1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (C) 2009, 2010 ARM Limited 5 * 6 * Author: Will Deacon <will.deacon@arm.com> 7 */ 8 9 /* 10 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, 11 * using the CPU's debug registers. 12 */ 13 #define pr_fmt(fmt) "hw-breakpoint: " fmt 14 15 #include <linux/errno.h> 16 #include <linux/hardirq.h> 17 #include <linux/perf_event.h> 18 #include <linux/hw_breakpoint.h> 19 #include <linux/smp.h> 20 #include <linux/cfi.h> 21 #include <linux/cpu_pm.h> 22 #include <linux/coresight.h> 23 24 #include <asm/cacheflush.h> 25 #include <asm/cputype.h> 26 #include <asm/current.h> 27 #include <asm/hw_breakpoint.h> 28 #include <asm/traps.h> 29 30 /* Breakpoint currently in use for each BRP. */ 31 static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]); 32 33 /* Watchpoint currently in use for each WRP. */ 34 static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]); 35 36 /* Number of BRP/WRP registers on this CPU. */ 37 static int core_num_brps __ro_after_init; 38 static int core_num_wrps __ro_after_init; 39 40 /* Debug architecture version. */ 41 static u8 debug_arch __ro_after_init; 42 43 /* Does debug architecture support OS Save and Restore? */ 44 static bool has_ossr __ro_after_init; 45 46 /* Maximum supported watchpoint length. */ 47 static u8 max_watchpoint_len __ro_after_init; 48 49 #define READ_WB_REG_CASE(OP2, M, VAL) \ 50 case ((OP2 << 4) + M): \ 51 ARM_DBG_READ(c0, c ## M, OP2, VAL); \ 52 break 53 54 #define WRITE_WB_REG_CASE(OP2, M, VAL) \ 55 case ((OP2 << 4) + M): \ 56 ARM_DBG_WRITE(c0, c ## M, OP2, VAL); \ 57 break 58 59 #define GEN_READ_WB_REG_CASES(OP2, VAL) \ 60 READ_WB_REG_CASE(OP2, 0, VAL); \ 61 READ_WB_REG_CASE(OP2, 1, VAL); \ 62 READ_WB_REG_CASE(OP2, 2, VAL); \ 63 READ_WB_REG_CASE(OP2, 3, VAL); \ 64 READ_WB_REG_CASE(OP2, 4, VAL); \ 65 READ_WB_REG_CASE(OP2, 5, VAL); \ 66 READ_WB_REG_CASE(OP2, 6, VAL); \ 67 READ_WB_REG_CASE(OP2, 7, VAL); \ 68 READ_WB_REG_CASE(OP2, 8, VAL); \ 69 READ_WB_REG_CASE(OP2, 9, VAL); \ 70 READ_WB_REG_CASE(OP2, 10, VAL); \ 71 READ_WB_REG_CASE(OP2, 11, VAL); \ 72 READ_WB_REG_CASE(OP2, 12, VAL); \ 73 READ_WB_REG_CASE(OP2, 13, VAL); \ 74 READ_WB_REG_CASE(OP2, 14, VAL); \ 75 READ_WB_REG_CASE(OP2, 15, VAL) 76 77 #define GEN_WRITE_WB_REG_CASES(OP2, VAL) \ 78 WRITE_WB_REG_CASE(OP2, 0, VAL); \ 79 WRITE_WB_REG_CASE(OP2, 1, VAL); \ 80 WRITE_WB_REG_CASE(OP2, 2, VAL); \ 81 WRITE_WB_REG_CASE(OP2, 3, VAL); \ 82 WRITE_WB_REG_CASE(OP2, 4, VAL); \ 83 WRITE_WB_REG_CASE(OP2, 5, VAL); \ 84 WRITE_WB_REG_CASE(OP2, 6, VAL); \ 85 WRITE_WB_REG_CASE(OP2, 7, VAL); \ 86 WRITE_WB_REG_CASE(OP2, 8, VAL); \ 87 WRITE_WB_REG_CASE(OP2, 9, VAL); \ 88 WRITE_WB_REG_CASE(OP2, 10, VAL); \ 89 WRITE_WB_REG_CASE(OP2, 11, VAL); \ 90 WRITE_WB_REG_CASE(OP2, 12, VAL); \ 91 WRITE_WB_REG_CASE(OP2, 13, VAL); \ 92 WRITE_WB_REG_CASE(OP2, 14, VAL); \ 93 WRITE_WB_REG_CASE(OP2, 15, VAL) 94 95 static u32 read_wb_reg(int n) 96 { 97 u32 val = 0; 98 99 switch (n) { 100 GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val); 101 GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val); 102 GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val); 103 GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val); 104 default: 105 pr_warn("attempt to read from unknown breakpoint register %d\n", 106 n); 107 } 108 109 return val; 110 } 111 112 static void write_wb_reg(int n, u32 val) 113 { 114 switch (n) { 115 GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val); 116 GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val); 117 GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val); 118 GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val); 119 default: 120 pr_warn("attempt to write to unknown breakpoint register %d\n", 121 n); 122 } 123 isb(); 124 } 125 126 /* Determine debug architecture. */ 127 static u8 get_debug_arch(void) 128 { 129 u32 didr; 130 131 /* Do we implement the extended CPUID interface? */ 132 if (((read_cpuid_id() >> 16) & 0xf) != 0xf) { 133 pr_warn_once("CPUID feature registers not supported. " 134 "Assuming v6 debug is present.