1 /* 2 * arch/arm/include/asm/io.h 3 * 4 * Copyright (C) 1996-2000 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * Modifications: 11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both 12 * constant addresses and variable addresses. 13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture 14 * specific IO header files. 15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const.. 16 * 04-Apr-1999 PJB Added check_signature. 17 * 12-Dec-1999 RMK More cleanups 18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions 19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem 20 */ 21 #ifndef __ASM_ARM_IO_H 22 #define __ASM_ARM_IO_H 23 24 #ifdef __KERNEL__ 25 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/blk_types.h> 29 #include <asm/byteorder.h> 30 #include <asm/memory.h> 31 #include <asm-generic/pci_iomap.h> 32 #include <xen/xen.h> 33 34 /* 35 * ISA I/O bus memory addresses are 1:1 with the physical address. 36 */ 37 #define isa_virt_to_bus virt_to_phys 38 #define isa_page_to_bus page_to_phys 39 #define isa_bus_to_virt phys_to_virt 40 41 /* 42 * Atomic MMIO-wide IO modify 43 */ 44 extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set); 45 extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set); 46 47 /* 48 * Generic IO read/write. These perform native-endian accesses. Note 49 * that some architectures will want to re-define __raw_{read,write}w. 50 */ 51 void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen); 52 void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen); 53 void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen); 54 55 void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen); 56 void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen); 57 void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen); 58 59 #if __LINUX_ARM_ARCH__ < 6 60 /* 61 * Half-word accesses are problematic with RiscPC due to limitations of 62 * the bus. Rather than special-case the machine, just let the compiler 63 * generate the access for CPUs prior to ARMv6. 64 */ 65 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a)) 66 #define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))) 67 #else 68 /* 69 * When running under a hypervisor, we want to avoid I/O accesses with 70 * writeback addressing modes as these incur a significant performance 71 * overhead (the address generation must be emulated in software). 72 */ 73 #define __raw_writew __raw_writew 74 static inline void __raw_writew(u16 val, volatile void __iomem *addr) 75 { 76 asm volatile("strh %1, %0" 77 : : "Q" (*(volatile u16 __force *)addr), "r" (val)); 78 } 79 80 #define __raw_readw __raw_readw 81 static inline u16 __raw_readw(const volatile void __iomem *addr) 82 { 83 u16 val; 84 asm volatile("ldrh %0, %1" 85 : "=r" (val) 86 : "Q" (*(volatile u16 __force *)addr)); 87 return val; 88 } 89 #endif 90 91 #define __raw_writeb __raw_writeb 92 static inline void __raw_writeb(u8 val, volatile void __iomem *addr) 93 { 94 asm volatile("strb %1, %0" 95 : : "Qo" (*(volatile u8 __force *)addr), "r" (val)); 96 } 97 98 #define __raw_writel __raw_writel 99 static inline void __raw_writel(u32 val, volatile void __iomem *addr) 100 { 101 asm volatile("str %1, %0" 102 : : "Qo" (*(volatile u32 __force *)addr), "r" (val)); 103 } 104 105 #define __raw_readb __raw_readb 106 static inline u8 __raw_readb(const volatile void __iomem *addr) 107 { 108 u8 val; 109 asm volatile("ldrb %0, %1" 110 : "=r" (val) 111 : "Qo" (*(volatile u8 __force *)addr)); 112 return val; 113 } 114 115 #define __raw_readl __raw_readl 116 static inline u32 __raw_readl(const volatile void __iomem *addr) 117 { 118 u32 val; 119 asm volatile("ldr %0, %1" 120 : "=r" (val) 121 : "Qo" (*(volatile u32 __force *)addr)); 122 return val; 123 } 124 125 /* 126 * Architecture ioremap implementation. 127 */ 128 #define MT_DEVICE 0 129 #define MT_DEVICE_NONSHARED 1 130 #define MT_DEVICE_CACHED 2 131 #define MT_DEVICE_WC 3 132 /* 133 * types 4 onwards can be found in asm/mach/map.h and are undefined 134 * for ioremap 135 */ 136 137 /* 138 * __arm_ioremap takes CPU physical address. 