xref: /linux/arch/arm/kernel/hw_breakpoint.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2009, 2010 ARM Limited
5  *
6  * Author: Will Deacon <will.deacon@arm.com>
7  */
8 
9 /*
10  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
11  * using the CPU's debug registers.
12  */
13 #define pr_fmt(fmt) "hw-breakpoint: " fmt
14 
15 #include <linux/errno.h>
16 #include <linux/hardirq.h>
17 #include <linux/perf_event.h>
18 #include <linux/hw_breakpoint.h>
19 #include <linux/smp.h>
20 #include <linux/cfi.h>
21 #include <linux/cpu_pm.h>
22 #include <linux/coresight.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/cputype.h>
26 #include <asm/current.h>
27 #include <asm/hw_breakpoint.h>
28 #include <asm/traps.h>
29 
30 /* Breakpoint currently in use for each BRP. */
31 static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
32 
33 /* Watchpoint currently in use for each WRP. */
34 static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
35 
36 /* Number of BRP/WRP registers on this CPU. */
37 static int core_num_brps __ro_after_init;
38 static int core_num_wrps __ro_after_init;
39 
40 /* Debug architecture version. */
41 static u8 debug_arch __ro_after_init;
42 
43 /* Does debug architecture support OS Save and Restore? */
44 static bool has_ossr __ro_after_init;
45 
46 /* Maximum supported watchpoint length. */
47 static u8 max_watchpoint_len __ro_after_init;
48 
49 #define READ_WB_REG_CASE(OP2, M, VAL)			\
50 	case ((OP2 << 4) + M):				\
51 		ARM_DBG_READ(c0, c ## M, OP2, VAL);	\
52 		break
53 
54 #define WRITE_WB_REG_CASE(OP2, M, VAL)			\
55 	case ((OP2 << 4) + M):				\
56 		ARM_DBG_WRITE(c0, c ## M, OP2, VAL);	\
57 		break
58 
59 #define GEN_READ_WB_REG_CASES(OP2, VAL)		\
60 	READ_WB_REG_CASE(OP2, 0, VAL);		\
61 	READ_WB_REG_CASE(OP2, 1, VAL);		\
62 	READ_WB_REG_CASE(OP2, 2, VAL);		\
63 	READ_WB_REG_CASE(OP2, 3, VAL);		\
64 	READ_WB_REG_CASE(OP2, 4, VAL);		\
65 	READ_WB_REG_CASE(OP2, 5, VAL);		\
66 	READ_WB_REG_CASE(OP2, 6, VAL);		\
67 	READ_WB_REG_CASE(OP2, 7, VAL);		\
68 	READ_WB_REG_CASE(OP2, 8, VAL);		\
69 	READ_WB_REG_CASE(OP2, 9, VAL);		\
70 	READ_WB_REG_CASE(OP2, 10, VAL);		\
71 	READ_WB_REG_CASE(OP2, 11, VAL);		\
72 	READ_WB_REG_CASE(OP2, 12, VAL);		\
73 	READ_WB_REG_CASE(OP2, 13, VAL);		\
74 	READ_WB_REG_CASE(OP2, 14, VAL);		\
75 	READ_WB_REG_CASE(OP2, 15, VAL)
76 
77 #define GEN_WRITE_WB_REG_CASES(OP2, VAL)	\
78 	WRITE_WB_REG_CASE(OP2, 0, VAL);		\
79 	WRITE_WB_REG_CASE(OP2, 1, VAL);		\
80 	WRITE_WB_REG_CASE(OP2, 2, VAL);		\
81 	WRITE_WB_REG_CASE(OP2, 3, VAL);		\
82 	WRITE_WB_REG_CASE(OP2, 4, VAL);		\
83 	WRITE_WB_REG_CASE(OP2, 5, VAL);		\
84 	WRITE_WB_REG_CASE(OP2, 6, VAL);		\
85 	WRITE_WB_REG_CASE(OP2, 7, VAL);		\
86 	WRITE_WB_REG_CASE(OP2, 8, VAL);		\
87 	WRITE_WB_REG_CASE(OP2, 9, VAL);		\
88 	WRITE_WB_REG_CASE(OP2, 10, VAL);	\
89 	WRITE_WB_REG_CASE(OP2, 11, VAL);	\
90 	WRITE_WB_REG_CASE(OP2, 12, VAL);	\
91 	WRITE_WB_REG_CASE(OP2, 13, VAL);	\
92 	WRITE_WB_REG_CASE(OP2, 14, VAL);	\
93 	WRITE_WB_REG_CASE(OP2, 15, VAL)
94 
95 static u32 read_wb_reg(int n)
96 {
97 	u32 val = 0;
98 
99 	switch (n) {
100 	GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
101 	GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
102 	GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
103 	GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
104 	default:
105 		pr_warn("attempt to read from unknown breakpoint register %d\n",
106 			n);
107 	}
108 
109 	return val;
110 }
111 
112 static void write_wb_reg(int n, u32 val)
113 {
114 	switch (n) {
115 	GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
116 	GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
117 	GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
118 	GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
119 	default:
120 		pr_warn("attempt to write to unknown breakpoint register %d\n",
121 			n);
122 	}
123 	isb();
124 }
125 
126 /* Determine debug architecture. */
127 static u8 get_debug_arch(void)
128 {
129 	u32 didr;
130 
131 	/* Do we implement the extended CPUID interface? */
132 	if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
133 		pr_warn_once("CPUID feature registers not supported. "
134 			     "Assuming v6 debug is present.\n");
135 		return ARM_DEBUG_ARCH_V6;
136 	}
137 
138 	ARM_DBG_READ(c0, c0, 0, didr);
139 	return (didr >> 16) & 0xf;
140 }
141 
142 u8 arch_get_debug_arch(void)
143 {
144 	return debug_arch;
