xref: /linux/arch/arm/include/asm/spinlock.h (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 #ifndef __ASM_SPINLOCK_H
2 #define __ASM_SPINLOCK_H
3 
4 #if __LINUX_ARM_ARCH__ < 6
5 #error SMP not supported on pre-ARMv6 CPUs
6 #endif
7 
8 #include <asm/processor.h>
9 
10 /*
11  * sev and wfe are ARMv6K extensions.  Uniprocessor ARMv6 may not have the K
12  * extensions, so when running on UP, we have to patch these instructions away.
13  */
14 #define ALT_SMP(smp, up)					\
15 	"9998:	" smp "\n"					\
16 	"	.pushsection \".alt.smp.init\", \"a\"\n"	\
17 	"	.long	9998b\n"				\
18 	"	" up "\n"					\
19 	"	.popsection\n"
20 
21 #ifdef CONFIG_THUMB2_KERNEL
22 #define SEV		ALT_SMP("sev.w", "nop.w")
23 /*
24  * For Thumb-2, special care is needed to ensure that the conditional WFE
25  * instruction really does assemble to exactly 4 bytes (as required by
26  * the SMP_ON_UP fixup code).   By itself "wfene" might cause the
27  * assembler to insert a extra (16-bit) IT instruction, depending on the
28  * presence or absence of neighbouring conditional instructions.
29  *
30  * To avoid this unpredictableness, an approprite IT is inserted explicitly:
31  * the assembler won't change IT instructions which are explicitly present
32  * in the input.
33  */
34 #define WFE(cond)	ALT_SMP(		\
35 	"it " cond "\n\t"			\
36 	"wfe" cond ".n",			\
37 						\
38 	"nop.w"					\
39 )
40 #else
41 #define SEV		ALT_SMP("sev", "nop")
42 #define WFE(cond)	ALT_SMP("wfe" cond, "nop")
43 #endif
44 
45 static inline void dsb_sev(void)
46 {
47 #if __LINUX_ARM_ARCH__ >= 7
48 	__asm__ __volatile__ (
49 		"dsb\n"
50 		SEV
51 	);
52 #else
53 	__asm__ __volatile__ (
54 		"mcr p15, 0, %0, c7, c10, 4\n"
55 		SEV
56 		: : "r" (0)
57 	);
58 #endif
59 }
60 
61 /*
62  * ARMv6 ticket-based spin-locking.
63  *
64  * A memory barrier is required after we get a lock, and before we
65  * release it, because V6 CPUs are assumed to have weakly ordered
66  * memory.
67  */
68 
69 #define arch_spin_unlock_wait(lock) \
70 	do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
71 
72 #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
73 
74 static inline void arch_spin_lock(arch_spinlock_t *lock)
75 {
76 	unsigned long tmp;
77 	u32 newval;
78 	arch_spinlock_t lockval;
79 
80 	__asm__ __volatile__(
81 "1:	ldrex	%0, [%3]\n"
82 "	add	%1, %0, %4\n"
83 "	strex	%2, %1, [%3]\n"
84 "	teq	%2, #0\n"
85 "	bne	1b"
86 	: "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
87 	: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
88 	: "cc");
89 
90 	while (lockval.tickets.next != lockval.tickets.owner) {
91 		wfe();
92 		lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
93 	}
94 
95 	smp_mb();
96 }
97 
98 static inline int arch_spin_trylock(arch_spinlock_t *lock)
99 {
100 	unsigned long tmp;
101 	u32 slock;
102 
103 	__asm__ __volatile__(
104 "	ldrex	%0, [%2]\n"
105 "	subs	%1, %0, %0, ror #16\n"
106 "	addeq	%0, %0, %3\n"
107 "	strexeq	%1, %0, [%2]"
108 	: "=&r" (slock), "=&r" (tmp)
109 	: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
110 	: "cc");
111 
112 	if (tmp == 0) {
113 		smp_mb();
114 		return 1;
115 	} else {
116 		return 0;
117 	}
118 }
119 
120 static inline void arch_spin_unlock(arch_spinlock_t *lock)
121 {
122 	unsigned long tmp;
123 	u32 slock;
124 
125 	smp_mb();
126 
127 	__asm__ __volatile__(
128 "	mov	%1, #1\n"
129 "1:	ldrex	%0, [%2]\n"
130 "	uadd16	%0, %0, %1\n"
131 "	strex	%1, %0, [%2]\n"
132 "	teq	%1, #0\n"
133 "	bne	1b"
134 	: "=&r" (slock), "=&r" (tmp)
135 	: "r" (&lock->slock)
136 	: "cc");
137 
138 	dsb_sev();
139 }
140 
141 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
142 {
143 	struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
144 	return tickets.owner != tickets.next;
145 }
146 
147 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
148 {
149 	struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
150 	return (tickets.next - tickets.owner) > 1;
151 }
152 #define arch_spin_is_contended	arch_spin_is_contended
153 
154 /*
155  * RWLOCKS
156  *
157  *
158  * Write locks are easy - we just set bit 31.  When unlocking, we can
159  * just write zero since the lock is exclusively held.