139 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page 140 * The _caller variety takes a __builtin_return_address(0) value for 141 * /proc/vmalloc to use - and should only be used in non-inline functions. 142 */ 143 extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int, 144 void *); 145 extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int); 146 extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached); 147 extern void __iounmap(volatile void __iomem *addr); 148 149 extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, 150 unsigned int, void *); 151 extern void (*arch_iounmap)(volatile void __iomem *); 152 153 /* 154 * Bad read/write accesses... 155 */ 156 extern void __readwrite_bug(const char *fn); 157 158 /* 159 * A typesafe __io() helper 160 */ 161 static inline void __iomem *__typesafe_io(unsigned long addr) 162 { 163 return (void __iomem *)addr; 164 } 165 166 #define IOMEM(x) ((void __force __iomem *)(x)) 167 168 /* IO barriers */ 169 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 170 #include <asm/barrier.h> 171 #define __iormb() rmb() 172 #define __iowmb() wmb() 173 #else 174 #define __iormb() do { } while (0) 175 #define __iowmb() do { } while (0) 176 #endif 177 178 /* PCI fixed i/o mapping */ 179 #define PCI_IO_VIRT_BASE 0xfee00000 180 #define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE) 181 182 #if defined(CONFIG_PCI) 183 void pci_ioremap_set_mem_type(int mem_type); 184 #else 185 static inline void pci_ioremap_set_mem_type(int mem_type) {} 186 #endif 187 188 extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr); 189 190 /* 191 * Now, pick up the machine-defined IO definitions 192 */ 193 #ifdef CONFIG_NEED_MACH_IO_H 194 #include <mach/io.h> 195 #elif defined(CONFIG_PCI) 196 #define IO_SPACE_LIMIT ((resource_size_t)0xfffff) 197 #define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT)) 198 #else 199 #define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT) 200 #endif 201 202 /* 203 * This is the limit of PC card/PCI/ISA IO space, which is by default 204 * 64K if we have PC card, PCI or ISA support. Otherwise, default to 205 * zero to prevent ISA/PCI drivers claiming IO space (and potentially 206 * oopsing.) 207 * 208 * Only set this larger if you really need inb() et.al. to operate over 209 * a larger address space. Note that SOC_COMMON ioremaps each sockets 210 * IO space area, and so inb() et.al. must be defined to operate as per 211 * readb() et.al. on such platforms. 212 */ 213 #ifndef IO_SPACE_LIMIT 214 #if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE) 215 #define IO_SPACE_LIMIT ((resource_size_t)0xffffffff) 216 #elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD) 217 #define IO_SPACE_LIMIT ((resource_size_t)0xffff) 218 #else 219 #define IO_SPACE_LIMIT ((resource_size_t)0) 220 #endif 221 #endif 222 223 /* 224 * IO port access primitives 225 * ------------------------- 226 * 227 * The ARM doesn't have special IO access instructions; all IO is memory 228 * mapped. Note that these are defined to perform little endian accesses 229 * only. Their primary purpose is to access PCI and ISA peripherals. 230 * 231 * Note that for a big endian machine, this implies that the following 232 * big endian mode connectivity is in place, as described by numerous 233 * ARM documents: 234 * 235 * PCI: D0-D7 D8-D15 D16-D23 D24-D31 236 * ARM: D24-D31 D16-D23 D8-D15 D0-D7 237 * 238 * The machine specific io.h include defines __io to translate an "IO" 239 * address to a memory address. 240 * 241 * Note that we prevent GCC re-ordering or caching values in expressions 242 * by introducing sequence points into the in*() definitions. Note that 243 * __raw_* do not guarantee this behaviour. 244 * 245 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. 