to disable
142  *
143  *	Disable the selected interrupt line.  Enables and disables
144  *	are nested.  This functions waits for any pending IRQ
145  *	handlers for this interrupt to complete before returning.
146  *	If you use this function while holding a resource the IRQ
147  *	handler may need you will deadlock.
148  *
149  *	This function may be called - with care - from IRQ context.
150  */
151 void disable_irq(unsigned int irq)
152 {
153 	struct irqdesc *desc = irq_desc + irq;
154 
155 	disable_irq_nosync(irq);
156 	if (desc->action)
157 		synchronize_irq(irq);
158 }
159 EXPORT_SYMBOL(disable_irq);
160 
161 /**
162  *	enable_irq - enable interrupt handling on an irq
163  *	@irq: Interrupt to enable
164  *
165  *	Re-enables the processing of interrupts on this IRQ line.
166  *	Note that this may call the interrupt handler, so you may
167  *	get unexpected results if you hold IRQs disabled.
168  *
169  *	This function may be called from IRQ context.
170  */
171 void enable_irq(unsigned int irq)
172 {
173 	struct irqdesc *desc = irq_desc + irq;
174 	unsigned long flags;
175 
176 	spin_lock_irqsave(&irq_controller_lock, flags);
177 	if (unlikely(!desc->disable_depth)) {
178 		printk("enable_irq(%u) unbalanced from %p\n", irq,
179 			__builtin_return_address(0));
180 	} else if (!--desc->disable_depth) {
181 		desc->probing = 0;
182 		desc->chip->unmask(irq);
183 
184 		/*
185 		 * If the interrupt is waiting to be processed,
186 		 * try to re-run it.  We can't directly run it
187 		 * from here since the caller might be in an
188 		 * interrupt-protected region.
189 		 */
190 		if (desc->pending && list_empty(&desc->pend)) {
191 			desc->pending = 0;
192 			if (!desc->chip->retrigger ||
193 			    desc->chip->retrigger(irq))
194 				list_add(&desc->pend, &irq_pending);
195 		}
196 	}
197 	spin_unlock_irqrestore(&irq_controller_lock, flags);
198 }
199 EXPORT_SYMBOL(enable_irq);
200 
201 /*
202  * Enable wake on selected irq
203  */
204 void enable_irq_wake(unsigned int irq)
205 {
206 	struct irqdesc *desc = irq_desc + irq;
207 	unsigned long flags;
208 
209 	spin_lock_irqsave(&irq_controller_lock, flags);
210 	if (desc->chip->set_wake)
211 		desc->chip->set_wake(irq, 1);
212 	spin_unlock_irqrestore(&irq_controller_lock, flags);
213 }
214 EXPORT_SYMBOL(enable_irq_wake);
215 
216 void disable_irq_wake(unsigned int irq)
217 {
218 	struct irqdesc *desc = irq_desc + irq;
219 	unsigned long flags;
220 
221 	spin_lock_irqsave(&irq_controller_lock, flags);
222 	if (desc->chip->set_wake)
223 		desc->chip->set_wake(irq, 0);
224 	spin_unlock_irqrestore(&irq_controller_lock, flags);
225 }
226 EXPORT_SYMBOL(disable_irq_wake);
227 
228 int show_interrupts(struct seq_file *p, void *v)
229 {
230 	int i = *(loff_t *) v, cpu;
231 	struct irqaction * action;
232 	unsigned long flags;
233 
234 	if (i == 0) {
235 		char cpuname[12];
236 
237 		seq_printf(p, "    ");
238 		for_each_present_cpu(cpu) {
239 			sprintf(cpuname, "CPU%d", cpu);
240 			seq_printf(p, " %10s", cpuname);
241 		}
242 		seq_putc(p, '\n');
243 	}
244 
245 	if (i < NR_IRQS) {
246 		spin_lock_irqsave(&irq_controller_lock, flags);
247 	    	action = irq_desc[i].action;
248 		if (!action)
249 			goto unlock;
250 
251 		seq_printf(p, "%3d: ", i);
252 		for_each_present_cpu(cpu)
253 			seq_printf(p, "%10u ", kstat_cpu(cpu).irqs[i]);
254 		seq_printf(p, "  %s", action->name);
255 		for (action = action->next; action; action = action->next)
256 			seq_printf(p, ", %s", action->name);
257 
258 		seq_putc(p, '\n');
259 unlock:
260 		spin_unlock_irqrestore(&irq_controller_lock, flags);
261 	} else if (i == NR_IRQS) {
262 #ifdef CONFIG_ARCH_ACORN
263 		show_fiq_list(p, v);
264 #endif
265 #ifdef CONFIG_SMP
266 		show_ipi_list(p);
267 		show_local_irqs(p);
268 #endif
269 		seq_printf(p, "Err: %10lu\n", irq_err_count);
270 	}
271 	return 0;
272 }
273 
274 /*
275  * IRQ lock detection.
