xref: /linux/arch/arm/kernel/arch_timer.c (revision f48b5f12799dbabba4a9c799a9bef0775b2f977d)
1 /*
2  *  linux/arch/arm/kernel/arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/smp.h>
16 #include <linux/cpu.h>
17 #include <linux/jiffies.h>
18 #include <linux/clockchips.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/io.h>
22 
23 #include <asm/cputype.h>
24 #include <asm/localtimer.h>
25 #include <asm/arch_timer.h>
26 #include <asm/system_info.h>
27 #include <asm/sched_clock.h>
28 
29 static unsigned long arch_timer_rate;
30 
31 enum ppi_nr {
32 	PHYS_SECURE_PPI,
33 	PHYS_NONSECURE_PPI,
34 	VIRT_PPI,
35 	HYP_PPI,
36 	MAX_TIMER_PPI
37 };
38 
39 static int arch_timer_ppi[MAX_TIMER_PPI];
40 
41 static struct clock_event_device __percpu **arch_timer_evt;
42 
43 extern void init_current_timer_delay(unsigned long freq);
44 
45 static bool arch_timer_use_virtual = true;
46 
47 /*
48  * Architected system timer support.
49  */
50 
51 #define ARCH_TIMER_CTRL_ENABLE		(1 << 0)
52 #define ARCH_TIMER_CTRL_IT_MASK		(1 << 1)
53 #define ARCH_TIMER_CTRL_IT_STAT		(1 << 2)
54 
55 #define ARCH_TIMER_REG_CTRL		0
56 #define ARCH_TIMER_REG_FREQ		1
57 #define ARCH_TIMER_REG_TVAL		2
58 
59 #define ARCH_TIMER_PHYS_ACCESS		0
60 #define ARCH_TIMER_VIRT_ACCESS		1
61 
62 /*
63  * These register accessors are marked inline so the compiler can
64  * nicely work out which register we want, and chuck away the rest of
65  * the code. At least it does so with a recent GCC (4.6.3).
66  */
67 static inline void arch_timer_reg_write(const int access, const int reg, u32 val)
68 {
69 	if (access == ARCH_TIMER_PHYS_ACCESS) {
70 		switch (reg) {
71 		case ARCH_TIMER_REG_CTRL:
72 			asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
73 			break;
74 		case ARCH_TIMER_REG_TVAL:
75 			asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
76 			break;
77 		}
78 	}
79 
80 	if (access == ARCH_TIMER_VIRT_ACCESS) {
81 		switch (reg) {
82 		case ARCH_TIMER_REG_CTRL:
83 			asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));
84 			break;
85 		case ARCH_TIMER_REG_TVAL:
86 			asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val));
87 			break;
88 		}
89 	}
90 
91 	isb();
92 }
93 
94 static inline u32 arch_timer_reg_read(const int access, const int reg)
95 {
96 	u32 val = 0;
97 
98 	if (access == ARCH_TIMER_PHYS_ACCESS) {
99 		switch (reg) {
100 		case ARCH_TIMER_REG_CTRL:
101 			asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
102 			break;
103 		case ARCH_TIMER_REG_TVAL:
104 			asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
105 			break;
106 		case ARCH_TIMER_REG_FREQ:
107 			asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
108 			break;
109 		}
110 	}
111 
112 	if (access == ARCH_TIMER_VIRT_ACCESS) {
113 		switch (reg) {
114 		case ARCH_TIMER_REG_CTRL:
115 			asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));
116 			break;
117 		case ARCH_TIMER_REG_TVAL:
118 			asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val));
119 			break;
120 		}
121 	}
122 
123 	return val;
124 }
125 
126 static inline cycle_t arch_timer_counter_read(const int access)
127 {
128 	cycle_t cval = 0;
129 
130 	if (access == ARCH_TIMER_PHYS_ACCESS)
131 		asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));
132 
133 	if (access == ARCH_TIMER_VIRT_ACCESS)
134 		asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval));
135 
136 	return cval;
137 }
138 
139 static inline cycle_t arch_counter_get_cntpct(void)
140 {
141 	return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS);
142 }
143 
144 static inline cycle_t arch_counter_get_cntvct(void)
145 {
146 	return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS);
147 }
148 
149 static irqreturn_t inline timer_handler(const int access,
150 					struct clock_event_device *evt)
151 {
152 	unsigned long ctrl;
153 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
154 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
155 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
157 		evt->event_handler(evt);
158 		return IRQ_HANDLED;
159 	}
160 
161 	return IRQ_NONE;
162 }
163 
164 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
165 {
166 	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
167 
168 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
169 }
170 
171 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
172 {
173 	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
174 
175 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