145 }
146 
147 static int debug_arch_supported(void)
148 {
149 	u8 arch = get_debug_arch();
150 
151 	/* We don't support the memory-mapped interface. */
152 	return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
153 		arch >= ARM_DEBUG_ARCH_V7_1;
154 }
155 
156 /* Can we determine the watchpoint access type from the fsr? */
157 static int debug_exception_updates_fsr(void)
158 {
159 	return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
160 }
161 
162 /* Determine number of WRP registers available. */
163 static int get_num_wrp_resources(void)
164 {
165 	u32 didr;
166 	ARM_DBG_READ(c0, c0, 0, didr);
167 	return ((didr >> 28) & 0xf) + 1;
168 }
169 
170 /* Determine number of BRP registers available. */
171 static int get_num_brp_resources(void)
172 {
173 	u32 didr;
174 	ARM_DBG_READ(c0, c0, 0, didr);
175 	return ((didr >> 24) & 0xf) + 1;
176 }
177 
178 /* Does this core support mismatch breakpoints? */
179 static int core_has_mismatch_brps(void)
180 {
181 	return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
182 		get_num_brp_resources() > 1);
183 }
184 
185 /* Determine number of usable WRPs available. */
186 static int get_num_wrps(void)
187 {
188 	/*
189 	 * On debug architectures prior to 7.1, when a watchpoint fires, the
190 	 * only way to work out which watchpoint it was is by disassembling
191 	 * the faulting instruction and working out the address of the memory
192 	 * access.
193 	 *
194 	 * Furthermore, we can only do this if the watchpoint was precise
195 	 * since imprecise watchpoints prevent us from calculating register
196 	 * based addresses.
197 	 *
198 	 * Providing we have more than 1 breakpoint register, we only report
199 	 * a single watchpoint register for the time being. This way, we always
200 	 * know which watchpoint fired. In the future we can either add a
201 	 * disassembler and address generation emulator, or we can insert a
202 	 * check to see if the DFAR is set on watchpoint exception entry
203 	 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
204 	 * that it is set on some implementations].
205 	 */
206 	if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
207 		return 1;
208 
209 	return get_num_wrp_resources();
210 }
211 
212 /* Determine number of usable BRPs available. */
213 static int get_num_brps(void)
214 {
215 	int brps = get_num_brp_resources();
216 	return core_has_mismatch_brps() ? brps - 1 : brps;
217 }
218 
219 /*
220  * In order to access the breakpoint/watchpoint control registers,
221  * we must be running in debug monitor mode. Unfortunately, we can
222  * be put into halting debug mode at any time by an external debugger
223  * but there is nothing we can do to prevent that.
224  */
225 static int monitor_mode_enabled(void)
226 {
227 	u32 dscr;
228 	ARM_DBG_READ(c0, c1, 0, dscr);
229 	return !!(dscr & ARM_DSCR_MDBGEN);
230 }
231 
232 static int enable_monitor_mode(void)
233 {
234 	u32 dscr;
235 	ARM_DBG_READ(c0, c1, 0, dscr);
236 
237 	/* If monitor mode is already enabled, just return. */
238 	if (dscr & ARM_DSCR_MDBGEN)
239 		goto out;
240 
241 	/* Write to the corresponding DSCR. */
242 	switch (get_debug_arch()) {
243 	case ARM_DEBUG_ARCH_V6:
244 	case ARM_DEBUG_ARCH_V6_1:
245 		ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
246 		break;
247 	case ARM_DEBUG_ARCH_V7_ECP14:
248 	case ARM_DEBUG_ARCH_V7_1:
249 	case ARM_DEBUG_ARCH_V8:
250 	case ARM_DEBUG_ARCH_V8_1:
251 	case ARM_DEBUG_ARCH_V8_2:
252 	case ARM_DEBUG_ARCH_V8_4:
253 		ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
254 		isb();
255 		break;
256 	default:
257 		return -ENODEV;
258 	}
259 
260 	/* Check that the write made it through. */
261 	ARM_DBG_READ(c0, c1, 0, dscr);
262 	if (!(dscr & ARM_DSCR_MDBGEN)) {
263 		pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
264 				smp_processor_id());
265 		return -EPERM;
266 	}
267 
268 out:
269 	return 0;
270 }
271 
272 int hw_breakpoint_slots(int type)
273 {
274 	if (!debug_arch_supported())
275 		return 0;
276 
277 	/*
278 	 * We can be called early, so don't rely on
279 	 * our static variables being initialised.
280 	 */
281 	switch (type) {
282 	case TYPE_INST:
283 		return get_num_brps();
284 	case TYPE_DATA:
285 		return get_num_wrps();
286 	default:
287 		pr_warn("unknown slot type: %d\n", type);
288 		return 0;
289 	}
290 }
291 
292 /*
293  * Check if 8-bit byte-address select is available.
