1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * arch/arm/include/asm/pgtable.h 4 * 5 * Copyright (C) 1995-2002 Russell King 6 */ 7 #ifndef _ASMARM_PGTABLE_H 8 #define _ASMARM_PGTABLE_H 9 10 #include <linux/const.h> 11 #include <asm/proc-fns.h> 12 13 #ifndef __ASSEMBLY__ 14 /* 15 * ZERO_PAGE is a global shared page that is always zero: used 16 * for zero-mapped memory areas etc.. 17 */ 18 extern struct page *empty_zero_page; 19 #define ZERO_PAGE(vaddr) (empty_zero_page) 20 #endif 21 22 #include <asm-generic/pgtable-nopud.h> 23 24 #ifndef CONFIG_MMU 25 #include <asm/pgtable-nommu.h> 26 27 #else 28 29 #include <asm/page.h> 30 #include <asm/pgtable-hwdef.h> 31 32 33 #include <asm/tlbflush.h> 34 35 #ifdef CONFIG_ARM_LPAE 36 #include <asm/pgtable-3level.h> 37 #else 38 #include <asm/pgtable-2level.h> 39 #endif 40 41 /* 42 * Just any arbitrary offset to the start of the vmalloc VM area: the 43 * current 8MB value just means that there will be a 8MB "hole" after the 44 * physical memory until the kernel virtual memory starts. That means that 45 * any out-of-bounds memory accesses will hopefully be caught. 46 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 47 * area for the same reason. ;) 48 */ 49 #define VMALLOC_OFFSET (8*1024*1024) 50 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 51 #define VMALLOC_END 0xff800000UL 52 53 #define LIBRARY_TEXT_START 0x0c000000 54 55 #ifndef __ASSEMBLY__ 56 extern void __pte_error(const char *file, int line, pte_t); 57 extern void __pmd_error(const char *file, int line, pmd_t); 58 extern void __pgd_error(const char *file, int line, pgd_t); 59 60 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte) 61 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd) 62 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd) 63 64 /* 65 * This is the lowest virtual address we can permit any user space 66 * mapping to be mapped at. This is particularly important for 67 * non-high vector CPUs. 68 */ 69 #define FIRST_USER_ADDRESS (PAGE_SIZE * 2) 70 71 /* 72 * Use TASK_SIZE as the ceiling argument for free_pgtables() and 73 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd 74 * page shared between user and kernel). 75 */ 76 #ifdef CONFIG_ARM_LPAE 77 #define USER_PGTABLES_CEILING TASK_SIZE 78 #endif 79 80 /* 81 * The pgprot_* and protection_map entries will be fixed up in runtime 82 * to include the cachable and bufferable bits based on memory policy, 83 * as well as any architecture dependent bits like global/ASID and SMP 84 * shared mapping bits. 85 */ 86 #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG 87 88 extern pgprot_t pgprot_user; 89 extern pgprot_t pgprot_kernel; 90 91 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b)) 92 93 #define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE) 94 #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN) 95 #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER) 96 #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 97 #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY) 98 #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 99 #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY) 100 #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN) 101 #define PAGE_KERNEL_EXEC pgprot_kernel 102 103 #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE) 104 #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN) 105 #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER) 106 #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 107 #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY) 108 #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 109 #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY) 110 111 #define __pgprot_modify(prot,mask,bits) \ 112 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 113 114 #define pgprot_noncached(prot) \ 115 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED) 116 117 #define pgprot_writecombine(prot) \ 118 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE) 119 120 #define pgprot_stronglyordered(prot) \ 121 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED) 122 123 #define pgprot_device(prot) \ 124 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN) 125 126 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 127 #define pgprot_dmacoherent(prot) \ 128 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN) 129 #define __HAVE_PHYS_MEM_ACCESS_PROT 130 struct file; 131 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 132 unsigned long size, pgprot_t vma_prot); 133 #else 134 #define pgprot_dmacoherent(prot) \ 135 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN) 136 #endif 137 138 #endif /* __ASSEMBLY__ */ 139 140 /* 141 * The table below defines the page protection levels that we insert into our 142 * Linux page table version. These get translated into the best that the 143 * architecture can perform. Note that on most ARM hardware: 144 * 1) We cannot do execute protection 145 * 2) If we could do execute protection, then read is implied 146 * 3) write implies read permissions 147 */ 148 149 #ifndef __ASSEMBLY__ 150 151 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 152 153 #define pgdp_get(pgpd) READ_ONCE(*pgdp) 154 155 #define pud_page(pud) pmd_page(__pmd(pud_val(pud))) 156 #define pud_write(pud) pmd_write(__pmd(pud_val(pud))) 157 158 #define pmd_none(pmd) (!pmd_val(pmd)) 159 160 static inline pte_t *pmd_page_vaddr(pmd_t pmd) 161 { 162 return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK); 163 } 164 165 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK)) 166 167 #define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT) 168 #define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot)) 169 170 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 171 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot) 172 173 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0) 174 175 #define pte_isset(pte, val) ((u32)(val) == (val) ? pte_val(pte) & (val) \ 176 : !!