xref: /linux/arch/arm/include/asm/pgtable-2level.h (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  *  arch/arm/include/asm/pgtable-2level.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASM_PGTABLE_2LEVEL_H
11 #define _ASM_PGTABLE_2LEVEL_H
12 
13 #define __PAGETABLE_PMD_FOLDED
14 
15 /*
16  * Hardware-wise, we have a two level page table structure, where the first
17  * level has 4096 entries, and the second level has 256 entries.  Each entry
18  * is one 32-bit word.  Most of the bits in the second level entry are used
19  * by hardware, and there aren't any "accessed" and "dirty" bits.
20  *
21  * Linux on the other hand has a three level page table structure, which can
22  * be wrapped to fit a two level page table structure easily - using the PGD
23  * and PTE only.  However, Linux also expects one "PTE" table per page, and
24  * at least a "dirty" bit.
25  *
26  * Therefore, we tweak the implementation slightly - we tell Linux that we
27  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
28  * hardware pointers to the second level.)  The second level contains two
29  * hardware PTE tables arranged contiguously, preceded by Linux versions
30  * which contain the state information Linux needs.  We, therefore, end up
31  * with 512 entries in the "PTE" level.
32  *
33  * This leads to the page tables having the following layout:
34  *
35  *    pgd             pte
36  * |        |
37  * +--------+
38  * |        |       +------------+ +0
39  * +- - - - +       | Linux pt 0 |
40  * |        |       +------------+ +1024
41  * +--------+ +0    | Linux pt 1 |
42  * |        |-----> +------------+ +2048
43  * +- - - - + +4    |  h/w pt 0  |
44  * |        |-----> +------------+ +3072
45  * +--------+ +8    |  h/w pt 1  |
46  * |        |       +------------+ +4096
47  *
48  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
49  * PTE_xxx for definitions of bits appearing in the "h/w pt".
50  *
51  * PMD_xxx definitions refer to bits in the first level page table.
52  *
53  * The "dirty" bit is emulated by only granting hardware write permission
54  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
55  * means that a write to a clean page will cause a permission fault, and
56  * the Linux MM layer will mark the page dirty via handle_pte_fault().
57  * For the hardware to notice the permission change, the TLB entry must
58  * be flushed, and ptep_set_access_flags() does that for us.
59  *
60  * The "accessed" or "young" bit is emulated by a similar method; we only
61  * allow accesses to the page if the "young" bit is set.  Accesses to the
62  * page will cause a fault, and handle_pte_fault() will set the young bit
63  * for us as long as the page is marked present in the corresponding Linux
64  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
65  * up to date.
66  *
67  * However, when the "young" bit is cleared, we deny access to the page
68  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
69  * for us in this case, which means the TLB will retain the transation
70  * until either the TLB entry is evicted under pressure, or a context
71  * switch which changes the user space mapping occurs.
72  */
73 #define PTRS_PER_PTE		512
74 #define PTRS_PER_PMD		1
75 #define PTRS_PER_PGD		2048
76 
77 #define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
78 #define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
79 #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
80 
81 /*
82  * PMD_SHIFT determines the size of the area a second-level page table can map
83  * PGDIR_SHIFT determines what a third-level page table entry can map
84  */
85 #define PMD_SHIFT		21
86 #define PGDIR_SHIFT		21
87 
88 #define PMD_SIZE		(1UL << PMD_SHIFT)
89 #define PMD_MASK		(~(PMD_SIZE-1))
90 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
91 #define PGDIR_MASK		(~(PGDIR_SIZE-1))
92 
93 /*
94  * section address mask and size definitions.
95  */
96 #define SECTION_SHIFT		20
97 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
98 #define SECTION_MASK		(~(SECTION_SIZE-1))
99 
100 /*
101  * ARMv6 supersection address mask and size definitions.
102  */
103 #define SUPERSECTION_SHIFT	24
104 #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
105 #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
106 
107 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
108 
109 /*
110  * "Linux" PTE definitions.
111  *
112  * We keep two sets of PTEs - the hardware and the linux version.
113  * This allows greater flexibility in the way we map the Linux bits
114  * onto the hardware tables, and allows us to have YOUNG and DIRTY
115  * bits.
116  *
117  * The PTE table pointer refers to the hardware entries; the "Linux"
118  * entries are stored 1024 bytes below.
119  */
120 #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
121 #define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
122 #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
123 #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
124 #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
125 #define L_PTE_USER		(_AT(pteval_t, 1) << 8)
126 #define L_PTE_XN		(_AT(pteval_t, 1) << 9)
127 #define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
128 #define L_PTE_NONE		(_AT(pteval_t, 1) << 11)
129 
130 /*
131  * These are the memory types, defined to be compatible with
132  * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
133  */
134 #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
135 #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
136 #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
137 #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
138 #define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
139 #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
140 #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
141 #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
142 #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
143 #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
144 #define L_PTE_MT_VECTORS	(_AT(pteval_t, 0x0f) << 2)	/* 1111 */
145 #define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
146 
147 #ifndef __ASSEMBLY__
148 
149 /*
150  * The "pud_xxx()" functions here are trivial when the pmd is folded into
151  * the pud: the pud entry is never bad, always exists, and can't be set or
152  * cleared.
153  */
154 #define pud_none(pud)		(0)
155 #define pud_bad(pud)		(0)
156 #define pud_present(pud)	(1)
157 #define pud_clear(pudp)		do { } while (0)
158 #define set_pud(pud,pudp)	do { } while (0)
159 
160 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
161 {
162 	return (pmd_t *)pud;
163 }
164 
165 #define pmd_large(pmd)		(pmd_val(pmd) & 2)
166 #define pmd_bad(pmd)		(pmd_val(pmd) & 2)
167 
168 #define copy_pmd(pmdpd,pmdps)		\
169 	do {				\
170 		pmdpd[0] = pmdps[0];	\
171 		pmdpd[1] = pmdps[1];	\
172 		flush_pmd_entry(pmdpd);	\
173 	} while (0)
174 
175 #define pmd_clear(pmdp)			\
176 	do {				\
177 		pmdp[0] = __pmd(0);	\
178 		pmdp[1] = __pmd(0);	\
179 		clean_pmd_entry(pmdp);	\
180 	} while (0)
181 
182 /* we don't need complex calculations here as the pmd is folded into the pgd */
183 #define pmd_addr_end(addr,end) (end)
184 
185 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
186 #define pte_special(pte)	(0)
187 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
188 
189 /*
190  * We don't have huge page support for short descriptors, for the moment
191  * define empty stubs for use by pin_page_for_write.
192  */
193 #define pmd_hugewillfault(pmd)	(0)
194 #define pmd_thp_or_huge(pmd)	(0)
195 
196 #endif /* __ASSEMBLY__ */
197 
198 #endif /* _ASM_PGTABLE_2LEVEL_H */
199