294  * This clobbers WRP 0.
295  */
296 static u8 get_max_wp_len(void)
297 {
298 	u32 ctrl_reg;
299 	struct arch_hw_breakpoint_ctrl ctrl;
300 	u8 size = 4;
301 
302 	if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
303 		goto out;
304 
305 	memset(&ctrl, 0, sizeof(ctrl));
306 	ctrl.len = ARM_BREAKPOINT_LEN_8;
307 	ctrl_reg = encode_ctrl_reg(ctrl);
308 
309 	write_wb_reg(ARM_BASE_WVR, 0);
310 	write_wb_reg(ARM_BASE_WCR, ctrl_reg);
311 	if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
312 		size = 8;
313 
314 out:
315 	return size;
316 }
317 
318 u8 arch_get_max_wp_len(void)
319 {
320 	return max_watchpoint_len;
321 }
322 
323 /*
324  * Install a perf counter breakpoint.
325  */
326 int arch_install_hw_breakpoint(struct perf_event *bp)
327 {
328 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
329 	struct perf_event **slot, **slots;
330 	int i, max_slots, ctrl_base, val_base;
331 	u32 addr, ctrl;
332 
333 	addr = info->address;
334 	ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
335 
336 	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
337 		/* Breakpoint */
338 		ctrl_base = ARM_BASE_BCR;
339 		val_base = ARM_BASE_BVR;
340 		slots = this_cpu_ptr(bp_on_reg);
341 		max_slots = core_num_brps;
342 	} else {
343 		/* Watchpoint */
344 		ctrl_base = ARM_BASE_WCR;
345 		val_base = ARM_BASE_WVR;
346 		slots = this_cpu_ptr(wp_on_reg);
347 		max_slots = core_num_wrps;
348 	}
349 
350 	for (i = 0; i < max_slots; ++i) {
351 		slot = &slots[i];
352 
353 		if (!*slot) {
354 			*slot = bp;
355 			break;
356 		}
357 	}
358 
359 	if (i == max_slots) {
360 		pr_warn("Can't find any breakpoint slot\n");
361 		return -EBUSY;
362 	}
363 
364 	/* Override the breakpoint data with the step data. */
365 	if (info->step_ctrl.enabled) {
366 		addr = info->trigger & ~0x3;
367 		ctrl = encode_ctrl_reg(info->step_ctrl);
368 		if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
369 			i = 0;
370 			ctrl_base = ARM_BASE_BCR + core_num_brps;
371 			val_base = ARM_BASE_BVR + core_num_brps;
372 		}
373 	}
374 
375 	/* Setup the address register. */
376 	write_wb_reg(val_base + i, addr);
377 
378 	/* Setup the control register. */
379 	write_wb_reg(ctrl_base + i, ctrl);
380 	return 0;
381 }
382 
383 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
384 {
385 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
386 	struct perf_event **slot, **slots;
387 	int i, max_slots, base;
388 
389 	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
390 		/* Breakpoint */
391 		base = ARM_BASE_BCR;
392 		slots = this_cpu_ptr(bp_on_reg);
393 		max_slots = core_num_brps;
394 	} else {
395 		/* Watchpoint */
396 		base = ARM_BASE_WCR;
397 		slots = this_cpu_ptr(wp_on_reg);
398 		max_slots = core_num_wrps;
399 	}
400 
401 	/* Remove the breakpoint. */
402 	for (i = 0; i < max_slots; ++i) {
403 		slot = &slots[i];
404 
405 		if (*slot == bp) {
406 			*slot = NULL;
407 			break;
408 		}
409 	}
410 
411 	if (i == max_slots) {
412 		pr_warn("Can't find any breakpoint slot\n");
413 		return;
414 	}
415 
416 	/* Ensure that we disable the mismatch breakpoint. */
417 	if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
418 	    info->step_ctrl.enabled) {
419 		i = 0;
420 		base = ARM_BASE_BCR + core_num_brps;
421 	}
422 
423 	/* Reset the control register. */
424 	write_wb_reg(base + i, 0);
425 }
426 
427 static int get_hbp_len(u8 hbp_len)
428 {
429 	unsigned int len_in_bytes = 0;
430 
431 	switch (hbp_len) {
432 	case ARM_BREAKPOINT_LEN_1:
433 		len_in_bytes = 1;
434 		break;
435 	case ARM_BREAKPOINT_LEN_2:
436 		len_in_bytes = 2;
437 		break;
438 	case ARM_BREAKPOINT_LEN_4:
439 		len_in_bytes = 4;
440 		break;
441 	case ARM_BREAKPOINT_LEN_8:
442 		len_in_bytes = 8;
443 		break;
444 	}
445 
446 	return len_in_bytes;
447 }
448 
449 /*
450  * Check whether bp virtual address is in kernel space.
451  */
452 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
453 {
454 	unsigned int len;
455 	unsigned long va;
456 
457 	va = hw->address;
458 	len = get_hbp_len(hw->ctrl.len);
459 
460 	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
461 }
462 
463 /*
464  * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
465  * Hopefully this will disappear when ptrace can bypass the conversion
466  * to generic breakpoint descriptions.