176 }
177 
178 static inline void timer_set_mode(const int access, int mode)
179 {
180 	unsigned long ctrl;
181 	switch (mode) {
182 	case CLOCK_EVT_MODE_UNUSED:
183 	case CLOCK_EVT_MODE_SHUTDOWN:
184 		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
185 		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
186 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
187 		break;
188 	default:
189 		break;
190 	}
191 }
192 
193 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
194 				     struct clock_event_device *clk)
195 {
196 	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
197 }
198 
199 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
200 				     struct clock_event_device *clk)
201 {
202 	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
203 }
204 
205 static inline void set_next_event(const int access, unsigned long evt)
206 {
207 	unsigned long ctrl;
208 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
209 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
210 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
211 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
212 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
213 }
214 
215 static int arch_timer_set_next_event_virt(unsigned long evt,
216 					  struct clock_event_device *unused)
217 {
218 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
219 	return 0;
220 }
221 
222 static int arch_timer_set_next_event_phys(unsigned long evt,
223 					  struct clock_event_device *unused)
224 {
225 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
226 	return 0;
227 }
228 
229 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
230 {
231 	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
232 	clk->name = "arch_sys_timer";
233 	clk->rating = 450;
234 	if (arch_timer_use_virtual) {
235 		clk->irq = arch_timer_ppi[VIRT_PPI];
236 		clk->set_mode = arch_timer_set_mode_virt;
237 		clk->set_next_event = arch_timer_set_next_event_virt;
238 	} else {
239 		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
240 		clk->set_mode = arch_timer_set_mode_phys;
241 		clk->set_next_event = arch_timer_set_next_event_phys;
242 	}
243 
244 	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
245 
246 	clockevents_config_and_register(clk, arch_timer_rate,
247 					0xf, 0x7fffffff);
248 
249 	*__this_cpu_ptr(arch_timer_evt) = clk;
250 
251 	if (arch_timer_use_virtual)
252 		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
253 	else {
254 		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
255 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
256 			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
257 	}
258 
259 	return 0;
260 }
261 
262 /* Is the optional system timer available? */
263 static int local_timer_is_architected(void)
264 {
265 	return (cpu_architecture() >= CPU_ARCH_ARMv7) &&
266 	       ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1;
267 }
268 
269 static int arch_timer_available(void)
270 {
271 	unsigned long freq;
272 
273 	if (!local_timer_is_architected())
274 		return -ENXIO;
275 
276 	if (arch_timer_rate == 0) {
277 		freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS,
278 					   ARCH_TIMER_REG_FREQ);
279 
280 		/* Check the timer frequency. */
281 		if (freq == 0) {
282 			pr_warn("Architected timer frequency not available\n");
283 			return -EINVAL;
284 		}
285 
286 		arch_timer_rate = freq;
287 	}
288 
289 	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
290 		     arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100,
291 		     arch_timer_use_virtual ? "virt" : "phys");
292 	return 0;
293 }
294 
295 static u32 notrace arch_counter_get_cntpct32(void)
296 {
297 	cycle_t cnt = arch_counter_get_cntpct();
298 
299 	/*
300 	 * The sched_clock infrastructure only knows about counters
301 	 * with at most 32bits. Forget about the upper 24 bits for the
302 	 * time being...
303 	 */
304 	return (u32)cnt;
305 }
306 
307 static u32 notrace arch_counter_get_cntvct32(void)
308 {
309 	cycle_t cnt = arch_counter_get_cntvct();
310 
311 	/*
312 	 * The sched_clock infrastructure only knows about counters
313 	 * with at most 32bits. Forget about the upper 24 bits for the
314 	 * time being...
315 	 */
316 	return (u32)cnt;
317 }
318 
319 static cycle_t arch_counter_read(struct clocksource *cs)
320 {
321 	/*
322 	 * Always use the physical counter for the clocksource.
323 	 * CNTHCTL.PL1PCTEN must be set to 1.