\n"); 135 return ARM_DEBUG_ARCH_V6; 136 } 137 138 ARM_DBG_READ(c0, c0, 0, didr); 139 return (didr >> 16) & 0xf; 140 } 141 142 u8 arch_get_debug_arch(void) 143 { 144 return debug_arch; 145 } 146 147 static int debug_arch_supported(void) 148 { 149 u8 arch = get_debug_arch(); 150 151 /* We don't support the memory-mapped interface. */ 152 return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) || 153 arch >= ARM_DEBUG_ARCH_V7_1; 154 } 155 156 /* Can we determine the watchpoint access type from the fsr? */ 157 static int debug_exception_updates_fsr(void) 158 { 159 return get_debug_arch() >= ARM_DEBUG_ARCH_V8; 160 } 161 162 /* Determine number of WRP registers available. */ 163 static int get_num_wrp_resources(void) 164 { 165 u32 didr; 166 ARM_DBG_READ(c0, c0, 0, didr); 167 return ((didr >> 28) & 0xf) + 1; 168 } 169 170 /* Determine number of BRP registers available. */ 171 static int get_num_brp_resources(void) 172 { 173 u32 didr; 174 ARM_DBG_READ(c0, c0, 0, didr); 175 return ((didr >> 24) & 0xf) + 1; 176 } 177 178 /* Does this core support mismatch breakpoints? */ 179 static int core_has_mismatch_brps(void) 180 { 181 return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 && 182 get_num_brp_resources() > 1); 183 } 184 185 /* Determine number of usable WRPs available. */ 186 static int get_num_wrps(void) 187 { 188 /* 189 * On debug architectures prior to 7.1, when a watchpoint fires, the 190 * only way to work out which watchpoint it was is by disassembling 191 * the faulting instruction and working out the address of the memory 192 * access. 193 * 194 * Furthermore, we can only do this if the watchpoint was precise 195 * since imprecise watchpoints prevent us from calculating register 196 * based addresses. 197 * 198 * Providing we have more than 1 breakpoint register, we only report 199 * a single watchpoint register for the time being. This way, we always 200 * know which watchpoint fired. In the future we can either add a 201 * disassembler and address generation emulator, or we can insert a 202 * check to see if the DFAR is set on watchpoint exception entry 203 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows 204 * that it is set on some implementations]. 205 */ 206 if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1) 207 return 1; 208 209 return get_num_wrp_resources(); 210 } 211 212 /* Determine number of usable BRPs available. */ 213 static int get_num_brps(void) 214 { 215 int brps = get_num_brp_resources(); 216 return core_has_mismatch_brps() ? brps - 1 : brps; 217 } 218 219 /* 220 * In order to access the breakpoint/watchpoint control registers, 221 * we must be running in debug monitor mode. Unfortunately, we can 222 * be put into halting debug mode at any time by an external debugger 223 * but there is nothing we can do to prevent that. 224 */ 225 static int monitor_mode_enabled(void) 226 { 227 u32 dscr; 228 ARM_DBG_READ(c0, c1, 0, dscr); 229 return !!(dscr & ARM_DSCR_MDBGEN); 230 } 231 232 static int enable_monitor_mode(void) 233 { 234 u32 dscr; 235 ARM_DBG_READ(c0, c1, 0, dscr); 236 237 /* If monitor mode is already enabled, just return. */ 238 if (dscr & ARM_DSCR_MDBGEN) 239 goto out; 240 241 /* Write to the corresponding DSCR. */ 242 switch (get_debug_arch()) { 243 case ARM_DEBUG_ARCH_V6: 244 case ARM_DEBUG_ARCH_V6_1: 245 ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN)); 246 break; 247 case ARM_DEBUG_ARCH_V7_ECP14: 248 case ARM_DEBUG_ARCH_V7_1: 249 case ARM_DEBUG_ARCH_V8: 250 case ARM_DEBUG_ARCH_V8_1: 251 case ARM_DEBUG_ARCH_V8_2: 252 case ARM_DEBUG_ARCH_V8_4: 253 ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN)); 254 isb(); 255 break; 256 default: 257 return -ENODEV; 258 } 259 260 /* Check that the write made it through. */ 261 ARM_DBG_READ(c0, c1, 0, dscr); 262 if (!(dscr & ARM_DSCR_MDBGEN)) { 263 pr_warn_once("Failed to enable monitor mode on CPU %d.\n", 264 smp_processor_id()); 265 return -EPERM; 266 } 267 268 out: 269 return 0; 270 } 271 272 int hw_breakpoint_slots(int type) 273 { 274 if (!debug_arch_supported()) 275 return 0; 276 277 /* 278 * We can be called early, so don't rely on 279 * our static variables being initialised. 280 */ 281 switch (type) { 282 case TYPE_INST: 283 return get_num_brps(); 284 case TYPE_DATA: 285 return get_num_wrps(); 286 default: 287 pr_warn("unknown slot type: %d\n", type); 288 return 0; 289 } 290 } 291 292 /* 293 * Check if 8-bit byte-address select is available. 294 * This clobbers WRP 0. 