467  */
468 int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
469 			   int *gen_len, int *gen_type)
470 {
471 	/* Type */
472 	switch (ctrl.type) {
473 	case ARM_BREAKPOINT_EXECUTE:
474 		*gen_type = HW_BREAKPOINT_X;
475 		break;
476 	case ARM_BREAKPOINT_LOAD:
477 		*gen_type = HW_BREAKPOINT_R;
478 		break;
479 	case ARM_BREAKPOINT_STORE:
480 		*gen_type = HW_BREAKPOINT_W;
481 		break;
482 	case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
483 		*gen_type = HW_BREAKPOINT_RW;
484 		break;
485 	default:
486 		return -EINVAL;
487 	}
488 
489 	/* Len */
490 	switch (ctrl.len) {
491 	case ARM_BREAKPOINT_LEN_1:
492 		*gen_len = HW_BREAKPOINT_LEN_1;
493 		break;
494 	case ARM_BREAKPOINT_LEN_2:
495 		*gen_len = HW_BREAKPOINT_LEN_2;
496 		break;
497 	case ARM_BREAKPOINT_LEN_4:
498 		*gen_len = HW_BREAKPOINT_LEN_4;
499 		break;
500 	case ARM_BREAKPOINT_LEN_8:
501 		*gen_len = HW_BREAKPOINT_LEN_8;
502 		break;
503 	default:
504 		return -EINVAL;
505 	}
506 
507 	return 0;
508 }
509 
510 /*
511  * Construct an arch_hw_breakpoint from a perf_event.
512  */
513 static int arch_build_bp_info(struct perf_event *bp,
514 			      const struct perf_event_attr *attr,
515 			      struct arch_hw_breakpoint *hw)
516 {
517 	/* Type */
518 	switch (attr->bp_type) {
519 	case HW_BREAKPOINT_X:
520 		hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
521 		break;
522 	case HW_BREAKPOINT_R:
523 		hw->ctrl.type = ARM_BREAKPOINT_LOAD;
524 		break;
525 	case HW_BREAKPOINT_W:
526 		hw->ctrl.type = ARM_BREAKPOINT_STORE;
527 		break;
528 	case HW_BREAKPOINT_RW:
529 		hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
530 		break;
531 	default:
532 		return -EINVAL;
533 	}
534 
535 	/* Len */
536 	switch (attr->bp_len) {
537 	case HW_BREAKPOINT_LEN_1:
538 		hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
539 		break;
540 	case HW_BREAKPOINT_LEN_2:
541 		hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
542 		break;
543 	case HW_BREAKPOINT_LEN_4:
544 		hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
545 		break;
546 	case HW_BREAKPOINT_LEN_8:
547 		hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
548 		if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
549 			&& max_watchpoint_len >= 8)
550 			break;
551 		fallthrough;
552 	default:
553 		return -EINVAL;
554 	}
555 
556 	/*
557 	 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
558 	 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
559 	 * by the hardware and must be aligned to the appropriate number of
560 	 * bytes.
561 	 */
562 	if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
563 	    hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
564 	    hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
565 		return -EINVAL;
566 
567 	/* Address */
568 	hw->address = attr->bp_addr;
569 
570 	/* Privilege */
571 	hw->ctrl.privilege = ARM_BREAKPOINT_USER;
572 	if (arch_check_bp_in_kernelspace(hw))
573 		hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
574 
575 	/* Enabled? */
576 	hw->ctrl.enabled = !attr->disabled;
577 
578 	/* Mismatch */
579 	hw->ctrl.mismatch = 0;
580 
581 	return 0;
582 }
583 
584 /*
585  * Validate the arch-specific HW Breakpoint register settings.
586  */
587 int hw_breakpoint_arch_parse(struct perf_event *bp,
588 			     const struct perf_event_attr *attr,
589 			     struct arch_hw_breakpoint *hw)
590 {
591 	int ret = 0;
592 	u32 offset, alignment_mask = 0x3;
593 
594 	/* Ensure that we are in monitor debug mode. */
595 	if (!monitor_mode_enabled())
596 		return -ENODEV;
597 
598 	/* Build the arch_hw_breakpoint. */
599 	ret = arch_build_bp_info(bp, attr, hw);
600 	if (ret)
601 		goto out;
602 
603 	/* Check address alignment. */
604 	if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
605 		alignment_mask = 0x7;
606 	offset = hw->address & alignment_mask;
607 	switch (offset) {
608 	case 0:
609 		/* Aligned */
610 		break;
611 	case 1:
612 	case 2:
613 		/* Allow halfword watchpoints and breakpoints. */
614 		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
615 			break;
616 		fallthrough;
617 	case 3:
618 		/* Allow single byte watchpoint. */
619 		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
620 			break;
621 		fallthrough;
622 	default:
623 		ret = -EINVAL;
624 		goto out;
625 	}
626 
627 	hw->address &= ~alignment_mask;
628 	hw->ctrl.len <<= offset;
629 
630 	if (is_default_overflow_handler(bp)) {
631 		/*
632 		 * Mismatch breakpoints are required for single-stepping
633 		 * breakpoints.
634 		 */
635 		if (!core_has_mismatch_brps())
636 			return -EINVAL;
637 
638 		/* We don't allow mismatch breakpoints in kernel space. */
639 		if (arch_check_bp_in_kernelspace(hw))
640 			return -EPERM;
641 
642 		/*
643 		 * Per-cpu breakpoints are not supported by our stepping
644 		 * mechanism.