324 	 */
325 	return arch_counter_get_cntpct();
326 }
327 
328 int read_current_timer(unsigned long *timer_val)
329 {
330 	if (!arch_timer_rate)
331 		return -ENXIO;
332 	*timer_val = arch_counter_get_cntpct();
333 	return 0;
334 }
335 
336 static struct clocksource clocksource_counter = {
337 	.name	= "arch_sys_counter",
338 	.rating	= 400,
339 	.read	= arch_counter_read,
340 	.mask	= CLOCKSOURCE_MASK(56),
341 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
342 };
343 
344 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
345 {
346 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
347 		 clk->irq, smp_processor_id());
348 
349 	if (arch_timer_use_virtual)
350 		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
351 	else {
352 		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
353 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
354 			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
355 	}
356 
357 	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
358 }
359 
360 static struct local_timer_ops arch_timer_ops __cpuinitdata = {
361 	.setup	= arch_timer_setup,
362 	.stop	= arch_timer_stop,
363 };
364 
365 static struct clock_event_device arch_timer_global_evt;
366 
367 static int __init arch_timer_register(void)
368 {
369 	int err;
370 	int ppi;
371 
372 	err = arch_timer_available();
373 	if (err)
374 		goto out;
375 
376 	arch_timer_evt = alloc_percpu(struct clock_event_device *);
377 	if (!arch_timer_evt) {
378 		err = -ENOMEM;
379 		goto out;
380 	}
381 
382 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
383 
384 	if (arch_timer_use_virtual) {
385 		ppi = arch_timer_ppi[VIRT_PPI];
386 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
387 					 "arch_timer", arch_timer_evt);
388 	} else {
389 		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
390 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
391 					 "arch_timer", arch_timer_evt);
392 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
393 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
394 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
395 						 "arch_timer", arch_timer_evt);
396 			if (err)
397 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
398 						arch_timer_evt);
399 		}
400 	}
401 
402 	if (err) {
403 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
404 		       ppi, err);
405 		goto out_free;
406 	}
407 
408 	err = local_timer_register(&arch_timer_ops);
409 	if (err) {
410 		/*
411 		 * We couldn't register as a local timer (could be
412 		 * because we're on a UP platform, or because some
413 		 * other local timer is already present...). Try as a
414 		 * global timer instead.
415 		 */
416 		arch_timer_global_evt.cpumask = cpumask_of(0);
417 		err = arch_timer_setup(&arch_timer_global_evt);
418 	}
419 
420 	if (err)
421 		goto out_free_irq;
422 
423 	init_current_timer_delay(arch_timer_rate);
424 	return 0;
425 
426 out_free_irq:
427 	if (arch_timer_use_virtual)
428 		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
429 	else {
430 		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
431 				arch_timer_evt);
432 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
433 			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
434 					arch_timer_evt);
435 	}
436 
437 out_free:
438 	free_percpu(arch_timer_evt);
439 out:
440 	return err;
441 }
442 
443 static const struct of_device_id arch_timer_of_match[] __initconst = {
444 	{ .compatible	= "arm,armv7-timer",	},
445 	{},
446 };
447 
448 int __init arch_timer_of_register(void)
449 {
450 	struct device_node *np;
451 	u32 freq;
452 	int i;
453 
454 	np = of_find_matching_node(NULL, arch_timer_of_match);
455 	if (!np) {
456 		pr_err("arch_timer: can't find DT node\n");
457 		return -ENODEV;
458 	}
459 
460 	/* Try to determine the frequency from the device tree or CNTFRQ */
461 	if (!of_property_read_u32(np, "clock-frequency", &freq))
462 		arch_timer_rate = freq;
463 
464 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
465 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
466 
467 	/*
468 	 * If no interrupt provided for virtual timer, we'll have to
469 	 * stick to the physical timer. It'd better be accessible...
470 	 */
471 	if (!arch_timer_ppi[VIRT_PPI]) {
472 		arch_timer_use_virtual = false;
473 
474 		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
475 		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
476 			pr_warn("arch_timer: No interrupt available, giving up\n");
477 			return -EINVAL;
478 		}
479 	}
480 
481 	return arch_timer_register();
482 }
483 
484 int __init arch_timer_sched_clock_init(void)
485 {
486 	u32 (*cnt32)(void);
487 	int err;
488 
489 	err = arch_timer_available();
490 	if (err)
491 		return err;
492 
493 	if (arch_timer_use_virtual)
494 		cnt32 = arch_counter_get_cntvct32;
495 	else
496 		cnt32 = arch_counter_get_cntpct32;
497 
498 	setup_sched_clock(cnt32, 32, arch_timer_rate);
499 	return 0;
500 }
501