276  *
277  * Hopefully, this should get us out of a few locked situations.
278  * However, it may take a while for this to happen, since we need
279  * a large number if IRQs to appear in the same jiffie with the
280  * same instruction pointer (or within 2 instructions).
281  */
282 static int check_irq_lock(struct irqdesc *desc, int irq, struct pt_regs *regs)
283 {
284 	unsigned long instr_ptr = instruction_pointer(regs);
285 
286 	if (desc->lck_jif == jiffies &&
287 	    desc->lck_pc >= instr_ptr && desc->lck_pc < instr_ptr + 8) {
288 		desc->lck_cnt += 1;
289 
290 		if (desc->lck_cnt > MAX_IRQ_CNT) {
291 			printk(KERN_ERR "IRQ LOCK: IRQ%d is locking the system, disabled\n", irq);
292 			return 1;
293 		}
294 	} else {
295 		desc->lck_cnt = 0;
296 		desc->lck_pc  = instruction_pointer(regs);
297 		desc->lck_jif = jiffies;
298 	}
299 	return 0;
300 }
301 
302 static void
303 report_bad_irq(unsigned int irq, struct pt_regs *regs, struct irqdesc *desc, int ret)
304 {
305 	static int count = 100;
306 	struct irqaction *action;
307 
308 	if (noirqdebug)
309 		return;
310 
311 	if (ret != IRQ_HANDLED && ret != IRQ_NONE) {
312 		if (!count)
313 			return;
314 		count--;
315 		printk("irq%u: bogus retval mask %x\n", irq, ret);
316 	} else {
317 		desc->irqs_unhandled++;
318 		if (desc->irqs_unhandled <= 99900)
319 			return;
320 		desc->irqs_unhandled = 0;
321 		printk("irq%u: nobody cared\n", irq);
322 	}
323 	show_regs(regs);
324 	dump_stack();
325 	printk(KERN_ERR "handlers:");
326 	action = desc->action;
327 	do {
328 		printk("\n" KERN_ERR "[<%p>]", action->handler);
329 		print_symbol(" (%s)", (unsigned long)action->handler);
330 		action = action->next;
331 	} while (action);
332 	printk("\n");
333 }
334 
335 static int
336 __do_irq(unsigned int irq, struct irqaction *action, struct pt_regs *regs)
337 {
338 	unsigned int status;
339 	int ret, retval = 0;
340 
341 	spin_unlock(&irq_controller_lock);
342 
343 #ifdef CONFIG_NO_IDLE_HZ
344 	if (!(action->flags & SA_TIMER) && system_timer->dyn_tick != NULL) {
345 		write_seqlock(&xtime_lock);
346 		if (system_timer->dyn_tick->state & DYN_TICK_ENABLED)
347 			system_timer->dyn_tick->handler(irq, 0, regs);
348 		write_sequnlock(&xtime_lock);
349 	}
350 #endif
351 
352 	if (!(action->flags & SA_INTERRUPT))
353 		local_irq_enable();
354 
355 	status = 0;
356 	do {
357 		ret = action->handler(irq, action->dev_id, regs);
358 		if (ret == IRQ_HANDLED)
359 			status |= action->flags;
360 		retval |= ret;
361 		action = action->next;
362 	} while (action);
363 
364 	if (status & SA_SAMPLE_RANDOM)
365 		add_interrupt_randomness(irq);
366 
367 	spin_lock_irq(&irq_controller_lock);
368 
369 	return retval;
370 }
371 
372 /*
373  * This is for software-decoded IRQs.  The caller is expected to
374  * handle the ack, clear, mask and unmask issues.