295 */ 296 static u8 get_max_wp_len(void) 297 { 298 u32 ctrl_reg; 299 struct arch_hw_breakpoint_ctrl ctrl; 300 u8 size = 4; 301 302 if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14) 303 goto out; 304 305 memset(&ctrl, 0, sizeof(ctrl)); 306 ctrl.len = ARM_BREAKPOINT_LEN_8; 307 ctrl_reg = encode_ctrl_reg(ctrl); 308 309 write_wb_reg(ARM_BASE_WVR, 0); 310 write_wb_reg(ARM_BASE_WCR, ctrl_reg); 311 if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg) 312 size = 8; 313 314 out: 315 return size; 316 } 317 318 u8 arch_get_max_wp_len(void) 319 { 320 return max_watchpoint_len; 321 } 322 323 /* 324 * Install a perf counter breakpoint. 325 */ 326 int arch_install_hw_breakpoint(struct perf_event *bp) 327 { 328 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 329 struct perf_event **slot, **slots; 330 int i, max_slots, ctrl_base, val_base; 331 u32 addr, ctrl; 332 333 addr = info->address; 334 ctrl = encode_ctrl_reg(info->ctrl) | 0x1; 335 336 if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { 337 /* Breakpoint */ 338 ctrl_base = ARM_BASE_BCR; 339 val_base = ARM_BASE_BVR; 340 slots = this_cpu_ptr(bp_on_reg); 341 max_slots = core_num_brps; 342 } else { 343 /* Watchpoint */ 344 ctrl_base = ARM_BASE_WCR; 345 val_base = ARM_BASE_WVR; 346 slots = this_cpu_ptr(wp_on_reg); 347 max_slots = core_num_wrps; 348 } 349 350 for (i = 0; i < max_slots; ++i) { 351 slot = &slots[i]; 352 353 if (!*slot) { 354 *slot = bp; 355 break; 356 } 357 } 358 359 if (i == max_slots) { 360 pr_warn("Can't find any breakpoint slot\n"); 361 return -EBUSY; 362 } 363 364 /* Override the breakpoint data with the step data. */ 365 if (info->step_ctrl.enabled) { 366 addr = info->trigger & ~0x3; 367 ctrl = encode_ctrl_reg(info->step_ctrl); 368 if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) { 369 i = 0; 370 ctrl_base = ARM_BASE_BCR + core_num_brps; 371 val_base = ARM_BASE_BVR + core_num_brps; 372 } 373 } 374 375 /* Setup the address register. */ 376 write_wb_reg(val_base + i, addr); 377 378 /* Setup the control register. */ 379 write_wb_reg(ctrl_base + i, ctrl); 380 return 0; 381 } 382 383 void arch_uninstall_hw_breakpoint(struct perf_event *bp) 384 { 385 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 386 struct perf_event **slot, **slots; 387 int i, max_slots, base; 388 389 if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { 390 /* Breakpoint */ 391 base = ARM_BASE_BCR; 392 slots = this_cpu_ptr(bp_on_reg); 393 max_slots = core_num_brps; 394 } else { 395 /* Watchpoint */ 396 base = ARM_BASE_WCR; 397 slots = this_cpu_ptr(wp_on_reg); 398 max_slots = core_num_wrps; 399 } 400 401 /* Remove the breakpoint. */ 402 for (i = 0; i < max_slots; ++i) { 403 slot = &slots[i]; 404 405 if (*slot == bp) { 406 *slot = NULL; 407 break; 408 } 409 } 410 411 if (i == max_slots) { 412 pr_warn("Can't find any breakpoint slot\n"); 413 return; 414 } 415 416 /* Ensure that we disable the mismatch breakpoint. */ 417 if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE && 418 info->step_ctrl.enabled) { 419 i = 0; 420 base = ARM_BASE_BCR + core_num_brps; 421 } 422 423 /* Reset the control register. */ 424 write_wb_reg(base + i, 0); 425 } 426 427 static int get_hbp_len(u8 hbp_len) 428 { 429 unsigned int len_in_bytes = 0; 430 431 switch (hbp_len) { 432 case ARM_BREAKPOINT_LEN_1: 433 len_in_bytes = 1; 434 break; 435 case ARM_BREAKPOINT_LEN_2: 436 len_in_bytes = 2; 437 break; 438 case ARM_BREAKPOINT_LEN_4: 439 len_in_bytes = 4; 440 break; 441 case ARM_BREAKPOINT_LEN_8: 442 len_in_bytes = 8; 443 break; 444 } 445 446 return len_in_bytes; 447 } 448 449 /* 450 * Check whether bp virtual address is in kernel space. 451 */ 452 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) 453 { 454 unsigned int len; 455 unsigned long va; 456 457 va = hw->address; 458 len = get_hbp_len(hw->ctrl.len); 459 460 return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); 461 } 462 463 /* 464 * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl. 465 * Hopefully this will disappear when ptrace can bypass the conversion 466 * to generic breakpoint descriptions. 