xref: /linux/arch/arm/include/asm/pgtable.h (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  arch/arm/include/asm/pgtable.h
4  *
5  *  Copyright (C) 1995-2002 Russell King
6  */
7 #ifndef _ASMARM_PGTABLE_H
8 #define _ASMARM_PGTABLE_H
9 
10 #include <linux/const.h>
11 #include <asm/proc-fns.h>
12 
13 #ifndef CONFIG_MMU
14 
15 #include <asm-generic/pgtable-nopud.h>
16 #include <asm/pgtable-nommu.h>
17 
18 #else
19 
20 #include <asm-generic/pgtable-nopud.h>
21 #include <asm/memory.h>
22 #include <asm/pgtable-hwdef.h>
23 
24 
25 #include <asm/tlbflush.h>
26 
27 #ifdef CONFIG_ARM_LPAE
28 #include <asm/pgtable-3level.h>
29 #else
30 #include <asm/pgtable-2level.h>
31 #endif
32 
33 /*
34  * Just any arbitrary offset to the start of the vmalloc VM area: the
35  * current 8MB value just means that there will be a 8MB "hole" after the
36  * physical memory until the kernel virtual memory starts.  That means that
37  * any out-of-bounds memory accesses will hopefully be caught.
38  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
39  * area for the same reason. ;)
40  */
41 #define VMALLOC_OFFSET		(8*1024*1024)
42 #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
43 #define VMALLOC_END		0xff800000UL
44 
45 #define LIBRARY_TEXT_START	0x0c000000
46 
47 #ifndef __ASSEMBLY__
48 extern void __pte_error(const char *file, int line, pte_t);
49 extern void __pmd_error(const char *file, int line, pmd_t);
50 extern void __pgd_error(const char *file, int line, pgd_t);
51 
52 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
53 #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
54 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
55 
56 /*
57  * This is the lowest virtual address we can permit any user space
58  * mapping to be mapped at.  This is particularly important for
59  * non-high vector CPUs.
60  */
61 #define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
62 
63 /*
64  * Use TASK_SIZE as the ceiling argument for free_pgtables() and
65  * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
66  * page shared between user and kernel).
67  */
68 #ifdef CONFIG_ARM_LPAE
69 #define USER_PGTABLES_CEILING	TASK_SIZE
70 #endif
71 
72 /*
73  * The pgprot_* and protection_map entries will be fixed up in runtime
74  * to include the cachable and bufferable bits based on memory policy,
75  * as well as any architecture dependent bits like global/ASID and SMP
76  * shared mapping bits.
77  */
78 #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
79 
80 extern pgprot_t		pgprot_user;
81 extern pgprot_t		pgprot_kernel;
82 
83 #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
84 
85 #define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
86 #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
87 #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
88 #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
89 #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
90 #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
91 #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
92 #define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
93 #define PAGE_KERNEL_EXEC	pgprot_kernel
94 
95 #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
96 #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
97 #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
98 #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
99 #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
100 #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
101 #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
102 
103 #define __pgprot_modify(prot,mask,bits)		\
104 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
105 
106 #define pgprot_noncached(prot) \
107 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
108 
109 #define pgprot_writecombine(prot) \
110 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
111 
112 #define pgprot_stronglyordered(prot) \
113 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
114 
115 #define pgprot_device(prot) \
116 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
117 
118 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
119 #define pgprot_dmacoherent(prot) \
120 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
121 #define __HAVE_PHYS_MEM_ACCESS_PROT
122 struct file;
123 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
124 				     unsigned long size, pgprot_t vma_prot);
125 #else
126 #define pgprot_dmacoherent(prot) \
127 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
128 #endif
129 
130 #endif /* __ASSEMBLY__ */
131 
132 /*
133  * The table below defines the page protection levels that we insert into our
134  * Linux page table version.  These get translated into the best that the
135  * architecture can perform.  Note that on most ARM hardware:
136  *  1) We cannot do execute protection
137  *  2) If we could do execute protection, then read is implied
138  *  3) write implies read permissions
139  */
140 #define __P000  __PAGE_NONE
141 #define __P001  __PAGE_READONLY
142 #define __P010  __PAGE_COPY
143 #define __P011  __PAGE_COPY
144 #define __P100  __PAGE_READONLY_EXEC
145 #define __P101  __PAGE_READONLY_EXEC
146 #define __P110  __PAGE_COPY_EXEC
147 #define __P111  __PAGE_COPY_EXEC
148 
149 #define __S000  __PAGE_NONE
150 #define __S001  __PAGE_READONLY
151 #define __S010  __PAGE_SHARED
152 #define __S011  __PAGE_SHARED
153 #define __S100  __PAGE_READONLY_EXEC
154 #define __S101  __PAGE_READONLY_EXEC
155 #define __S110  __PAGE_SHARED_EXEC
156 #define __S111  __PAGE_SHARED_EXEC
157 
158 #ifndef __ASSEMBLY__
159 /*
160  * ZERO_PAGE is a global shared page that is always zero: used
161  * for zero-mapped memory areas etc..