246 */ 247 #ifdef __io 248 #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); }) 249 #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \ 250 cpu_to_le16(v),__io(p)); }) 251 #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \ 252 cpu_to_le32(v),__io(p)); }) 253 254 #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; }) 255 #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \ 256 __raw_readw(__io(p))); __iormb(); __v; }) 257 #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \ 258 __raw_readl(__io(p))); __iormb(); __v; }) 259 260 #define outsb(p,d,l) __raw_writesb(__io(p),d,l) 261 #define outsw(p,d,l) __raw_writesw(__io(p),d,l) 262 #define outsl(p,d,l) __raw_writesl(__io(p),d,l) 263 264 #define insb(p,d,l) __raw_readsb(__io(p),d,l) 265 #define insw(p,d,l) __raw_readsw(__io(p),d,l) 266 #define insl(p,d,l) __raw_readsl(__io(p),d,l) 267 #endif 268 269 /* 270 * String version of IO memory access ops: 271 */ 272 extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t); 273 extern void _memcpy_toio(volatile void __iomem *, const void *, size_t); 274 extern void _memset_io(volatile void __iomem *, int, size_t); 275 276 #define mmiowb() 277 278 /* 279 * Memory access primitives 280 * ------------------------ 281 * 282 * These perform PCI memory accesses via an ioremap region. They don't 283 * take an address as such, but a cookie. 284 * 285 * Again, this are defined to perform little endian accesses. See the 286 * IO port primitives for more information. 287 */ 288 #ifndef readl 289 #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) 290 #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ 291 __raw_readw(c)); __r; }) 292 #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ 293 __raw_readl(c)); __r; }) 294 295 #define writeb_relaxed(v,c) __raw_writeb(v,c) 296 #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c) 297 #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c) 298 299 #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) 300 #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) 301 #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) 302 303 #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) 304 #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) 305 #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) 306 307 #define readsb(p,d,l) __raw_readsb(p,d,l) 308 #define readsw(p,d,l) __raw_readsw(p,d,l) 309 #define readsl(p,d,l) __raw_readsl(p,d,l) 310 311 #define writesb(p,d,l) __raw_writesb(p,d,l) 312 #define writesw(p,d,l) __raw_writesw(p,d,l) 313 #define writesl(p,d,l) __raw_writesl(p,d,l) 314 315 #ifndef __ARMBE__ 316 static inline void memset_io(volatile void __iomem *dst, unsigned c, 317 size_t count) 318 { 319 extern void mmioset(void *, unsigned int, size_t); 320 mmioset((void __force *)dst, c, count); 321 } 322 #define memset_io(dst,c,count) memset_io(dst,c,count) 323 324 static inline void memcpy_fromio(void *to, const volatile void __iomem *from, 325 size_t count) 326 { 327 extern void mmiocpy(void *, const void *, size_t); 328 mmiocpy(to, (const void __force *)from, count); 329 } 330 #define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count) 331 332 static inline void memcpy_toio(volatile void __iomem *to, const void *from, 333 size_t count) 334 { 335 extern void mmiocpy(void *, const void *, size_t); 336 mmiocpy((void __force *)to, from, count); 337 } 338 #define memcpy_toio(to,from,count) memcpy_toio(to,from,count) 339 340 #else 341 #define memset_io(c,v,l) _memset_io(c,(v),(l)) 342 #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l)) 343 #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l)) 344 #endif 345 346 #endif /* readl */ 347 348 /* 349 * ioremap() and friends. 350 * 351 * ioremap() takes a resource address, and size. Due to the ARM memory 352 * types, it is important to use the correct ioremap() function as each 353 * mapping has specific properties. 354 * 355 * Function Memory type Cacheability Cache hint 356 * ioremap() Device n/a n/a 357 * ioremap_nocache() Device n/a n/a 358 * ioremap_cache() Normal Writeback Read allocate 359 * ioremap_wc() Normal Non-cacheable n/a 360 * ioremap_wt() Normal Non-cacheable n/a 361 * 362 * All device mappings have the following properties: 363 * - no access speculation 364 * - no repetition (eg, on return from an exception) 365 * - number, order and size of accesses are maintained 366 * - unaligned accesses are "unpredictable" 367 * - writes may be delayed before they hit the endpoint device 368 * 369 * ioremap_nocache() is the same as ioremap() as there are too many device 370 * drivers using this for device registers, and documentation which tells 371 * people to use it for such for this to be any different. This is not a 372 * safe fallback for memory-like mappings, or memory regions where the 373 * compiler may generate unaligned accesses - eg, via inlining its own 374 * memcpy. 