467 */ 468 int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl, 469 int *gen_len, int *gen_type) 470 { 471 /* Type */ 472 switch (ctrl.type) { 473 case ARM_BREAKPOINT_EXECUTE: 474 *gen_type = HW_BREAKPOINT_X; 475 break; 476 case ARM_BREAKPOINT_LOAD: 477 *gen_type = HW_BREAKPOINT_R; 478 break; 479 case ARM_BREAKPOINT_STORE: 480 *gen_type = HW_BREAKPOINT_W; 481 break; 482 case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE: 483 *gen_type = HW_BREAKPOINT_RW; 484 break; 485 default: 486 return -EINVAL; 487 } 488 489 /* Len */ 490 switch (ctrl.len) { 491 case ARM_BREAKPOINT_LEN_1: 492 *gen_len = HW_BREAKPOINT_LEN_1; 493 break; 494 case ARM_BREAKPOINT_LEN_2: 495 *gen_len = HW_BREAKPOINT_LEN_2; 496 break; 497 case ARM_BREAKPOINT_LEN_4: 498 *gen_len = HW_BREAKPOINT_LEN_4; 499 break; 500 case ARM_BREAKPOINT_LEN_8: 501 *gen_len = HW_BREAKPOINT_LEN_8; 502 break; 503 default: 504 return -EINVAL; 505 } 506 507 return 0; 508 } 509 510 /* 511 * Construct an arch_hw_breakpoint from a perf_event. 512 */ 513 static int arch_build_bp_info(struct perf_event *bp, 514 const struct perf_event_attr *attr, 515 struct arch_hw_breakpoint *hw) 516 { 517 /* Type */ 518 switch (attr->bp_type) { 519 case HW_BREAKPOINT_X: 520 hw->ctrl.type = ARM_BREAKPOINT_EXECUTE; 521 break; 522 case HW_BREAKPOINT_R: 523 hw->ctrl.type = ARM_BREAKPOINT_LOAD; 524 break; 525 case HW_BREAKPOINT_W: 526 hw->ctrl.type = ARM_BREAKPOINT_STORE; 527 break; 528 case HW_BREAKPOINT_RW: 529 hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE; 530 break; 531 default: 532 return -EINVAL; 533 } 534 535 /* Len */ 536 switch (attr->bp_len) { 537 case HW_BREAKPOINT_LEN_1: 538 hw->ctrl.len = ARM_BREAKPOINT_LEN_1; 539 break; 540 case HW_BREAKPOINT_LEN_2: 541 hw->ctrl.len = ARM_BREAKPOINT_LEN_2; 542 break; 543 case HW_BREAKPOINT_LEN_4: 544 hw->ctrl.len = ARM_BREAKPOINT_LEN_4; 545 break; 546 case HW_BREAKPOINT_LEN_8: 547 hw->ctrl.len = ARM_BREAKPOINT_LEN_8; 548 if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE) 549 && max_watchpoint_len >= 8) 550 break; 551 fallthrough; 552 default: 553 return -EINVAL; 554 } 555 556 /* 557 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes. 558 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported 559 * by the hardware and must be aligned to the appropriate number of 560 * bytes. 561 */ 562 if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE && 563 hw->ctrl.len != ARM_BREAKPOINT_LEN_2 && 564 hw->ctrl.len != ARM_BREAKPOINT_LEN_4) 565 return -EINVAL; 566 567 /* Address */ 568 hw->address = attr->bp_addr; 569 570 /* Privilege */ 571 hw->ctrl.privilege = ARM_BREAKPOINT_USER; 572 if (arch_check_bp_in_kernelspace(hw)) 573 hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV; 574 575 /* Enabled? */ 576 hw->ctrl.enabled = !attr->disabled; 577 578 /* Mismatch */ 579 hw->ctrl.mismatch = 0; 580 581 return 0; 582 } 583 584 /* 585 * Validate the arch-specific HW Breakpoint register settings. 586 */ 587 int hw_breakpoint_arch_parse(struct perf_event *bp, 588 const struct perf_event_attr *attr, 589 struct arch_hw_breakpoint *hw) 590 { 591 int ret = 0; 592 u32 offset, alignment_mask = 0x3; 593 594 /* Ensure that we are in monitor debug mode. */ 595 if (!monitor_mode_enabled()) 596 return -ENODEV; 597 598 /* Build the arch_hw_breakpoint. */ 599 ret = arch_build_bp_info(bp, attr, hw); 600 if (ret) 601 goto out; 602 603 /* Check address alignment. */ 604 if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8) 605 alignment_mask = 0x7; 606 offset = hw->address & alignment_mask; 607 switch (offset) { 608 case 0: 609 /* Aligned */ 610 break; 611 case 1: 612 case 2: 613 /* Allow halfword watchpoints and breakpoints. */ 614 if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2) 615 break; 616 fallthrough; 617 case 3: 618 /* Allow single byte watchpoint. */ 619 if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1) 620 break; 621 fallthrough; 622 default: 623 ret = -EINVAL; 624 goto out; 625 } 626 627 hw->address &= ~alignment_mask; 628 hw->ctrl.len <<= offset; 629 630 if (is_default_overflow_handler(bp)) { 631 /* 632 * Mismatch breakpoints are required for single-stepping 633 * breakpoints. 634 */ 635 if (!core_has_mismatch_brps()) 636 return -EINVAL; 637 638 /* We don't allow mismatch breakpoints in kernel space. */ 639 if (arch_check_bp_in_kernelspace(hw)) 640 return -EPERM; 641 642 /* 643 * Per-cpu breakpoints are not supported by our stepping 644 * mechanism. 