375  */
376 void
377 do_simple_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
378 {
379 	struct irqaction *action;
380 	const unsigned int cpu = smp_processor_id();
381 
382 	desc->triggered = 1;
383 
384 	kstat_cpu(cpu).irqs[irq]++;
385 
386 	smp_set_running(desc);
387 
388 	action = desc->action;
389 	if (action) {
390 		int ret = __do_irq(irq, action, regs);
391 		if (ret != IRQ_HANDLED)
392 			report_bad_irq(irq, regs, desc, ret);
393 	}
394 
395 	smp_clear_running(desc);
396 }
397 
398 /*
399  * Most edge-triggered IRQ implementations seem to take a broken
400  * approach to this.  Hence the complexity.
401  */
402 void
403 do_edge_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
404 {
405 	const unsigned int cpu = smp_processor_id();
406 
407 	desc->triggered = 1;
408 
409 	/*
410 	 * If we're currently running this IRQ, or its disabled,
411 	 * we shouldn't process the IRQ.  Instead, turn on the
412 	 * hardware masks.
413 	 */
414 	if (unlikely(desc->running || desc->disable_depth))
415 		goto running;
416 
417 	/*
418 	 * Acknowledge and clear the IRQ, but don't mask it.
419 	 */
420 	desc->chip->ack(irq);
421 
422 	/*
423 	 * Mark the IRQ currently in progress.
424 	 */
425 	desc->running = 1;
426 
427 	kstat_cpu(cpu).irqs[irq]++;
428 
429 	do {
430 		struct irqaction *action;
431 
432 		action = desc->action;
433 		if (!action)
434 			break;
435 
436 		if (desc->pending && !desc->disable_depth) {
437 			desc->pending = 0;
438 			desc->chip->unmask(irq);
439 		}
440 
441 		__do_irq(irq, action, regs);
442 	} while (desc->pending && !desc->disable_depth);
443 
444 	desc->running = 0;
445 
446 	/*
447 	 * If we were disabled or freed, shut down the handler.
448 	 */
449 	if (likely(desc->action && !check_irq_lock(desc, irq, regs)))
450 		return;
451 
452  running:
453 	/*
454 	 * We got another IRQ while this one was masked or
455 	 * currently running.  Delay it.
456 	 */
457 	desc->pending = 1;
458 	desc->chip->mask(irq);
459 	desc->chip->ack(irq);
460 }
461 
462 /*
463  * Level-based IRQ handler.  Nice and simple.
464  */
465 void
466 do_level_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
467 {
468 	struct irqaction *action;
469 	const unsigned int cpu = smp_processor_id();
470 
471 	desc->triggered = 1;
472 
473 	/*
474 	 * Acknowledge, clear _AND_ disable the interrupt.
475 	 */
476 	desc->chip->ack(irq);
477 
478 	if (likely(!desc->disable_depth)) {
479 		kstat_cpu(cpu).irqs[irq]++;
480 
481 		smp_set_running(desc);
482 
483 		/*
484 		 * Return with this interrupt masked if no action
485 		 */
486 		action = desc->action;
487 		if (action) {
488 			int ret = __do_irq(irq, desc->action, regs);
489 
490 			if (ret != IRQ_HANDLED)
491 				report_bad_irq(irq, regs, desc, ret);
492 
493 			if (likely(!desc->disable_depth &&
494 				   !check_irq_lock(desc, irq, regs)))
495 				desc->chip->unmask(irq);
496 		}
497 
498 		smp_clear_running(desc);
499 	}
500 }
501 
502 static void do_pending_irqs(struct pt_regs *regs)
503 {
504 	struct list_head head, *l, *n;
505 
506 	do {
507 		struct irqdesc *desc;
508 
509 		/*
510 		 * First, take the pending interrupts off the list.