645 		 */
646 		if (!bp->hw.target)
647 			return -EINVAL;
648 
649 		/*
650 		 * We only support specific access types if the fsr
651 		 * reports them.
652 		 */
653 		if (!debug_exception_updates_fsr() &&
654 		    (hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
655 		     hw->ctrl.type == ARM_BREAKPOINT_STORE))
656 			return -EINVAL;
657 	}
658 
659 out:
660 	return ret;
661 }
662 
663 /*
664  * Enable/disable single-stepping over the breakpoint bp at address addr.
665  */
666 static void enable_single_step(struct perf_event *bp, u32 addr)
667 {
668 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
669 
670 	arch_uninstall_hw_breakpoint(bp);
671 	info->step_ctrl.mismatch  = 1;
672 	info->step_ctrl.len	  = ARM_BREAKPOINT_LEN_4;
673 	info->step_ctrl.type	  = ARM_BREAKPOINT_EXECUTE;
674 	info->step_ctrl.privilege = info->ctrl.privilege;
675 	info->step_ctrl.enabled	  = 1;
676 	info->trigger		  = addr;
677 	arch_install_hw_breakpoint(bp);
678 }
679 
680 static void disable_single_step(struct perf_event *bp)
681 {
682 	arch_uninstall_hw_breakpoint(bp);
683 	counter_arch_bp(bp)->step_ctrl.enabled = 0;
684 	arch_install_hw_breakpoint(bp);
685 }
686 
687 /*
688  * Arm32 hardware does not always report a watchpoint hit address that matches
689  * one of the watchpoints set. It can also report an address "near" the
690  * watchpoint if a single instruction access both watched and unwatched
691  * addresses. There is no straight-forward way, short of disassembling the
692  * offending instruction, to map that address back to the watchpoint. This
693  * function computes the distance of the memory access from the watchpoint as a
694  * heuristic for the likelyhood that a given access triggered the watchpoint.
695  *
696  * See this same function in the arm64 platform code, which has the same
697  * problem.
698  *
699  * The function returns the distance of the address from the bytes watched by
700  * the watchpoint. In case of an exact match, it returns 0.
701  */
702 static u32 get_distance_from_watchpoint(unsigned long addr, u32 val,
703 					struct arch_hw_breakpoint_ctrl *ctrl)
704 {
705 	u32 wp_low, wp_high;
706 	u32 lens, lene;
707 
708 	lens = __ffs(ctrl->len);
709 	lene = __fls(ctrl->len);
710 
711 	wp_low = val + lens;
712 	wp_high = val + lene;
713 	if (addr < wp_low)
714 		return wp_low - addr;
715 	else if (addr > wp_high)
716 		return addr - wp_high;
717 	else
718 		return 0;
719 }
720 
721 static int watchpoint_fault_on_uaccess(struct pt_regs *regs,
722 				       struct arch_hw_breakpoint *info)
723 {
724 	return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER;
725 }
726 
727 static void watchpoint_handler(unsigned long addr, unsigned int fsr,
728 			       struct pt_regs *regs)
729 {
730 	int i, access, closest_match = 0;
731 	u32 min_dist = -1, dist;
732 	u32 val, ctrl_reg;
733 	struct perf_event *wp, **slots;
734 	struct arch_hw_breakpoint *info;
735 	struct arch_hw_breakpoint_ctrl ctrl;
736 
737 	slots = this_cpu_ptr(wp_on_reg);
738 
739 	/*
740 	 * Find all watchpoints that match the reported address. If no exact
741 	 * match is found. Attribute the hit to the closest watchpoint.
742 	 */
743 	rcu_read_lock();
744 	for (i = 0; i < core_num_wrps; ++i) {
745 		wp = slots[i];
746 		if (wp == NULL)
747 			continue;
748 
749 		/*
750 		 * The DFAR is an unknown value on debug architectures prior
751 		 * to 7.1. Since we only allow a single watchpoint on these
752 		 * older CPUs, we can set the trigger to the lowest possible
753 		 * faulting address.
754 		 */
755 		if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
756 			BUG_ON(i > 0);
757 			info = counter_arch_bp(wp);
758 			info->trigger = wp->attr.bp_addr;
759 		} else {
760 			/* Check that the access type matches. */
761 			if (debug_exception_updates_fsr()) {
762 				access = (fsr & ARM_FSR_ACCESS_MASK) ?
763 					  HW_BREAKPOINT_W : HW_BREAKPOINT_R;
764 				if (!(access & hw_breakpoint_type(wp)))
765 					continue;
766 			}
767 
768 			val = read_wb_reg(ARM_BASE_WVR + i);
769 			ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
770 			decode_ctrl_reg(ctrl_reg, &ctrl);
771 			dist = get_distance_from_watchpoint(addr, val, &ctrl);
772 			if (dist < min_dist) {
773 				min_dist = dist;
774 				closest_match = i;
775 			}
776 			/* Is this an exact match? */
777 			if (dist != 0)
778 				continue;
779 
780 			/* We have a winner. */
781 			info = counter_arch_bp(wp);
782 			info->trigger = addr;
783 		}
784 
785 		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
786 
787 		/*
788 		 * If we triggered a user watchpoint from a uaccess routine,
789 		 * then handle the stepping ourselves since userspace really
790 		 * can't help us with this.