645 */ 646 if (!bp->hw.target) 647 return -EINVAL; 648 649 /* 650 * We only support specific access types if the fsr 651 * reports them. 652 */ 653 if (!debug_exception_updates_fsr() && 654 (hw->ctrl.type == ARM_BREAKPOINT_LOAD || 655 hw->ctrl.type == ARM_BREAKPOINT_STORE)) 656 return -EINVAL; 657 } 658 659 out: 660 return ret; 661 } 662 663 /* 664 * Enable/disable single-stepping over the breakpoint bp at address addr. 665 */ 666 static void enable_single_step(struct perf_event *bp, u32 addr) 667 { 668 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 669 670 arch_uninstall_hw_breakpoint(bp); 671 info->step_ctrl.mismatch = 1; 672 info->step_ctrl.len = ARM_BREAKPOINT_LEN_4; 673 info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE; 674 info->step_ctrl.privilege = info->ctrl.privilege; 675 info->step_ctrl.enabled = 1; 676 info->trigger = addr; 677 arch_install_hw_breakpoint(bp); 678 } 679 680 static void disable_single_step(struct perf_event *bp) 681 { 682 arch_uninstall_hw_breakpoint(bp); 683 counter_arch_bp(bp)->step_ctrl.enabled = 0; 684 arch_install_hw_breakpoint(bp); 685 } 686 687 /* 688 * Arm32 hardware does not always report a watchpoint hit address that matches 689 * one of the watchpoints set. It can also report an address "near" the 690 * watchpoint if a single instruction access both watched and unwatched 691 * addresses. There is no straight-forward way, short of disassembling the 692 * offending instruction, to map that address back to the watchpoint. This 693 * function computes the distance of the memory access from the watchpoint as a 694 * heuristic for the likelyhood that a given access triggered the watchpoint. 695 * 696 * See this same function in the arm64 platform code, which has the same 697 * problem. 698 * 699 * The function returns the distance of the address from the bytes watched by 700 * the watchpoint. In case of an exact match, it returns 0. 701 */ 702 static u32 get_distance_from_watchpoint(unsigned long addr, u32 val, 703 struct arch_hw_breakpoint_ctrl *ctrl) 704 { 705 u32 wp_low, wp_high; 706 u32 lens, lene; 707 708 lens = __ffs(ctrl->len); 709 lene = __fls(ctrl->len); 710 711 wp_low = val + lens; 712 wp_high = val + lene; 713 if (addr < wp_low) 714 return wp_low - addr; 715 else if (addr > wp_high) 716 return addr - wp_high; 717 else 718 return 0; 719 } 720 721 static int watchpoint_fault_on_uaccess(struct pt_regs *regs, 722 struct arch_hw_breakpoint *info) 723 { 724 return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER; 725 } 726 727 static void watchpoint_handler(unsigned long addr, unsigned int fsr, 728 struct pt_regs *regs) 729 { 730 int i, access, closest_match = 0; 731 u32 min_dist = -1, dist; 732 u32 val, ctrl_reg; 733 struct perf_event *wp, **slots; 734 struct arch_hw_breakpoint *info; 735 struct arch_hw_breakpoint_ctrl ctrl; 736 737 slots = this_cpu_ptr(wp_on_reg); 738 739 /* 740 * Find all watchpoints that match the reported address. If no exact 741 * match is found. Attribute the hit to the closest watchpoint. 742 */ 743 rcu_read_lock(); 744 for (i = 0; i < core_num_wrps; ++i) { 745 wp = slots[i]; 746 if (wp == NULL) 747 continue; 748 749 /* 750 * The DFAR is an unknown value on debug architectures prior 751 * to 7.1. Since we only allow a single watchpoint on these 752 * older CPUs, we can set the trigger to the lowest possible 753 * faulting address. 754 */ 755 if (debug_arch < ARM_DEBUG_ARCH_V7_1) { 756 BUG_ON(i > 0); 757 info = counter_arch_bp(wp); 758 info->trigger = wp->attr.bp_addr; 759 } else { 760 /* Check that the access type matches. */ 761 if (debug_exception_updates_fsr()) { 762 access = (fsr & ARM_FSR_ACCESS_MASK) ? 763 HW_BREAKPOINT_W : HW_BREAKPOINT_R; 764 if (!(access & hw_breakpoint_type(wp))) 765 continue; 766 } 767 768 val = read_wb_reg(ARM_BASE_WVR + i); 769 ctrl_reg = read_wb_reg(ARM_BASE_WCR + i); 770 decode_ctrl_reg(ctrl_reg, &ctrl); 771 dist = get_distance_from_watchpoint(addr, val, &ctrl); 772 if (dist < min_dist) { 773 min_dist = dist; 774 closest_match = i; 775 } 776 /* Is this an exact match? */ 777 if (dist != 0) 778 continue; 779 780 /* We have a winner. */ 781 info = counter_arch_bp(wp); 782 info->trigger = addr; 783 } 784 785 pr_debug("watchpoint fired: address = 0x%x\n", info->trigger); 786 787 /* 788 * If we triggered a user watchpoint from a uaccess routine, 789 * then handle the stepping ourselves since userspace really 790 * can't help us with this. 791 */ 792 if (watchpoint_fault_on_uaccess(regs, info)) 793 goto step; 794 795 perf_bp_event(wp, regs); 796 797 /* 798 * Defer stepping to the overflow handler if one is installed. 