162  */
163 extern struct page *empty_zero_page;
164 #define ZERO_PAGE(vaddr)	(empty_zero_page)
165 
166 
167 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
168 
169 #define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
170 #define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
171 
172 #define pmd_none(pmd)		(!pmd_val(pmd))
173 
174 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
175 {
176 	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
177 }
178 
179 #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
180 
181 #define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
182 #define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
183 
184 #define pte_page(pte)		pfn_to_page(pte_pfn(pte))
185 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
186 
187 #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
188 
189 #define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
190 						: !!(pte_val(pte) & (val)))
191 #define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
192 
193 #define pte_none(pte)		(!pte_val(pte))
194 #define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
195 #define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
196 #define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
197 #define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
198 #define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
199 #define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
200 #define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
201 
202 #define pte_valid_user(pte)	\
203 	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
204 
205 static inline bool pte_access_permitted(pte_t pte, bool write)
206 {
207 	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
208 	pteval_t needed = mask;
209 
210 	if (write)
211 		mask |= L_PTE_RDONLY;
212 
213 	return (pte_val(pte) & mask) == needed;
214 }
215 #define pte_access_permitted pte_access_permitted
216 
217 #if __LINUX_ARM_ARCH__ < 6
218 static inline void __sync_icache_dcache(pte_t pteval)
219 {
220 }
221 #else
222 extern void __sync_icache_dcache(pte_t pteval);
223 #endif
224 
225 void set_pte_at(struct mm_struct *mm, unsigned long addr,
226 		      pte_t *ptep, pte_t pteval);
227 
228 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
229 {
230 	pte_val(pte) &= ~pgprot_val(prot);
231 	return pte;
232 }
233 
234 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
235 {
236 	pte_val(pte) |= pgprot_val(prot);
237 	return pte;
238 }
239 
240 static inline pte_t pte_wrprotect(pte_t pte)
241 {
242 	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
243 }
244 
245 static inline pte_t pte_mkwrite(pte_t pte)
246 {
247 	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
248 }
249 
250 static inline pte_t pte_mkclean(pte_t pte)
251 {
252 	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
253 }
254 
255 static inline pte_t pte_mkdirty(pte_t pte)
256 {
257 	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
258 }
259 
260 static inline pte_t pte_mkold(pte_t pte)
261 {
262 	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
263 }
264 
265 static inline pte_t pte_mkyoung(pte_t pte)
266 {
267 	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
268 }
269 
270 static inline pte_t pte_mkexec(pte_t pte)
271 {
272 	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
273 }
274 
275 static inline pte_t pte_mknexec(pte_t pte)
276 {
277 	return set_pte_bit(pte, __pgprot(L_PTE_XN));
278 }
279 
280 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
281 {
282 	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
283 		L_PTE_NONE | L_PTE_VALID;
284 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
285 	return pte;
286 }
287 
288 /*
289  * Encode and decode a swap entry.  Swap entries are stored in the Linux
290  * page tables as follows:
291  *
292  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
293  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
294  *   <--------------- offset ------------------------> < type -> 0 0
295  *
296  * This gives us up to 31 swap files and 128GB per swap file.  Note that
297  * the offset field is always non-zero.
298  */
299 #define __SWP_TYPE_SHIFT	2
300 #define __SWP_TYPE_BITS		5
301 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
302 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
303 
304 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
305 #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
306 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
307 
308 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
309 #define __swp_entry_to_pte(swp)	__pte((swp).val | PTE_TYPE_FAULT)
310 
311 /*
312  * It is an error for the kernel to have more swap files than we can
313  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
314  * is increased beyond what we presently support.
315  */
316 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
317 
318 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
319 /* FIXME: this is not correct */
320 #define kern_addr_valid(addr)	(1)
321 
322 /*
323  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
324  */
325 #define HAVE_ARCH_UNMAPPED_AREA
326 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
327 
328 #endif /* !__ASSEMBLY__ */
329 
330 #endif /* CONFIG_MMU */
331 
332 #endif /* _ASMARM_PGTABLE_H */
333