791 		 */
792 		if (watchpoint_fault_on_uaccess(regs, info))
793 			goto step;
794 
795 		perf_bp_event(wp, regs);
796 
797 		/*
798 		 * Defer stepping to the overflow handler if one is installed.
799 		 * Otherwise, insert a temporary mismatch breakpoint so that
800 		 * we can single-step over the watchpoint trigger.
801 		 */
802 		if (!is_default_overflow_handler(wp))
803 			continue;
804 step:
805 		enable_single_step(wp, instruction_pointer(regs));
806 	}
807 
808 	if (min_dist > 0 && min_dist != -1) {
809 		/* No exact match found. */
810 		wp = slots[closest_match];
811 		info = counter_arch_bp(wp);
812 		info->trigger = addr;
813 		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
814 		perf_bp_event(wp, regs);
815 		if (is_default_overflow_handler(wp))
816 			enable_single_step(wp, instruction_pointer(regs));
817 	}
818 
819 	rcu_read_unlock();
820 }
821 
822 static void watchpoint_single_step_handler(unsigned long pc)
823 {
824 	int i;
825 	struct perf_event *wp, **slots;
826 	struct arch_hw_breakpoint *info;
827 
828 	slots = this_cpu_ptr(wp_on_reg);
829 
830 	for (i = 0; i < core_num_wrps; ++i) {
831 		rcu_read_lock();
832 
833 		wp = slots[i];
834 
835 		if (wp == NULL)
836 			goto unlock;
837 
838 		info = counter_arch_bp(wp);
839 		if (!info->step_ctrl.enabled)
840 			goto unlock;
841 
842 		/*
843 		 * Restore the original watchpoint if we've completed the
844 		 * single-step.
845 		 */
846 		if (info->trigger != pc)
847 			disable_single_step(wp);
848 
849 unlock:
850 		rcu_read_unlock();
851 	}
852 }
853 
854 static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
855 {
856 	int i;
857 	u32 ctrl_reg, val, addr;
858 	struct perf_event *bp, **slots;
859 	struct arch_hw_breakpoint *info;
860 	struct arch_hw_breakpoint_ctrl ctrl;
861 
862 	slots = this_cpu_ptr(bp_on_reg);
863 
864 	/* The exception entry code places the amended lr in the PC. */
865 	addr = regs->ARM_pc;
866 
867 	/* Check the currently installed breakpoints first. */
868 	for (i = 0; i < core_num_brps; ++i) {
869 		rcu_read_lock();
870 
871 		bp = slots[i];
872 
873 		if (bp == NULL)
874 			goto unlock;
875 
876 		info = counter_arch_bp(bp);
877 
878 		/* Check if the breakpoint value matches. */
879 		val = read_wb_reg(ARM_BASE_BVR + i);
880 		if (val != (addr & ~0x3))
881 			goto mismatch;
882 
883 		/* Possible match, check the byte address select to confirm. */
884 		ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
885 		decode_ctrl_reg(ctrl_reg, &ctrl);
886 		if ((1 << (addr & 0x3)) & ctrl.len) {
887 			info->trigger = addr;
888 			pr_debug("breakpoint fired: address = 0x%x\n", addr);
889 			perf_bp_event(bp, regs);
890 			if (is_default_overflow_handler(bp))
891 				enable_single_step(bp, addr);
892 			goto unlock;
893 		}
894 
895 mismatch:
896 		/* If we're stepping a breakpoint, it can now be restored. */
897 		if (info->step_ctrl.enabled)
898 			disable_single_step(bp);
899 unlock:
900 		rcu_read_unlock();
901 	}
902 
903 	/* Handle any pending watchpoint single-step breakpoints. */
904 	watchpoint_single_step_handler(addr);
905 }
906 
907 #ifdef CONFIG_CFI_CLANG
908 static void hw_breakpoint_cfi_handler(struct pt_regs *regs)
909 {
910 	/*
911 	 * TODO: implementing target and type to pass to CFI using the more
912 	 * elaborate report_cfi_failure() requires compiler work. To be able
913 	 * to properly extract target information the compiler needs to
914 	 * emit a stable instructions sequence for the CFI checks so we can
915 	 * decode the instructions preceding the trap and figure out which
916 	 * registers were used.
917 	 */
918 
919 	switch (report_cfi_failure_noaddr(regs, instruction_pointer(regs))) {
920 	case BUG_TRAP_TYPE_BUG:
921 		die("Oops - CFI", regs, 0);
922 		break;
923 	case BUG_TRAP_TYPE_WARN:
924 		/* Skip the breaking instruction */
925 		instruction_pointer(regs) += 4;
926 		break;
927 	default:
928 		die("Unknown CFI error", regs, 0);
929 		break;
930 	}
931 }
932 #else
933 static void hw_breakpoint_cfi_handler(struct pt_regs *regs)
934 {
935 }
936 #endif
937 
938 /*
939  * Called from either the Data Abort Handler [watchpoint] or the
940  * Prefetch Abort Handler [breakpoint] with interrupts disabled.