511 		 * The act of calling the handlers may add some IRQs
512 		 * back onto the list.
513 		 */
514 		head = irq_pending;
515 		INIT_LIST_HEAD(&irq_pending);
516 		head.next->prev = &head;
517 		head.prev->next = &head;
518 
519 		/*
520 		 * Now run each entry.  We must delete it from our
521 		 * list before calling the handler.
522 		 */
523 		list_for_each_safe(l, n, &head) {
524 			desc = list_entry(l, struct irqdesc, pend);
525 			list_del_init(&desc->pend);
526 			desc_handle_irq(desc - irq_desc, desc, regs);
527 		}
528 
529 		/*
530 		 * The list must be empty.
531 		 */
532 		BUG_ON(!list_empty(&head));
533 	} while (!list_empty(&irq_pending));
534 }
535 
536 /*
537  * do_IRQ handles all hardware IRQ's.  Decoded IRQs should not
538  * come via this function.  Instead, they should provide their
539  * own 'handler'
540  */
541 asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs)
542 {
543 	struct irqdesc *desc = irq_desc + irq;
544 
545 	/*
546 	 * Some hardware gives randomly wrong interrupts.  Rather
547 	 * than crashing, do something sensible.
548 	 */
549 	if (irq >= NR_IRQS)
550 		desc = &bad_irq_desc;
551 
552 	irq_enter();
553 	spin_lock(&irq_controller_lock);
554 	desc_handle_irq(irq, desc, regs);
555 
556 	/*
557 	 * Now re-run any pending interrupts.
558 	 */
559 	if (!list_empty(&irq_pending))
560 		do_pending_irqs(regs);
561 
562 	irq_finish(irq);
563 
564 	spin_unlock(&irq_controller_lock);
565 	irq_exit();
566 }
567 
568 void __set_irq_handler(unsigned int irq, irq_handler_t handle, int is_chained)
569 {
570 	struct irqdesc *desc;
571 	unsigned long flags;
572 
573 	if (irq >= NR_IRQS) {
574 		printk(KERN_ERR "Trying to install handler for IRQ%d\n", irq);
575 		return;
576 	}
577 
578 	if (handle == NULL)
579 		handle = do_bad_IRQ;
580 
581 	desc = irq_desc + irq;
582 
583 	if (is_chained && desc->chip == &bad_chip)
584 		printk(KERN_WARNING "Trying to install chained handler for IRQ%d\n", irq);
585 
586 	spin_lock_irqsave(&irq_controller_lock, flags);
587 	if (handle == do_bad_IRQ) {
588 		desc->chip->mask(irq);
589 		desc->chip->ack(irq);
590 		desc->disable_depth = 1;
591 	}
592 	desc->handle = handle;
593 	if (handle != do_bad_IRQ && is_chained) {
594 		desc->valid = 0;
595 		desc->probe_ok = 0;
596 		desc->disable_depth = 0;
597 		desc->chip->unmask(irq);
598 	}
599 	spin_unlock_irqrestore(&irq_controller_lock, flags);
600 }
601 
602 void set_irq_chip(unsigned int irq, struct irqchip *chip)
603 {
604 	struct irqdesc *desc;
605 	unsigned long flags;
606 
607 	if (irq >= NR_IRQS) {
608 		printk(KERN_ERR "Trying to install chip for IRQ%d\n", irq);
609 		return;
610 	}
611 
612 	if (chip == NULL)
613 		chip = &bad_chip;
614 
615 	desc = irq_desc + irq;
616 	spin_lock_irqsave(&irq_controller_lock, flags);
617 	desc->chip = chip;
618 	spin_unlock_irqrestore(&irq_controller_lock, flags);
619 }
620 
621 int set_irq_type(unsigned int irq, unsigned int type)
622 {
623 	struct irqdesc *desc;
624 	unsigned long flags;
625 	int ret = -ENXIO;
626 
627 	if (irq >= NR_IRQS) {
628 		printk(KERN_ERR "Trying to set irq type for IRQ%d\n", irq);
629 		return -ENODEV;
630 	}
631 
632 	desc = irq_desc + irq;
633 	if (desc->chip->set_type) {
634 		spin_lock_irqsave(&irq_controller_lock, flags);
635 		ret = desc->chip->set_type(irq, type);
636 		spin_unlock_irqrestore(&irq_controller_lock, flags);