375 * 376 * All normal memory mappings have the following properties: 377 * - reads can be repeated with no side effects 378 * - repeated reads return the last value written 379 * - reads can fetch additional locations without side effects 380 * - writes can be repeated (in certain cases) with no side effects 381 * - writes can be merged before accessing the target 382 * - unaligned accesses can be supported 383 * - ordering is not guaranteed without explicit dependencies or barrier 384 * instructions 385 * - writes may be delayed before they hit the endpoint memory 386 * 387 * The cache hint is only a performance hint: CPUs may alias these hints. 388 * Eg, a CPU not implementing read allocate but implementing write allocate 389 * will provide a write allocate mapping instead. 390 */ 391 void __iomem *ioremap(resource_size_t res_cookie, size_t size); 392 #define ioremap ioremap 393 #define ioremap_nocache ioremap 394 395 /* 396 * Do not use ioremap_cache for mapping memory. Use memremap instead. 397 */ 398 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size); 399 #define ioremap_cache ioremap_cache 400 401 /* 402 * Do not use ioremap_cached in new code. Provided for the benefit of 403 * the pxa2xx-flash MTD driver only. 404 */ 405 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size); 406 407 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size); 408 #define ioremap_wc ioremap_wc 409 #define ioremap_wt ioremap_wc 410 411 void iounmap(volatile void __iomem *iomem_cookie); 412 #define iounmap iounmap 413 414 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size); 415 #define arch_memremap_wb arch_memremap_wb 416 417 /* 418 * io{read,write}{16,32}be() macros 419 */ 420 #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) 421 #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) 422 423 #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) 424 #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) 425 426 #ifndef ioport_map 427 #define ioport_map ioport_map 428 extern void __iomem *ioport_map(unsigned long port, unsigned int nr); 429 #endif 430 #ifndef ioport_unmap 431 #define ioport_unmap ioport_unmap 432 extern void ioport_unmap(void __iomem *addr); 433 #endif 434 435 struct pci_dev; 436 437 #define pci_iounmap pci_iounmap 438 extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr); 439 440 /* 441 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 442 * access 443 */ 444 #define xlate_dev_mem_ptr(p) __va(p) 445 446 /* 447 * Convert a virtual cached pointer to an uncached pointer 448 */ 449 #define xlate_dev_kmem_ptr(p) p 450 451 #include <asm-generic/io.h> 452 453 /* 454 * can the hardware map this into one segment or not, given no other 455 * constraints. 456 */ 457 #define BIOVEC_MERGEABLE(vec1, vec2) \ 458 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) 459 460 struct bio_vec; 461 extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1, 462 const struct bio_vec *vec2); 463 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \ 464 (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \ 465 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2))) 466 467 #ifdef CONFIG_MMU 468 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE 469 extern int valid_phys_addr_range(phys_addr_t addr, size_t size); 470 extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); 471 extern int devmem_is_allowed(unsigned long pfn); 472 #endif 473 474 /* 475 * Register ISA memory and port locations for glibc iopl/inb/outb 476 * emulation. 477 */ 478 extern void register_isa_ports(unsigned int mmio, unsigned int io, 479 unsigned int io_shift); 480 481 #endif /* __KERNEL__ */ 482 #endif /* __ASM_ARM_IO_H */ 483