160  */
161 
162 static inline void arch_write_lock(arch_rwlock_t *rw)
163 {
164 	unsigned long tmp;
165 
166 	__asm__ __volatile__(
167 "1:	ldrex	%0, [%1]\n"
168 "	teq	%0, #0\n"
169 	WFE("ne")
170 "	strexeq	%0, %2, [%1]\n"
171 "	teq	%0, #0\n"
172 "	bne	1b"
173 	: "=&r" (tmp)
174 	: "r" (&rw->lock), "r" (0x80000000)
175 	: "cc");
176 
177 	smp_mb();
178 }
179 
180 static inline int arch_write_trylock(arch_rwlock_t *rw)
181 {
182 	unsigned long tmp;
183 
184 	__asm__ __volatile__(
185 "	ldrex	%0, [%1]\n"
186 "	teq	%0, #0\n"
187 "	strexeq	%0, %2, [%1]"
188 	: "=&r" (tmp)
189 	: "r" (&rw->lock), "r" (0x80000000)
190 	: "cc");
191 
192 	if (tmp == 0) {
193 		smp_mb();
194 		return 1;
195 	} else {
196 		return 0;
197 	}
198 }
199 
200 static inline void arch_write_unlock(arch_rwlock_t *rw)
201 {
202 	smp_mb();
203 
204 	__asm__ __volatile__(
205 	"str	%1, [%0]\n"
206 	:
207 	: "r" (&rw->lock), "r" (0)
208 	: "cc");
209 
210 	dsb_sev();
211 }
212 
213 /* write_can_lock - would write_trylock() succeed? */
214 #define arch_write_can_lock(x)		((x)->lock == 0)
215 
216 /*
217  * Read locks are a bit more hairy:
218  *  - Exclusively load the lock value.
219  *  - Increment it.
220  *  - Store new lock value if positive, and we still own this location.
221  *    If the value is negative, we've already failed.
222  *  - If we failed to store the value, we want a negative result.
223  *  - If we failed, try again.
224  * Unlocking is similarly hairy.  We may have multiple read locks
225  * currently active.  However, we know we won't have any write
226  * locks.
227  */
228 static inline void arch_read_lock(arch_rwlock_t *rw)
229 {
230 	unsigned long tmp, tmp2;
231 
232 	__asm__ __volatile__(
233 "1:	ldrex	%0, [%2]\n"
234 "	adds	%0, %0, #1\n"
235 "	strexpl	%1, %0, [%2]\n"
236 	WFE("mi")
237 "	rsbpls	%0, %1, #0\n"
238 "	bmi	1b"
239 	: "=&r" (tmp), "=&r" (tmp2)
240 	: "r" (&rw->lock)
241 	: "cc");
242 
243 	smp_mb();
244 }
245 
246 static inline void arch_read_unlock(arch_rwlock_t *rw)
247 {
248 	unsigned long tmp, tmp2;
249 
250 	smp_mb();
251 
252 	__asm__ __volatile__(
253 "1:	ldrex	%0, [%2]\n"
254 "	sub	%0, %0, #1\n"
255 "	strex	%1, %0, [%2]\n"
256 "	teq	%1, #0\n"
257 "	bne	1b"
258 	: "=&r" (tmp), "=&r" (tmp2)
259 	: "r" (&rw->lock)
260 	: "cc");
261 
262 	if (tmp == 0)
263 		dsb_sev();
264 }
265 
266 static inline int arch_read_trylock(arch_rwlock_t *rw)
267 {
268 	unsigned long tmp, tmp2 = 1;
269 
270 	__asm__ __volatile__(
271 "	ldrex	%0, [%2]\n"
272 "	adds	%0, %0, #1\n"
273 "	strexpl	%1, %0, [%2]\n"
274 	: "=&r" (tmp), "+r" (tmp2)
275 	: "r" (&rw->lock)
276 	: "cc");
277 
278 	smp_mb();
279 	return tmp2 == 0;
280 }
281 
282 /* read_can_lock - would read_trylock() succeed? */
283 #define arch_read_can_lock(x)		((x)->lock < 0x80000000)
284 
285 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
286 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
287 
288 #define arch_spin_relax(lock)	cpu_relax()
289 #define arch_read_relax(lock)	cpu_relax()
290 #define arch_write_relax(lock)	cpu_relax()
291 
292 #endif /* __ASM_SPINLOCK_H */
293