xref: /linux/arch/arm/include/asm/pgtable-2level.h (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *  arch/arm/include/asm/pgtable-2level.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASM_PGTABLE_2LEVEL_H
11 #define _ASM_PGTABLE_2LEVEL_H
12 
13 /*
14  * Hardware-wise, we have a two level page table structure, where the first
15  * level has 4096 entries, and the second level has 256 entries.  Each entry
16  * is one 32-bit word.  Most of the bits in the second level entry are used
17  * by hardware, and there aren't any "accessed" and "dirty" bits.
18  *
19  * Linux on the other hand has a three level page table structure, which can
20  * be wrapped to fit a two level page table structure easily - using the PGD
21  * and PTE only.  However, Linux also expects one "PTE" table per page, and
22  * at least a "dirty" bit.
23  *
24  * Therefore, we tweak the implementation slightly - we tell Linux that we
25  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
26  * hardware pointers to the second level.)  The second level contains two
27  * hardware PTE tables arranged contiguously, preceded by Linux versions
28  * which contain the state information Linux needs.  We, therefore, end up
29  * with 512 entries in the "PTE" level.
30  *
31  * This leads to the page tables having the following layout:
32  *
33  *    pgd             pte
34  * |        |
35  * +--------+
36  * |        |       +------------+ +0
37  * +- - - - +       | Linux pt 0 |
38  * |        |       +------------+ +1024
39  * +--------+ +0    | Linux pt 1 |
40  * |        |-----> +------------+ +2048
41  * +- - - - + +4    |  h/w pt 0  |
42  * |        |-----> +------------+ +3072
43  * +--------+ +8    |  h/w pt 1  |
44  * |        |       +------------+ +4096
45  *
46  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
47  * PTE_xxx for definitions of bits appearing in the "h/w pt".
48  *
49  * PMD_xxx definitions refer to bits in the first level page table.
50  *
51  * The "dirty" bit is emulated by only granting hardware write permission
52  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
53  * means that a write to a clean page will cause a permission fault, and
54  * the Linux MM layer will mark the page dirty via handle_pte_fault().
55  * For the hardware to notice the permission change, the TLB entry must
56  * be flushed, and ptep_set_access_flags() does that for us.
57  *
58  * The "accessed" or "young" bit is emulated by a similar method; we only
59  * allow accesses to the page if the "young" bit is set.  Accesses to the
60  * page will cause a fault, and handle_pte_fault() will set the young bit
61  * for us as long as the page is marked present in the corresponding Linux
62  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
63  * up to date.
64  *
65  * However, when the "young" bit is cleared, we deny access to the page
66  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
67  * for us in this case, which means the TLB will retain the transation
68  * until either the TLB entry is evicted under pressure, or a context
69  * switch which changes the user space mapping occurs.
70  */
71 #define PTRS_PER_PTE		512
72 #define PTRS_PER_PMD		1
73 #define PTRS_PER_PGD		2048
74 
75 #define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
76 #define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
77 #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
78 
79 /*
80  * PMD_SHIFT determines the size of the area a second-level page table can map
81  * PGDIR_SHIFT determines what a third-level page table entry can map
82  */
83 #define PMD_SHIFT		21
84 #define PGDIR_SHIFT		21
85 
86 #define PMD_SIZE		(1UL << PMD_SHIFT)
87 #define PMD_MASK		(~(PMD_SIZE-1))
88 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
89 #define PGDIR_MASK		(~(PGDIR_SIZE-1))
90 
91 /*
92  * section address mask and size definitions.
93  */
94 #define SECTION_SHIFT		20
95 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
96 #define SECTION_MASK		(~(SECTION_SIZE-1))
97 
98 /*
99  * ARMv6 supersection address mask and size definitions.
100  */
101 #define SUPERSECTION_SHIFT	24
102 #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
103 #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
104 
105 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
106 
107 /*
108  * "Linux" PTE definitions.
109  *
110  * We keep two sets of PTEs - the hardware and the linux version.
111  * This allows greater flexibility in the way we map the Linux bits
112  * onto the hardware tables, and allows us to have YOUNG and DIRTY
113  * bits.
114  *
115  * The PTE table pointer refers to the hardware entries; the "Linux"
116  * entries are stored 1024 bytes below.
117  */
118 #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
119 #define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
120 #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
121 #define L_PTE_FILE		(_AT(pteval_t, 1) << 2)	/* only when !PRESENT */
122 #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
123 #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
124 #define L_PTE_USER		(_AT(pteval_t, 1) << 8)
125 #define L_PTE_XN		(_AT(pteval_t, 1) << 9)
126 #define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
127 #define L_PTE_NONE		(_AT(pteval_t, 1) << 11)
128 
129 /*
130  * These are the memory types, defined to be compatible with
131  * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
132  */
133 #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
134 #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
135 #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
136 #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
137 #define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
138 #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
139 #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
140 #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
141 #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
142 #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
143 #define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
144 
145 #ifndef __ASSEMBLY__
146 
147 /*
148  * The "pud_xxx()" functions here are trivial when the pmd is folded into
149  * the pud: the pud entry is never bad, always exists, and can't be set or
150  * cleared.
151  */
152 #define pud_none(pud)		(0)
153 #define pud_bad(pud)		(0)
154 #define pud_present(pud)	(1)
155 #define pud_clear(pudp)		do { } while (0)
156 #define set_pud(pud,pudp)	do { } while (0)
157 
158 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
159 {
160 	return (pmd_t *)pud;
161 }
162 
163 #define pmd_bad(pmd)		(pmd_val(pmd) & 2)
164 
165 #define copy_pmd(pmdpd,pmdps)		\
166 	do {				\
167 		pmdpd[0] = pmdps[0];	\
168 		pmdpd[1] = pmdps[1];	\
169 		flush_pmd_entry(pmdpd);	\
170 	} while (0)
171 
172 #define pmd_clear(pmdp)			\
173 	do {				\
174 		pmdp[0] = __pmd(0);	\
175 		pmdp[1] = __pmd(0);	\
176 		clean_pmd_entry(pmdp);	\
177 	} while (0)
178 
179 /* we don't need complex calculations here as the pmd is folded into the pgd */
180 #define pmd_addr_end(addr,end) (end)
181 
182 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
183 
184 #endif /* __ASSEMBLY__ */
185 
186 #endif /* _ASM_PGTABLE_2LEVEL_H */
187