xref: /linux/arch/arm/include/asm/pgtable-3level.h (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * arch/arm/include/asm/pgtable-3level.h
3  *
4  * Copyright (C) 2011 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  */
20 #ifndef _ASM_PGTABLE_3LEVEL_H
21 #define _ASM_PGTABLE_3LEVEL_H
22 
23 /*
24  * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
25  * 8 bytes each, occupying a 4K page. The first level table covers a range of
26  * 512GB, each entry representing 1GB. Since we are limited to 4GB input
27  * address range, only 4 entries in the PGD are used.
28  *
29  * There are enough spare bits in a page table entry for the kernel specific
30  * state.
31  */
32 #define PTRS_PER_PTE		512
33 #define PTRS_PER_PMD		512
34 #define PTRS_PER_PGD		4
35 
36 #define PTE_HWTABLE_PTRS	(0)
37 #define PTE_HWTABLE_OFF		(0)
38 #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
39 
40 /*
41  * PGDIR_SHIFT determines the size a top-level page table entry can map.
42  */
43 #define PGDIR_SHIFT		30
44 
45 /*
46  * PMD_SHIFT determines the size a middle-level page table entry can map.
47  */
48 #define PMD_SHIFT		21
49 
50 #define PMD_SIZE		(1UL << PMD_SHIFT)
51 #define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
52 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
53 #define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
54 
55 /*
56  * section address mask and size definitions.
57  */
58 #define SECTION_SHIFT		21
59 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
60 #define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
61 
62 #define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
63 
64 /*
65  * Hugetlb definitions.
66  */
67 #define HPAGE_SHIFT		PMD_SHIFT
68 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
69 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
70 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
71 
72 /*
73  * "Linux" PTE definitions for LPAE.
74  *
75  * These bits overlap with the hardware bits but the naming is preserved for
76  * consistency with the classic page table format.
77  */
78 #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
79 #define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
80 #define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
81 #define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
82 #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
83 #define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
84 #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
85 #define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
86 #define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
87 #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
88 
89 #define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
90 #define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
91 #define L_PMD_SECT_SPLITTING	(_AT(pmdval_t, 1) << 56)
92 #define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
93 #define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
94 
95 /*
96  * To be used in assembly code with the upper page attributes.
97  */
98 #define L_PTE_XN_HIGH		(1 << (54 - 32))
99 #define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
100 
101 /*
102  * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
103  */
104 #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
105 #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
106 #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
107 #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
108 #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
109 #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
110 #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
111 #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
112 #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
113 #define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
114 
115 /*
116  * Software PGD flags.
117  */
118 #define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
119 
120 /*
121  * 2nd stage PTE definitions for LPAE.
122  */
123 #define L_PTE_S2_MT_UNCACHED		(_AT(pteval_t, 0x0) << 2) /* strongly ordered */
124 #define L_PTE_S2_MT_WRITETHROUGH	(_AT(pteval_t, 0xa) << 2) /* normal inner write-through */
125 #define L_PTE_S2_MT_WRITEBACK		(_AT(pteval_t, 0xf) << 2) /* normal inner write-back */
126 #define L_PTE_S2_MT_DEV_SHARED		(_AT(pteval_t, 0x1) << 2) /* device */
127 #define L_PTE_S2_MT_MASK		(_AT(pteval_t, 0xf) << 2)
128 
129 #define L_PTE_S2_RDONLY			(_AT(pteval_t, 1) << 6)   /* HAP[1]   */
130 #define L_PTE_S2_RDWR			(_AT(pteval_t, 3) << 6)   /* HAP[2:1] */
131 
132 #define L_PMD_S2_RDONLY			(_AT(pmdval_t, 1) << 6)   /* HAP[1]   */
133 #define L_PMD_S2_RDWR			(_AT(pmdval_t, 3) << 6)   /* HAP[2:1] */
134 
135 /*
136  * Hyp-mode PL2 PTE definitions for LPAE.