799 * Otherwise, insert a temporary mismatch breakpoint so that 800 * we can single-step over the watchpoint trigger. 801 */ 802 if (!is_default_overflow_handler(wp)) 803 continue; 804 step: 805 enable_single_step(wp, instruction_pointer(regs)); 806 } 807 808 if (min_dist > 0 && min_dist != -1) { 809 /* No exact match found. */ 810 wp = slots[closest_match]; 811 info = counter_arch_bp(wp); 812 info->trigger = addr; 813 pr_debug("watchpoint fired: address = 0x%x\n", info->trigger); 814 perf_bp_event(wp, regs); 815 if (is_default_overflow_handler(wp)) 816 enable_single_step(wp, instruction_pointer(regs)); 817 } 818 819 rcu_read_unlock(); 820 } 821 822 static void watchpoint_single_step_handler(unsigned long pc) 823 { 824 int i; 825 struct perf_event *wp, **slots; 826 struct arch_hw_breakpoint *info; 827 828 slots = this_cpu_ptr(wp_on_reg); 829 830 for (i = 0; i < core_num_wrps; ++i) { 831 rcu_read_lock(); 832 833 wp = slots[i]; 834 835 if (wp == NULL) 836 goto unlock; 837 838 info = counter_arch_bp(wp); 839 if (!info->step_ctrl.enabled) 840 goto unlock; 841 842 /* 843 * Restore the original watchpoint if we've completed the 844 * single-step. 845 */ 846 if (info->trigger != pc) 847 disable_single_step(wp); 848 849 unlock: 850 rcu_read_unlock(); 851 } 852 } 853 854 static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs) 855 { 856 int i; 857 u32 ctrl_reg, val, addr; 858 struct perf_event *bp, **slots; 859 struct arch_hw_breakpoint *info; 860 struct arch_hw_breakpoint_ctrl ctrl; 861 862 slots = this_cpu_ptr(bp_on_reg); 863 864 /* The exception entry code places the amended lr in the PC. */ 865 addr = regs->ARM_pc; 866 867 /* Check the currently installed breakpoints first. */ 868 for (i = 0; i < core_num_brps; ++i) { 869 rcu_read_lock(); 870 871 bp = slots[i]; 872 873 if (bp == NULL) 874 goto unlock; 875 876 info = counter_arch_bp(bp); 877 878 /* Check if the breakpoint value matches. */ 879 val = read_wb_reg(ARM_BASE_BVR + i); 880 if (val != (addr & ~0x3)) 881 goto mismatch; 882 883 /* Possible match, check the byte address select to confirm. */ 884 ctrl_reg = read_wb_reg(ARM_BASE_BCR + i); 885 decode_ctrl_reg(ctrl_reg, &ctrl); 886 if ((1 << (addr & 0x3)) & ctrl.len) { 887 info->trigger = addr; 888 pr_debug("breakpoint fired: address = 0x%x\n", addr); 889 perf_bp_event(bp, regs); 890 if (is_default_overflow_handler(bp)) 891 enable_single_step(bp, addr); 892 goto unlock; 893 } 894 895 mismatch: 896 /* If we're stepping a breakpoint, it can now be restored. */ 897 if (info->step_ctrl.enabled) 898 disable_single_step(bp); 899 unlock: 900 rcu_read_unlock(); 901 } 902 903 /* Handle any pending watchpoint single-step breakpoints. */ 904 watchpoint_single_step_handler(addr); 905 } 906 907 #ifdef CONFIG_CFI_CLANG 908 static void hw_breakpoint_cfi_handler(struct pt_regs *regs) 909 { 910 /* 911 * TODO: implementing target and type to pass to CFI using the more 912 * elaborate report_cfi_failure() requires compiler work. To be able 913 * to properly extract target information the compiler needs to 914 * emit a stable instructions sequence for the CFI checks so we can 915 * decode the instructions preceding the trap and figure out which 916 * registers were used. 917 */ 918 919 switch (report_cfi_failure_noaddr(regs, instruction_pointer(regs))) { 920 case BUG_TRAP_TYPE_BUG: 921 die("Oops - CFI", regs, 0); 922 break; 923 case BUG_TRAP_TYPE_WARN: 924 /* Skip the breaking instruction */ 925 instruction_pointer(regs) += 4; 926 break; 927 default: 928 die("Unknown CFI error", regs, 0); 929 break; 930 } 931 } 932 #else 933 static void hw_breakpoint_cfi_handler(struct pt_regs *regs) 934 { 935 } 936 #endif 937 938 /* 939 * Called from either the Data Abort Handler [watchpoint] or the 940 * Prefetch Abort Handler [breakpoint] with interrupts disabled. 