(pte_val(pte) & (val))) 177 #define pte_isclear(pte, val) (!(pte_val(pte) & (val))) 178 179 #define pte_none(pte) (!pte_val(pte)) 180 #define pte_present(pte) (pte_isset((pte), L_PTE_PRESENT)) 181 #define pte_valid(pte) (pte_isset((pte), L_PTE_VALID)) 182 #define pte_accessible(mm, pte) (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 183 #define pte_write(pte) (pte_isclear((pte), L_PTE_RDONLY)) 184 #define pte_dirty(pte) (pte_isset((pte), L_PTE_DIRTY)) 185 #define pte_young(pte) (pte_isset((pte), L_PTE_YOUNG)) 186 #define pte_exec(pte) (pte_isclear((pte), L_PTE_XN)) 187 188 #define pte_valid_user(pte) \ 189 (pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte)) 190 191 static inline bool pte_access_permitted(pte_t pte, bool write) 192 { 193 pteval_t mask = L_PTE_PRESENT | L_PTE_USER; 194 pteval_t needed = mask; 195 196 if (write) 197 mask |= L_PTE_RDONLY; 198 199 return (pte_val(pte) & mask) == needed; 200 } 201 #define pte_access_permitted pte_access_permitted 202 203 #if __LINUX_ARM_ARCH__ < 6 204 static inline void __sync_icache_dcache(pte_t pteval) 205 { 206 } 207 #else 208 extern void __sync_icache_dcache(pte_t pteval); 209 #endif 210 211 #define PFN_PTE_SHIFT PAGE_SHIFT 212 213 void set_ptes(struct mm_struct *mm, unsigned long addr, 214 pte_t *ptep, pte_t pteval, unsigned int nr); 215 #define set_ptes set_ptes 216 217 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 218 { 219 pte_val(pte) &= ~pgprot_val(prot); 220 return pte; 221 } 222 223 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 224 { 225 pte_val(pte) |= pgprot_val(prot); 226 return pte; 227 } 228 229 static inline pte_t pte_wrprotect(pte_t pte) 230 { 231 return set_pte_bit(pte, __pgprot(L_PTE_RDONLY)); 232 } 233 234 static inline pte_t pte_mkwrite_novma(pte_t pte) 235 { 236 return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY)); 237 } 238 239 static inline pte_t pte_mkclean(pte_t pte) 240 { 241 return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY)); 242 } 243 244 static inline pte_t pte_mkdirty(pte_t pte) 245 { 246 return set_pte_bit(pte, __pgprot(L_PTE_DIRTY)); 247 } 248 249 static inline pte_t pte_mkold(pte_t pte) 250 { 251 return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG)); 252 } 253 254 static inline pte_t pte_mkyoung(pte_t pte) 255 { 256 return set_pte_bit(pte, __pgprot(L_PTE_YOUNG)); 257 } 258 259 static inline pte_t pte_mkexec(pte_t pte) 260 { 261 return clear_pte_bit(pte, __pgprot(L_PTE_XN)); 262 } 263 264 static inline pte_t pte_mknexec(pte_t pte) 265 { 266 return set_pte_bit(pte, __pgprot(L_PTE_XN)); 267 } 268 269 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 270 { 271 const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER | 272 L_PTE_NONE | L_PTE_VALID; 273 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 274 return pte; 275 } 276 277 /* 278 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 279 * are !pte_none() && !pte_present(). 280 * 281 * Format of swap PTEs: 282 * 283 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 284 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 285 * <------------------- offset ------------------> E < type -> 0 0 286 * 287 * E is the exclusive marker that is not stored in swap entries. 288 * 289 * This gives us up to 31 swap files and 64GB per swap file. Note that 290 * the offset field is always non-zero. 291 */ 292 #define __SWP_TYPE_SHIFT 2 293 #define __SWP_TYPE_BITS 5 294 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 295 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT + 1) 296 297 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 298 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 299 #define __swp_entry(type, offset) ((swp_entry_t) { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 300 ((offset) << __SWP_OFFSET_SHIFT) }) 301 302 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 303 #define __swp_entry_to_pte(swp) __pte((swp).val) 304 305 static inline int pte_swp_exclusive(pte_t pte) 306 { 307 return pte_isset(pte, L_PTE_SWP_EXCLUSIVE); 308 } 309 310 static inline pte_t pte_swp_mkexclusive(pte_t pte) 311 { 312 return set_pte_bit(pte, __pgprot(L_PTE_SWP_EXCLUSIVE)); 313 } 314 315 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 316 { 317 return clear_pte_bit(pte, __pgprot(L_PTE_SWP_EXCLUSIVE)); 318 } 319 320 /* 321 * It is an error for the kernel to have more swap files than we can 322 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES 323 * is increased beyond what we presently support. 324 */ 325 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 326 327 /* 328 * We provide our own arch_get_unmapped_area to cope with VIPT caches. 329 */ 330 #define HAVE_ARCH_UNMAPPED_AREA 331 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 332 333 #endif /* !__ASSEMBLY__ */ 334 335 #endif /* CONFIG_MMU */ 336 337 #endif /* _ASMARM_PGTABLE_H */ 338