637 	}
638 
639 	return ret;
640 }
641 EXPORT_SYMBOL(set_irq_type);
642 
643 void set_irq_flags(unsigned int irq, unsigned int iflags)
644 {
645 	struct irqdesc *desc;
646 	unsigned long flags;
647 
648 	if (irq >= NR_IRQS) {
649 		printk(KERN_ERR "Trying to set irq flags for IRQ%d\n", irq);
650 		return;
651 	}
652 
653 	desc = irq_desc + irq;
654 	spin_lock_irqsave(&irq_controller_lock, flags);
655 	desc->valid = (iflags & IRQF_VALID) != 0;
656 	desc->probe_ok = (iflags & IRQF_PROBE) != 0;
657 	desc->noautoenable = (iflags & IRQF_NOAUTOEN) != 0;
658 	spin_unlock_irqrestore(&irq_controller_lock, flags);
659 }
660 
661 int setup_irq(unsigned int irq, struct irqaction *new)
662 {
663 	int shared = 0;
664 	struct irqaction *old, **p;
665 	unsigned long flags;
666 	struct irqdesc *desc;
667 
668 	/*
669 	 * Some drivers like serial.c use request_irq() heavily,
670 	 * so we have to be careful not to interfere with a
671 	 * running system.
672 	 */
673 	if (new->flags & SA_SAMPLE_RANDOM) {
674 		/*
675 		 * This function might sleep, we want to call it first,
676 		 * outside of the atomic block.
677 		 * Yes, this might clear the entropy pool if the wrong
678 		 * driver is attempted to be loaded, without actually
679 		 * installing a new handler, but is this really a problem,
680 		 * only the sysadmin is able to do this.
681 		 */
682 	        rand_initialize_irq(irq);
683 	}
684 
685 	/*
686 	 * The following block of code has to be executed atomically
687 	 */
688 	desc = irq_desc + irq;
689 	spin_lock_irqsave(&irq_controller_lock, flags);
690 	p = &desc->action;
691 	if ((old = *p) != NULL) {
692 		/*
693 		 * Can't share interrupts unless both agree to and are
694 		 * the same type.
695 		 */
696 		if (!(old->flags & new->flags & SA_SHIRQ) ||
697 		    (~old->flags & new->flags) & SA_TRIGGER_MASK) {
698 			spin_unlock_irqrestore(&irq_controller_lock, flags);
699 			return -EBUSY;
700 		}
701 
702 		/* add new interrupt at end of irq queue */
703 		do {
704 			p = &old->next;
705 			old = *p;
706 		} while (old);
707 		shared = 1;
708 	}
709 
710 	*p = new;
711 
712 	if (!shared) {
713  		desc->probing = 0;
714 		desc->running = 0;
715 		desc->pending = 0;
716 		desc->disable_depth = 1;
717 
718 		if (new->flags & SA_TRIGGER_MASK &&
719 		    desc->chip->set_type) {
720 			unsigned int type = new->flags & SA_TRIGGER_MASK;
721 			desc->chip->set_type(irq, type);
722 		}
723 
724 		if (!desc->noautoenable) {
725 			desc->disable_depth = 0;
726 			desc->chip->unmask(irq);
727 		}
728 	}
729 
730 	spin_unlock_irqrestore(&irq_controller_lock, flags);
731 	return 0;
732 }
733 
734 /**
735  *	request_irq - allocate an interrupt line
736  *	@irq: Interrupt line to allocate
737  *	@handler: Function to be called when the IRQ occurs
738  *	@irqflags: Interrupt type flags
739  *	@devname: An ascii name for the claiming device
740  *	@dev_id: A cookie passed back to the handler function
741  *
742  *	This call allocates interrupt resources and enables the
743  *	interrupt line and IRQ handling. From the point this
744  *	call is made your handler function may be invoked. Since
745  *	your handler function must clear any interrupt the board
746  *	raises, you must take care both to initialise your hardware
747  *	and to set up the interrupt handler in the right order.