941 */ 942 static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr, 943 struct pt_regs *regs) 944 { 945 int ret = 0; 946 u32 dscr; 947 948 preempt_disable(); 949 950 if (interrupts_enabled(regs)) 951 local_irq_enable(); 952 953 /* We only handle watchpoints and hardware breakpoints. */ 954 ARM_DBG_READ(c0, c1, 0, dscr); 955 956 /* Perform perf callbacks. */ 957 switch (ARM_DSCR_MOE(dscr)) { 958 case ARM_ENTRY_BREAKPOINT: 959 breakpoint_handler(addr, regs); 960 break; 961 case ARM_ENTRY_ASYNC_WATCHPOINT: 962 WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n"); 963 fallthrough; 964 case ARM_ENTRY_SYNC_WATCHPOINT: 965 watchpoint_handler(addr, fsr, regs); 966 break; 967 case ARM_ENTRY_CFI_BREAKPOINT: 968 hw_breakpoint_cfi_handler(regs); 969 break; 970 default: 971 ret = 1; /* Unhandled fault. */ 972 } 973 974 preempt_enable(); 975 976 return ret; 977 } 978 979 #ifdef CONFIG_ARM_ERRATA_764319 980 static int oslsr_fault; 981 982 static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr) 983 { 984 oslsr_fault = 1; 985 instruction_pointer(regs) += 4; 986 return 0; 987 } 988 989 static struct undef_hook debug_oslsr_hook = { 990 .instr_mask = 0xffffffff, 991 .instr_val = 0xee115e91, 992 .fn = debug_oslsr_trap, 993 }; 994 #endif 995 996 /* 997 * One-time initialisation. 998 */ 999 static cpumask_t debug_err_mask; 1000 1001 static int debug_reg_trap(struct pt_regs *regs, unsigned int instr) 1002 { 1003 int cpu = smp_processor_id(); 1004 1005 pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n", 1006 instr, cpu); 1007 1008 /* Set the error flag for this CPU and skip the faulting instruction. */ 1009 cpumask_set_cpu(cpu, &debug_err_mask); 1010 instruction_pointer(regs) += 4; 1011 return 0; 1012 } 1013 1014 static struct undef_hook debug_reg_hook = { 1015 .instr_mask = 0x0fe80f10, 1016 .instr_val = 0x0e000e10, 1017 .fn = debug_reg_trap, 1018 }; 1019 1020 /* Does this core support OS Save and Restore? */ 1021 static bool core_has_os_save_restore(void) 1022 { 1023 u32 oslsr; 1024 1025 switch (get_debug_arch()) { 1026 case ARM_DEBUG_ARCH_V7_1: 1027 return true; 1028 case ARM_DEBUG_ARCH_V7_ECP14: 1029 #ifdef CONFIG_ARM_ERRATA_764319 1030 oslsr_fault = 0; 1031 register_undef_hook(&debug_oslsr_hook); 1032 ARM_DBG_READ(c1, c1, 4, oslsr); 1033 unregister_undef_hook(&debug_oslsr_hook); 1034 if (oslsr_fault) 1035 return false; 1036 #else 1037 ARM_DBG_READ(c1, c1, 4, oslsr); 1038 #endif 1039 if (oslsr & ARM_OSLSR_OSLM0) 1040 return true; 1041 fallthrough; 1042 default: 1043 return false; 1044 } 1045 } 1046 1047 static void reset_ctrl_regs(unsigned int cpu) 1048 { 1049 int i, raw_num_brps, err = 0; 1050 u32 val; 1051 1052 /* 1053 * v7 debug contains save and restore registers so that debug state 1054 * can be maintained across low-power modes without leaving the debug 1055 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access 1056 * the debug registers out of reset, so we must unlock the OS Lock 1057 * Access Register to avoid taking undefined instruction exceptions 1058 * later on. 1059 */ 1060 switch (debug_arch) { 1061 case ARM_DEBUG_ARCH_V6: 1062 case ARM_DEBUG_ARCH_V6_1: 1063 /* ARMv6 cores clear the registers out of reset. */ 1064 goto out_mdbgen; 1065 case ARM_DEBUG_ARCH_V7_ECP14: 1066 /* 1067 * Ensure sticky power-down is clear (i.e. debug logic is 1068 * powered up). 1069 */ 1070 ARM_DBG_READ(c1, c5, 4, val); 1071 if ((val & 0x1) == 0) 1072 err = -EPERM; 1073 1074 if (!has_ossr) 1075 goto clear_vcr; 1076 break; 1077 case ARM_DEBUG_ARCH_V7_1: 1078 /* 1079 * Ensure the OS double lock is clear. 1080 */ 1081 ARM_DBG_READ(c1, c3, 4, val); 1082 if ((val & 0x1) == 1) 1083 err = -EPERM; 1084 break; 1085 } 1086 1087 if (err) { 1088 pr_warn_once("CPU %d debug is powered down!\n", cpu); 1089 cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu)); 1090 return; 1091 } 1092 1093 /* 1094 * Unconditionally clear the OS lock by writing a value 1095 * other than CS_LAR_KEY to the access register. 1096 */ 1097 ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK); 1098 isb(); 1099 1100 /* 1101 * Clear any configured vector-catch events before 1102 * enabling monitor mode. 1103 */ 1104 clear_vcr: 1105 ARM_DBG_WRITE(c0, c7, 0, 0); 1106 isb(); 1107 1108 if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) { 1109 pr_warn_once("CPU %d failed to disable vector catch\n", cpu); 1110 return; 1111 } 1112 1113 /* 1114 * The control/value register pairs are UNKNOWN out of reset so 1115 * clear them to avoid spurious debug events. 