941  */
942 static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
943 				 struct pt_regs *regs)
944 {
945 	int ret = 0;
946 	u32 dscr;
947 
948 	preempt_disable();
949 
950 	if (interrupts_enabled(regs))
951 		local_irq_enable();
952 
953 	/* We only handle watchpoints and hardware breakpoints. */
954 	ARM_DBG_READ(c0, c1, 0, dscr);
955 
956 	/* Perform perf callbacks. */
957 	switch (ARM_DSCR_MOE(dscr)) {
958 	case ARM_ENTRY_BREAKPOINT:
959 		breakpoint_handler(addr, regs);
960 		break;
961 	case ARM_ENTRY_ASYNC_WATCHPOINT:
962 		WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
963 		fallthrough;
964 	case ARM_ENTRY_SYNC_WATCHPOINT:
965 		watchpoint_handler(addr, fsr, regs);
966 		break;
967 	case ARM_ENTRY_CFI_BREAKPOINT:
968 		hw_breakpoint_cfi_handler(regs);
969 		break;
970 	default:
971 		ret = 1; /* Unhandled fault. */
972 	}
973 
974 	preempt_enable();
975 
976 	return ret;
977 }
978 
979 #ifdef CONFIG_ARM_ERRATA_764319
980 static int oslsr_fault;
981 
982 static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr)
983 {
984 	oslsr_fault = 1;
985 	instruction_pointer(regs) += 4;
986 	return 0;
987 }
988 
989 static struct undef_hook debug_oslsr_hook = {
990 	.instr_mask  = 0xffffffff,
991 	.instr_val = 0xee115e91,
992 	.fn = debug_oslsr_trap,
993 };
994 #endif
995 
996 /*
997  * One-time initialisation.
998  */
999 static cpumask_t debug_err_mask;
1000 
1001 static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
1002 {
1003 	int cpu = smp_processor_id();
1004 
1005 	pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
1006 		instr, cpu);
1007 
1008 	/* Set the error flag for this CPU and skip the faulting instruction. */
1009 	cpumask_set_cpu(cpu, &debug_err_mask);
1010 	instruction_pointer(regs) += 4;
1011 	return 0;
1012 }
1013 
1014 static struct undef_hook debug_reg_hook = {
1015 	.instr_mask	= 0x0fe80f10,
1016 	.instr_val	= 0x0e000e10,
1017 	.fn		= debug_reg_trap,
1018 };
1019 
1020 /* Does this core support OS Save and Restore? */
1021 static bool core_has_os_save_restore(void)
1022 {
1023 	u32 oslsr;
1024 
1025 	switch (get_debug_arch()) {
1026 	case ARM_DEBUG_ARCH_V7_1:
1027 		return true;
1028 	case ARM_DEBUG_ARCH_V7_ECP14:
1029 #ifdef CONFIG_ARM_ERRATA_764319
1030 		oslsr_fault = 0;
1031 		register_undef_hook(&debug_oslsr_hook);
1032 		ARM_DBG_READ(c1, c1, 4, oslsr);
1033 		unregister_undef_hook(&debug_oslsr_hook);
1034 		if (oslsr_fault)
1035 			return false;
1036 #else
1037 		ARM_DBG_READ(c1, c1, 4, oslsr);
1038 #endif
1039 		if (oslsr & ARM_OSLSR_OSLM0)
1040 			return true;
1041 		fallthrough;
1042 	default:
1043 		return false;
1044 	}
1045 }
1046 
1047 static void reset_ctrl_regs(unsigned int cpu)
1048 {
1049 	int i, raw_num_brps, err = 0;
1050 	u32 val;
1051 
1052 	/*
1053 	 * v7 debug contains save and restore registers so that debug state
1054 	 * can be maintained across low-power modes without leaving the debug
1055 	 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
1056 	 * the debug registers out of reset, so we must unlock the OS Lock
1057 	 * Access Register to avoid taking undefined instruction exceptions
1058 	 * later on.
1059 	 */
1060 	switch (debug_arch) {
1061 	case ARM_DEBUG_ARCH_V6:
1062 	case ARM_DEBUG_ARCH_V6_1:
1063 		/* ARMv6 cores clear the registers out of reset. */
1064 		goto out_mdbgen;
1065 	case ARM_DEBUG_ARCH_V7_ECP14:
1066 		/*
1067 		 * Ensure sticky power-down is clear (i.e. debug logic is
1068 		 * powered up).
1069 		 */
1070 		ARM_DBG_READ(c1, c5, 4, val);
1071 		if ((val & 0x1) == 0)
1072 			err = -EPERM;
1073 
1074 		if (!has_ossr)
1075 			goto clear_vcr;
1076 		break;
1077 	case ARM_DEBUG_ARCH_V7_1:
1078 		/*
1079 		 * Ensure the OS double lock is clear.
1080 		 */
1081 		ARM_DBG_READ(c1, c3, 4, val);
1082 		if ((val & 0x1) == 1)
1083 			err = -EPERM;
1084 		break;
1085 	}
1086 
1087 	if (err) {
1088 		pr_warn_once("CPU %d debug is powered down!\n", cpu);
1089 		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * Unconditionally clear the OS lock by writing a value
1095 	 * other than CS_LAR_KEY to the access register.
1096 	 */
1097 	ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
1098 	isb();
1099 
1100 	/*
1101 	 * Clear any configured vector-catch events before
1102 	 * enabling monitor mode.