748  *
749  *	Dev_id must be globally unique. Normally the address of the
750  *	device data structure is used as the cookie. Since the handler
751  *	receives this value it makes sense to use it.
752  *
753  *	If your interrupt is shared you must pass a non NULL dev_id
754  *	as this is required when freeing the interrupt.
755  *
756  *	Flags:
757  *
758  *	SA_SHIRQ		Interrupt is shared
759  *
760  *	SA_INTERRUPT		Disable local interrupts while processing
761  *
762  *	SA_SAMPLE_RANDOM	The interrupt can be used for entropy
763  *
764  */
765 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
766 		 unsigned long irq_flags, const char * devname, void *dev_id)
767 {
768 	unsigned long retval;
769 	struct irqaction *action;
770 
771 	if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler ||
772 	    (irq_flags & SA_SHIRQ && !dev_id))
773 		return -EINVAL;
774 
775 	action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL);
776 	if (!action)
777 		return -ENOMEM;
778 
779 	action->handler = handler;
780 	action->flags = irq_flags;
781 	cpus_clear(action->mask);
782 	action->name = devname;
783 	action->next = NULL;
784 	action->dev_id = dev_id;
785 
786 	retval = setup_irq(irq, action);
787 
788 	if (retval)
789 		kfree(action);
790 	return retval;
791 }
792 
793 EXPORT_SYMBOL(request_irq);
794 
795 /**
796  *	free_irq - free an interrupt
797  *	@irq: Interrupt line to free
798  *	@dev_id: Device identity to free
799  *
800  *	Remove an interrupt handler. The handler is removed and if the
801  *	interrupt line is no longer in use by any driver it is disabled.
802  *	On a shared IRQ the caller must ensure the interrupt is disabled
803  *	on the card it drives before calling this function.
804  *
805  *	This function must not be called from interrupt context.
806  */
807 void free_irq(unsigned int irq, void *dev_id)
808 {
809 	struct irqaction * action, **p;
810 	unsigned long flags;
811 
812 	if (irq >= NR_IRQS || !irq_desc[irq].valid) {
813 		printk(KERN_ERR "Trying to free IRQ%d\n",irq);
814 		dump_stack();
815 		return;
816 	}
817 
818 	spin_lock_irqsave(&irq_controller_lock, flags);
819 	for (p = &irq_desc[irq].action; (action = *p) != NULL; p = &action->next) {
820 		if (action->dev_id != dev_id)
821 			continue;
822 
823 	    	/* Found it - now free it */
824 		*p = action->next;
825 		break;
826 	}
827 	spin_unlock_irqrestore(&irq_controller_lock, flags);
828 
829 	if (!action) {
830 		printk(KERN_ERR "Trying to free free IRQ%d\n",irq);
831 		dump_stack();
832 	} else {
833 		synchronize_irq(irq);
834 		kfree(action);
835 	}
836 }
837 
838 EXPORT_SYMBOL(free_irq);
839 
840 static DECLARE_MUTEX(probe_sem);
841 
842 /* Start the interrupt probing.  Unlike other architectures,
843  * we don't return a mask of interrupts from probe_irq_on,
844  * but return the number of interrupts enabled for the probe.
845  * The interrupts which have been enabled for probing is
846  * instead recorded in the irq_desc structure.
