xref: /linux/arch/arm/include/asm/pgtable.h (revision ec63e2a4897075e427c121d863bd89c44578094f)
1 /*
2  *  arch/arm/include/asm/pgtable.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12 
13 #include <linux/const.h>
14 #include <asm/proc-fns.h>
15 
16 #ifndef CONFIG_MMU
17 
18 #include <asm-generic/4level-fixup.h>
19 #include <asm/pgtable-nommu.h>
20 
21 #else
22 
23 #define __ARCH_USE_5LEVEL_HACK
24 #include <asm-generic/pgtable-nopud.h>
25 #include <asm/memory.h>
26 #include <asm/pgtable-hwdef.h>
27 
28 
29 #include <asm/tlbflush.h>
30 
31 #ifdef CONFIG_ARM_LPAE
32 #include <asm/pgtable-3level.h>
33 #else
34 #include <asm/pgtable-2level.h>
35 #endif
36 
37 /*
38  * Just any arbitrary offset to the start of the vmalloc VM area: the
39  * current 8MB value just means that there will be a 8MB "hole" after the
40  * physical memory until the kernel virtual memory starts.  That means that
41  * any out-of-bounds memory accesses will hopefully be caught.
42  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43  * area for the same reason. ;)
44  */
45 #define VMALLOC_OFFSET		(8*1024*1024)
46 #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
47 #define VMALLOC_END		0xff800000UL
48 
49 #define LIBRARY_TEXT_START	0x0c000000
50 
51 #ifndef __ASSEMBLY__
52 extern void __pte_error(const char *file, int line, pte_t);
53 extern void __pmd_error(const char *file, int line, pmd_t);
54 extern void __pgd_error(const char *file, int line, pgd_t);
55 
56 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
57 #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
58 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
59 
60 /*
61  * This is the lowest virtual address we can permit any user space
62  * mapping to be mapped at.  This is particularly important for
63  * non-high vector CPUs.
64  */
65 #define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
66 
67 /*
68  * Use TASK_SIZE as the ceiling argument for free_pgtables() and
69  * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
70  * page shared between user and kernel).
71  */
72 #ifdef CONFIG_ARM_LPAE
73 #define USER_PGTABLES_CEILING	TASK_SIZE
74 #endif
75 
76 /*
77  * The pgprot_* and protection_map entries will be fixed up in runtime
78  * to include the cachable and bufferable bits based on memory policy,
79  * as well as any architecture dependent bits like global/ASID and SMP
80  * shared mapping bits.
81  */
82 #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
83 
84 extern pgprot_t		pgprot_user;
85 extern pgprot_t		pgprot_kernel;
86 extern pgprot_t		pgprot_hyp_device;
87 extern pgprot_t		pgprot_s2;
88 extern pgprot_t		pgprot_s2_device;
89 
90 #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
91 
92 #define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
93 #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
94 #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
95 #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
96 #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
97 #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
98 #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
99 #define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
100 #define PAGE_KERNEL_EXEC	pgprot_kernel
101 #define PAGE_HYP		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_XN)
102 #define PAGE_HYP_EXEC		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
103 #define PAGE_HYP_RO		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
104 #define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
105 #define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY | L_PTE_XN)
106 #define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY | L_PTE_XN)
107 
108 #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
109 #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
110 #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
111 #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
112 #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
113 #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
114 #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
115 
116 #define __pgprot_modify(prot,mask,bits)		\
117 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
118 
119 #define pgprot_noncached(prot) \
120 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
121 
122 #define pgprot_writecombine(prot) \
123 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
124 
125 #define pgprot_stronglyordered(prot) \
126 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
127 
128 #define pgprot_device(prot) \
129 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
130 
131 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
132 #define pgprot_dmacoherent(prot) \
133 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
134 #define __HAVE_PHYS_MEM_ACCESS_PROT
135 struct file;
136 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
137 				     unsigned long size, pgprot_t vma_prot);
138 #else
139 #define pgprot_dmacoherent(prot) \
140 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
141 #endif
142 
143 #endif /* __ASSEMBLY__ */
144 
145 /*
146  * The table below defines the page protection levels that we insert into our
147  * Linux page table version.  These get translated into the best that the
148  * architecture can perform.  Note that on most ARM hardware:
149  *  1) We cannot do execute protection
150  *  2) If we could do execute protection, then read is implied
151  *  3) write implies read permissions
152  */
153 #define __P000  __PAGE_NONE
154 #define __P001  __PAGE_READONLY
155 #define __P010  __PAGE_COPY
156 #define __P011  __PAGE_COPY
157 #define __P100  __PAGE_READONLY_EXEC
158 #define __P101  __PAGE_READONLY_EXEC
159 #define __P110  __PAGE_COPY_EXEC
160 #define __P111  __PAGE_COPY_EXEC
161 
162 #define __S000  __PAGE_NONE
163 #define __S001  __PAGE_READONLY
164 #define __S010  __PAGE_SHARED
165 #define __S011  __PAGE_SHARED
166 #define __S100  __PAGE_READONLY_EXEC
167 #define __S101  __PAGE_READONLY_EXEC
168 #define __S110  __PAGE_SHARED_EXEC
169 #define __S111  __PAGE_SHARED_EXEC
170 
171 #ifndef __ASSEMBLY__
172 /*
173  * ZERO_PAGE is a global shared page that is always zero: used
174  * for zero-mapped memory areas etc..