1103 	 */
1104 clear_vcr:
1105 	ARM_DBG_WRITE(c0, c7, 0, 0);
1106 	isb();
1107 
1108 	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1109 		pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
1110 		return;
1111 	}
1112 
1113 	/*
1114 	 * The control/value register pairs are UNKNOWN out of reset so
1115 	 * clear them to avoid spurious debug events.
1116 	 */
1117 	raw_num_brps = get_num_brp_resources();
1118 	for (i = 0; i < raw_num_brps; ++i) {
1119 		write_wb_reg(ARM_BASE_BCR + i, 0UL);
1120 		write_wb_reg(ARM_BASE_BVR + i, 0UL);
1121 	}
1122 
1123 	for (i = 0; i < core_num_wrps; ++i) {
1124 		write_wb_reg(ARM_BASE_WCR + i, 0UL);
1125 		write_wb_reg(ARM_BASE_WVR + i, 0UL);
1126 	}
1127 
1128 	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1129 		pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1130 		return;
1131 	}
1132 
1133 	/*
1134 	 * Have a crack at enabling monitor mode. We don't actually need
1135 	 * it yet, but reporting an error early is useful if it fails.
1136 	 */
1137 out_mdbgen:
1138 	if (enable_monitor_mode())
1139 		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1140 }
1141 
1142 static int dbg_reset_online(unsigned int cpu)
1143 {
1144 	local_irq_disable();
1145 	reset_ctrl_regs(cpu);
1146 	local_irq_enable();
1147 	return 0;
1148 }
1149 
1150 #ifdef CONFIG_CPU_PM
1151 static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1152 			     void *v)
1153 {
1154 	if (action == CPU_PM_EXIT)
1155 		reset_ctrl_regs(smp_processor_id());
1156 
1157 	return NOTIFY_OK;
1158 }
1159 
1160 static struct notifier_block dbg_cpu_pm_nb = {
1161 	.notifier_call = dbg_cpu_pm_notify,
1162 };
1163 
1164 static void __init pm_init(void)
1165 {
1166 	cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1167 }
1168 #else
1169 static inline void pm_init(void)
1170 {
1171 }
1172 #endif
1173 
1174 static int __init arch_hw_breakpoint_init(void)
1175 {
1176 	int ret;
1177 
1178 	debug_arch = get_debug_arch();
1179 
1180 	if (!debug_arch_supported()) {
1181 		pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1182 		return 0;
1183 	}
1184 
1185 	/*
1186 	 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1187 	 * whenever a WFI is issued, even if the core is not powered down, in
1188 	 * violation of the architecture.  When DBGPRSR.SPD is set, accesses to
1189 	 * breakpoint and watchpoint registers are treated as undefined, so
1190 	 * this results in boot time and runtime failures when these are
1191 	 * accessed and we unexpectedly take a trap.
1192 	 *
1193 	 * It's not clear if/how this can be worked around, so we blacklist
1194 	 * Scorpion CPUs to avoid these issues.
1195 	*/
1196 	if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1197 		pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1198 		return 0;
1199 	}
1200 
1201 	has_ossr = core_has_os_save_restore();
1202 
1203 	/* Determine how many BRPs/WRPs are available. */
1204 	core_num_brps = get_num_brps();
1205 	core_num_wrps = get_num_wrps();
1206 
1207 	/*
1208 	 * We need to tread carefully here because DBGSWENABLE may be
1209 	 * driven low on this core and there isn't an architected way to
1210 	 * determine that.
1211 	 */
1212 	cpus_read_lock();
1213 	register_undef_hook(&debug_reg_hook);
1214 
1215 	/*
1216 	 * Register CPU notifier which resets the breakpoint resources. We
1217 	 * assume that a halting debugger will leave the world in a nice state
1218 	 * for us.
1219 	 */
1220 	ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1221 					   "arm/hw_breakpoint:online",
1222 					   dbg_reset_online, NULL);
1223 	unregister_undef_hook(&debug_reg_hook);
1224 	if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1225 		core_num_brps = 0;
1226 		core_num_wrps = 0;
1227 		if (ret > 0)
1228 			cpuhp_remove_state_nocalls_cpuslocked(ret);
1229 		cpus_read_unlock();
1230 		return 0;
1231 	}
1232 
1233 	pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1234 		core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1235 		"", core_num_wrps);
1236 
1237 	/* Work out the maximum supported watchpoint length. */
1238 	max_watchpoint_len = get_max_wp_len();
1239 	pr_info("maximum watchpoint size is %u bytes.\n",
1240 			max_watchpoint_len);
1241 
1242 	/* Register debug fault handler. */
1243 	hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1244 			TRAP_HWBKPT, "watchpoint debug exception");
1245 	hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1246 			TRAP_HWBKPT, "breakpoint debug exception");
1247 	cpus_read_unlock();
1248 
1249 	/* Register PM notifiers. */
1250 	pm_init();
1251 	return 0;
1252 }
1253 arch_initcall(arch_hw_breakpoint_init);
1254 
1255 void hw_breakpoint_pmu_read(struct perf_event *bp)
1256 {
1257 }
1258 
1259 /*
1260  * Dummy function to register with die_notifier.
1261  */
1262 int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1263 					unsigned long val, void *data)
1264 {
1265 	return NOTIFY_DONE;
1266 }
1267