137  */
138 #define L_PTE_HYP		L_PTE_USER
139 
140 #ifndef __ASSEMBLY__
141 
142 #define pud_none(pud)		(!pud_val(pud))
143 #define pud_bad(pud)		(!(pud_val(pud) & 2))
144 #define pud_present(pud)	(pud_val(pud))
145 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
146 						 PMD_TYPE_TABLE)
147 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
148 						 PMD_TYPE_SECT)
149 #define pmd_large(pmd)		pmd_sect(pmd)
150 
151 #define pud_clear(pudp)			\
152 	do {				\
153 		*pudp = __pud(0);	\
154 		clean_pmd_entry(pudp);	\
155 	} while (0)
156 
157 #define set_pud(pudp, pud)		\
158 	do {				\
159 		*pudp = pud;		\
160 		flush_pmd_entry(pudp);	\
161 	} while (0)
162 
163 static inline pmd_t *pud_page_vaddr(pud_t pud)
164 {
165 	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
166 }
167 
168 /* Find an entry in the second-level page table.. */
169 #define pmd_index(addr)		(((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
170 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
171 {
172 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
173 }
174 
175 #define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
176 
177 #define copy_pmd(pmdpd,pmdps)		\
178 	do {				\
179 		*pmdpd = *pmdps;	\
180 		flush_pmd_entry(pmdpd);	\
181 	} while (0)
182 
183 #define pmd_clear(pmdp)			\
184 	do {				\
185 		*pmdp = __pmd(0);	\
186 		clean_pmd_entry(pmdp);	\
187 	} while (0)
188 
189 /*
190  * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
191  * that are written to a page table but not for ptes created with mk_pte.
192  *
193  * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
194  * hugetlb_cow, where it is compared with an entry in a page table.
195  * This comparison test fails erroneously leading ultimately to a memory leak.
196  *
197  * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
198  * present before running the comparison.
199  */
200 #define __HAVE_ARCH_PTE_SAME
201 #define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
202 					: pte_val(pte_a))				\
203 				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
204 					: pte_val(pte_b)))
205 
206 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
207 
208 #define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
209 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
210 
211 #define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
212 						: !!(pmd_val(pmd) & (val)))
213 #define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
214 
215 #define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
216 #define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
217 static inline pte_t pte_mkspecial(pte_t pte)
218 {
219 	pte_val(pte) |= L_PTE_SPECIAL;
220 	return pte;
221 }
222 #define	__HAVE_ARCH_PTE_SPECIAL
223 
224 #define __HAVE_ARCH_PMD_WRITE
225 #define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
226 #define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
227 #define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
228 #define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
229 
230 #define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
231 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
232 
233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
234 #define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
235 #define pmd_trans_splitting(pmd) (pmd_isset((pmd), L_PMD_SECT_SPLITTING))
236 
237 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
238 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
239 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
240 			  pmd_t *pmdp);
241 #endif
242 #endif
243 
244 #define PMD_BIT_FUNC(fn,op) \
245 static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
246 
247 PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
248 PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
249 PMD_BIT_FUNC(mksplitting, |= L_PMD_SECT_SPLITTING);
250 PMD_BIT_FUNC(mkwrite,   &= ~L_PMD_SECT_RDONLY);
251 PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
252 PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
253 
254 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
255 
256 #define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
257 #define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
258 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
259 
260 /* represent a notpresent pmd by zero, this is used by pmdp_invalidate */
261 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
262 {
263 	return __pmd(0);
264 }
265 
266 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
267 {
268 	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
269 				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
270 	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
271 	return pmd;
272 }
273 
274 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
275 			      pmd_t *pmdp, pmd_t pmd)
276 {
277 	BUG_ON(addr >= TASK_SIZE);
278 
279 	/* create a faulting entry if PROT_NONE protected */
280 	if (pmd_val(pmd) & L_PMD_SECT_NONE)
281 		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
282 
283 	if (pmd_write(pmd) && pmd_dirty(pmd))
284 		pmd_val(pmd) &= ~PMD_SECT_AP2;
285 	else
286 		pmd_val(pmd) |= PMD_SECT_AP2;
287 
288 	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
289 	flush_pmd_entry(pmdp);
290 }
291 
292 static inline int has_transparent_hugepage(void)
293 {
294 	return 1;
295 }
296 
297 #endif /* __ASSEMBLY__ */
298 
299 #endif /* _ASM_PGTABLE_3LEVEL_H */
300