847  */
848 unsigned long probe_irq_on(void)
849 {
850 	unsigned int i, irqs = 0;
851 	unsigned long delay;
852 
853 	down(&probe_sem);
854 
855 	/*
856 	 * first snaffle up any unassigned but
857 	 * probe-able interrupts
858 	 */
859 	spin_lock_irq(&irq_controller_lock);
860 	for (i = 0; i < NR_IRQS; i++) {
861 		if (!irq_desc[i].probe_ok || irq_desc[i].action)
862 			continue;
863 
864 		irq_desc[i].probing = 1;
865 		irq_desc[i].triggered = 0;
866 		if (irq_desc[i].chip->set_type)
867 			irq_desc[i].chip->set_type(i, IRQT_PROBE);
868 		irq_desc[i].chip->unmask(i);
869 		irqs += 1;
870 	}
871 	spin_unlock_irq(&irq_controller_lock);
872 
873 	/*
874 	 * wait for spurious interrupts to mask themselves out again
875 	 */
876 	for (delay = jiffies + HZ/10; time_before(jiffies, delay); )
877 		/* min 100ms delay */;
878 
879 	/*
880 	 * now filter out any obviously spurious interrupts
881 	 */
882 	spin_lock_irq(&irq_controller_lock);
883 	for (i = 0; i < NR_IRQS; i++) {
884 		if (irq_desc[i].probing && irq_desc[i].triggered) {
885 			irq_desc[i].probing = 0;
886 			irqs -= 1;
887 		}
888 	}
889 	spin_unlock_irq(&irq_controller_lock);
890 
891 	return irqs;
892 }
893 
894 EXPORT_SYMBOL(probe_irq_on);
895 
896 unsigned int probe_irq_mask(unsigned long irqs)
897 {
898 	unsigned int mask = 0, i;
899 
900 	spin_lock_irq(&irq_controller_lock);
901 	for (i = 0; i < 16 && i < NR_IRQS; i++)
902 		if (irq_desc[i].probing && irq_desc[i].triggered)
903 			mask |= 1 << i;
904 	spin_unlock_irq(&irq_controller_lock);
905 
906 	up(&probe_sem);
907 
908 	return mask;
909 }
910 EXPORT_SYMBOL(probe_irq_mask);
911 
912 /*
913  * Possible return values:
914  *  >= 0 - interrupt number
915  *    -1 - no interrupt/many interrupts
916  */
917 int probe_irq_off(unsigned long irqs)
918 {
919 	unsigned int i;
920 	int irq_found = NO_IRQ;
921 
922 	/*
923 	 * look at the interrupts, and find exactly one
924 	 * that we were probing has been triggered
925 	 */
926 	spin_lock_irq(&irq_controller_lock);
927 	for (i = 0; i < NR_IRQS; i++) {
928 		if (irq_desc[i].probing &&
929 		    irq_desc[i].triggered) {
930 			if (irq_found != NO_IRQ) {
931 				irq_found = NO_IRQ;
932 				goto out;
933 			}
934 			irq_found = i;
935 		}
936 	}
937 
938 	if (irq_found == -1)
939 		irq_found = NO_IRQ;
940 out:
941 	spin_unlock_irq(&irq_controller_lock);
942 
943 	up(&probe_sem);
944 
945 	return irq_found;
946 }
947 
948 EXPORT_SYMBOL(probe_irq_off);
949 
950 #ifdef CONFIG_SMP
951 static void route_irq(struct irqdesc *desc, unsigned int irq, unsigned int cpu)
952 {
953 	pr_debug("IRQ%u: moving from cpu%u to cpu%u\n", irq, desc->cpu, cpu);
954 
955 	spin_lock_irq(&irq_controller_lock);
956 	desc->cpu = cpu;
957 	desc->chip->set_cpu(desc, irq, cpu);
958 	spin_unlock_irq(&irq_controller_lock);
959 }
960 
961 #ifdef CONFIG_PROC_FS
962 static int
963 irq_affinity_read_proc(char *page, char **start, off_t off, int count,
964 		       int *eof, void *data)
965 {
966 	struct irqdesc *desc = irq_desc + ((int)data);
967 	int len = cpumask_scnprintf(page, count, desc->affinity);
968 
969 	if (count - len < 2)