175  */
176 extern struct page *empty_zero_page;
177 #define ZERO_PAGE(vaddr)	(empty_zero_page)
178 
179 
180 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
181 
182 /* to find an entry in a page-table-directory */
183 #define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
184 
185 #define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
186 
187 /* to find an entry in a kernel page-table-directory */
188 #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
189 
190 #define pmd_none(pmd)		(!pmd_val(pmd))
191 
192 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
193 {
194 	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
195 }
196 
197 #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
198 
199 #ifndef CONFIG_HIGHPTE
200 #define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
201 #define __pte_unmap(pte)	do { } while (0)
202 #else
203 #define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
204 #define __pte_unmap(pte)	kunmap_atomic(pte)
205 #endif
206 
207 #define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
208 
209 #define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
210 
211 #define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
212 #define pte_unmap(pte)			__pte_unmap(pte)
213 
214 #define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
215 #define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
216 
217 #define pte_page(pte)		pfn_to_page(pte_pfn(pte))
218 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
219 
220 #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
221 
222 #define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
223 						: !!(pte_val(pte) & (val)))
224 #define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
225 
226 #define pte_none(pte)		(!pte_val(pte))
227 #define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
228 #define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
229 #define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
230 #define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
231 #define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
232 #define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
233 #define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
234 
235 #define pte_valid_user(pte)	\
236 	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
237 
238 static inline bool pte_access_permitted(pte_t pte, bool write)
239 {
240 	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
241 	pteval_t needed = mask;
242 
243 	if (write)
244 		mask |= L_PTE_RDONLY;
245 
246 	return (pte_val(pte) & mask) == needed;
247 }
248 #define pte_access_permitted pte_access_permitted
249 
250 #if __LINUX_ARM_ARCH__ < 6
251 static inline void __sync_icache_dcache(pte_t pteval)
252 {
253 }
254 #else
255 extern void __sync_icache_dcache(pte_t pteval);
256 #endif
257 
258 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
259 			      pte_t *ptep, pte_t pteval)
260 {
261 	unsigned long ext = 0;
262 
263 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
264 		if (!pte_special(pteval))
265 			__sync_icache_dcache(pteval);
266 		ext |= PTE_EXT_NG;
267 	}
268 
269 	set_pte_ext(ptep, pteval, ext);
270 }
271 
272 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
273 {
274 	pte_val(pte) &= ~pgprot_val(prot);
275 	return pte;
276 }
277 
278 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
279 {
280 	pte_val(pte) |= pgprot_val(prot);
281 	return pte;
282 }
283 
284 static inline pte_t pte_wrprotect(pte_t pte)
285 {
286 	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
287 }
288 
289 static inline pte_t pte_mkwrite(pte_t pte)
290 {
291 	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
292 }
293 
294 static inline pte_t pte_mkclean(pte_t pte)
295 {
296 	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
297 }
298 
299 static inline pte_t pte_mkdirty(pte_t pte)
300 {
301 	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
302 }
303 
304 static inline pte_t pte_mkold(pte_t pte)
305 {
306 	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
307 }
308 
309 static inline pte_t pte_mkyoung(pte_t pte)
310 {
311 	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
312 }
313 
314 static inline pte_t pte_mkexec(pte_t pte)
315 {
316 	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
317 }
318 
319 static inline pte_t pte_mknexec(pte_t pte)
320 {
321 	return set_pte_bit(pte, __pgprot(L_PTE_XN));
322 }
323 
324 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
325 {
326 	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
327 		L_PTE_NONE | L_PTE_VALID;
328 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
329 	return pte;
330 }
331 
332 /*
333  * Encode and decode a swap entry.  Swap entries are stored in the Linux
334  * page tables as follows:
335  *
336  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
337  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
338  *   <--------------- offset ------------------------> < type -> 0 0
339  *
340  * This gives us up to 31 swap files and 128GB per swap file.  Note that
341  * the offset field is always non-zero.
342  */
343 #define __SWP_TYPE_SHIFT	2
344 #define __SWP_TYPE_BITS		5
345 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
346 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
347 
348 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
349 #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
350 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
351 
352 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
353 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
354 
355 /*
356  * It is an error for the kernel to have more swap files than we can
357  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
358  * is increased beyond what we presently support.
359  */
360 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
361 
362 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
363 /* FIXME: this is not correct */
364 #define kern_addr_valid(addr)	(1)
365 
366 #include <asm-generic/pgtable.h>
367 
368 /*
369  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
370  */
371 #define HAVE_ARCH_UNMAPPED_AREA
372 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
373 
374 #define pgtable_cache_init() do { } while (0)
375 
376 #endif /* !__ASSEMBLY__ */
377 
378 #endif /* CONFIG_MMU */
379 
380 #endif /* _ASMARM_PGTABLE_H */
381