1116 */ 1117 raw_num_brps = get_num_brp_resources(); 1118 for (i = 0; i < raw_num_brps; ++i) { 1119 write_wb_reg(ARM_BASE_BCR + i, 0UL); 1120 write_wb_reg(ARM_BASE_BVR + i, 0UL); 1121 } 1122 1123 for (i = 0; i < core_num_wrps; ++i) { 1124 write_wb_reg(ARM_BASE_WCR + i, 0UL); 1125 write_wb_reg(ARM_BASE_WVR + i, 0UL); 1126 } 1127 1128 if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) { 1129 pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu); 1130 return; 1131 } 1132 1133 /* 1134 * Have a crack at enabling monitor mode. We don't actually need 1135 * it yet, but reporting an error early is useful if it fails. 1136 */ 1137 out_mdbgen: 1138 if (enable_monitor_mode()) 1139 cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu)); 1140 } 1141 1142 static int dbg_reset_online(unsigned int cpu) 1143 { 1144 local_irq_disable(); 1145 reset_ctrl_regs(cpu); 1146 local_irq_enable(); 1147 return 0; 1148 } 1149 1150 #ifdef CONFIG_CPU_PM 1151 static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action, 1152 void *v) 1153 { 1154 if (action == CPU_PM_EXIT) 1155 reset_ctrl_regs(smp_processor_id()); 1156 1157 return NOTIFY_OK; 1158 } 1159 1160 static struct notifier_block dbg_cpu_pm_nb = { 1161 .notifier_call = dbg_cpu_pm_notify, 1162 }; 1163 1164 static void __init pm_init(void) 1165 { 1166 cpu_pm_register_notifier(&dbg_cpu_pm_nb); 1167 } 1168 #else 1169 static inline void pm_init(void) 1170 { 1171 } 1172 #endif 1173 1174 static int __init arch_hw_breakpoint_init(void) 1175 { 1176 int ret; 1177 1178 debug_arch = get_debug_arch(); 1179 1180 if (!debug_arch_supported()) { 1181 pr_info("debug architecture 0x%x unsupported.\n", debug_arch); 1182 return 0; 1183 } 1184 1185 /* 1186 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD 1187 * whenever a WFI is issued, even if the core is not powered down, in 1188 * violation of the architecture. When DBGPRSR.SPD is set, accesses to 1189 * breakpoint and watchpoint registers are treated as undefined, so 1190 * this results in boot time and runtime failures when these are 1191 * accessed and we unexpectedly take a trap. 1192 * 1193 * It's not clear if/how this can be worked around, so we blacklist 1194 * Scorpion CPUs to avoid these issues. 1195 */ 1196 if (read_cpuid_part() == ARM_CPU_PART_SCORPION) { 1197 pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n"); 1198 return 0; 1199 } 1200 1201 has_ossr = core_has_os_save_restore(); 1202 1203 /* Determine how many BRPs/WRPs are available. */ 1204 core_num_brps = get_num_brps(); 1205 core_num_wrps = get_num_wrps(); 1206 1207 /* 1208 * We need to tread carefully here because DBGSWENABLE may be 1209 * driven low on this core and there isn't an architected way to 1210 * determine that. 1211 */ 1212 cpus_read_lock(); 1213 register_undef_hook(&debug_reg_hook); 1214 1215 /* 1216 * Register CPU notifier which resets the breakpoint resources. We 1217 * assume that a halting debugger will leave the world in a nice state 1218 * for us. 1219 */ 1220 ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN, 1221 "arm/hw_breakpoint:online", 1222 dbg_reset_online, NULL); 1223 unregister_undef_hook(&debug_reg_hook); 1224 if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) { 1225 core_num_brps = 0; 1226 core_num_wrps = 0; 1227 if (ret > 0) 1228 cpuhp_remove_state_nocalls_cpuslocked(ret); 1229 cpus_read_unlock(); 1230 return 0; 1231 } 1232 1233 pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n", 1234 core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " : 1235 "", core_num_wrps); 1236 1237 /* Work out the maximum supported watchpoint length. */ 1238 max_watchpoint_len = get_max_wp_len(); 1239 pr_info("maximum watchpoint size is %u bytes.\n", 1240 max_watchpoint_len); 1241 1242 /* Register debug fault handler. */ 1243 hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, 1244 TRAP_HWBKPT, "watchpoint debug exception"); 1245 hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, 1246 TRAP_HWBKPT, "breakpoint debug exception"); 1247 cpus_read_unlock(); 1248 1249 /* Register PM notifiers. */ 1250 pm_init(); 1251 return 0; 1252 } 1253 arch_initcall(arch_hw_breakpoint_init); 1254 1255 void hw_breakpoint_pmu_read(struct perf_event *bp) 1256 { 1257 } 1258 1259 /* 1260 * Dummy function to register with die_notifier. 1261 */ 1262 int hw_breakpoint_exceptions_notify(struct notifier_block *unused, 1263 unsigned long val, void *data) 1264 { 1265 return NOTIFY_DONE; 1266 } 1267