970 		return -EINVAL;
971 	page[len++] = '\n';
972 	page[len] = '\0';
973 
974 	return len;
975 }
976 
977 static int
978 irq_affinity_write_proc(struct file *file, const char __user *buffer,
979 			unsigned long count, void *data)
980 {
981 	unsigned int irq = (unsigned int)data;
982 	struct irqdesc *desc = irq_desc + irq;
983 	cpumask_t affinity, tmp;
984 	int ret = -EIO;
985 
986 	if (!desc->chip->set_cpu)
987 		goto out;
988 
989 	ret = cpumask_parse(buffer, count, affinity);
990 	if (ret)
991 		goto out;
992 
993 	cpus_and(tmp, affinity, cpu_online_map);
994 	if (cpus_empty(tmp)) {
995 		ret = -EINVAL;
996 		goto out;
997 	}
998 
999 	desc->affinity = affinity;
1000 	route_irq(desc, irq, first_cpu(tmp));
1001 	ret = count;
1002 
1003  out:
1004 	return ret;
1005 }
1006 #endif
1007 #endif
1008 
1009 void __init init_irq_proc(void)
1010 {
1011 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
1012 	struct proc_dir_entry *dir;
1013 	int irq;
1014 
1015 	dir = proc_mkdir("irq", NULL);
1016 	if (!dir)
1017 		return;
1018 
1019 	for (irq = 0; irq < NR_IRQS; irq++) {
1020 		struct proc_dir_entry *entry;
1021 		struct irqdesc *desc;
1022 		char name[16];
1023 
1024 		desc = irq_desc + irq;
1025 		memset(name, 0, sizeof(name));
1026 		snprintf(name, sizeof(name) - 1, "%u", irq);
1027 
1028 		desc->procdir = proc_mkdir(name, dir);
1029 		if (!desc->procdir)
1030 			continue;
1031 
1032 		entry = create_proc_entry("smp_affinity", 0600, desc->procdir);
1033 		if (entry) {
1034 			entry->nlink = 1;
1035 			entry->data = (void *)irq;
1036 			entry->read_proc = irq_affinity_read_proc;
1037 			entry->write_proc = irq_affinity_write_proc;
1038 		}
1039 	}
1040 #endif
1041 }
1042 
1043 void __init init_IRQ(void)
1044 {
1045 	struct irqdesc *desc;
1046 	int irq;
1047 
1048 #ifdef CONFIG_SMP
1049 	bad_irq_desc.affinity = CPU_MASK_ALL;
1050 	bad_irq_desc.cpu = smp_processor_id();
1051 #endif
1052 
1053 	for (irq = 0, desc = irq_desc; irq < NR_IRQS; irq++, desc++) {
1054 		*desc = bad_irq_desc;
1055 		INIT_LIST_HEAD(&desc->pend);
1056 	}
1057 
1058 	init_arch_irq();
1059 }
1060 
1061 static int __init noirqdebug_setup(char *str)
1062 {
1063 	noirqdebug = 1;
1064 	return 1;
1065 }
1066 
1067 __setup("noirqdebug", noirqdebug_setup);
1068 
1069 #ifdef CONFIG_HOTPLUG_CPU
1070 /*
1071  * The CPU has been marked offline.  Migrate IRQs off this CPU.  If
1072  * the affinity settings do not allow other CPUs, force them onto any
1073  * available CPU.
1074  */
1075 void migrate_irqs(void)
1076 {
1077 	unsigned int i, cpu = smp_processor_id();
1078 
1079 	for (i = 0; i < NR_IRQS; i++) {
1080 		struct irqdesc *desc = irq_desc + i;
1081 
1082 		if (desc->cpu == cpu) {
1083 			unsigned int newcpu = any_online_cpu(desc->affinity);
1084 
1085 			if (newcpu == NR_CPUS) {
1086 				if (printk_ratelimit())
1087 					printk(KERN_INFO "IRQ%u no longer affine to CPU%u\n",
1088 					       i, cpu);
1089 
1090 				cpus_setall(desc->affinity);
1091 				newcpu = any_online_cpu(desc->affinity);
1092 			}
1093 
1094 			route_irq(desc, i, newcpu);
1095 		}
1096 	}
1097 }
1098 #endif /* CONFIG_HOTPLUG_CPU */
1099