xref: /linux/arch/arm/include/asm/cacheflush.h (revision c41b20e721ea4f6f20f66a66e7f0c3c97a2ca9c2)
1 /*
2  *  arch/arm/include/asm/cacheflush.h
3  *
4  *  Copyright (C) 1999-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
12 
13 #include <linux/mm.h>
14 
15 #include <asm/glue.h>
16 #include <asm/shmparam.h>
17 #include <asm/cachetype.h>
18 
19 #define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
20 
21 /*
22  *	Cache Model
23  *	===========
24  */
25 #undef _CACHE
26 #undef MULTI_CACHE
27 
28 #if defined(CONFIG_CPU_CACHE_V3)
29 # ifdef _CACHE
30 #  define MULTI_CACHE 1
31 # else
32 #  define _CACHE v3
33 # endif
34 #endif
35 
36 #if defined(CONFIG_CPU_CACHE_V4)
37 # ifdef _CACHE
38 #  define MULTI_CACHE 1
39 # else
40 #  define _CACHE v4
41 # endif
42 #endif
43 
44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45     defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46 # define MULTI_CACHE 1
47 #endif
48 
49 #if defined(CONFIG_CPU_FA526)
50 # ifdef _CACHE
51 #  define MULTI_CACHE 1
52 # else
53 #  define _CACHE fa
54 # endif
55 #endif
56 
57 #if defined(CONFIG_CPU_ARM926T)
58 # ifdef _CACHE
59 #  define MULTI_CACHE 1
60 # else
61 #  define _CACHE arm926
62 # endif
63 #endif
64 
65 #if defined(CONFIG_CPU_ARM940T)
66 # ifdef _CACHE
67 #  define MULTI_CACHE 1
68 # else
69 #  define _CACHE arm940
70 # endif
71 #endif
72 
73 #if defined(CONFIG_CPU_ARM946E)
74 # ifdef _CACHE
75 #  define MULTI_CACHE 1
76 # else
77 #  define _CACHE arm946
78 # endif
79 #endif
80 
81 #if defined(CONFIG_CPU_CACHE_V4WB)
82 # ifdef _CACHE
83 #  define MULTI_CACHE 1
84 # else
85 #  define _CACHE v4wb
86 # endif
87 #endif
88 
89 #if defined(CONFIG_CPU_XSCALE)
90 # ifdef _CACHE
91 #  define MULTI_CACHE 1
92 # else
93 #  define _CACHE xscale
94 # endif
95 #endif
96 
97 #if defined(CONFIG_CPU_XSC3)
98 # ifdef _CACHE
99 #  define MULTI_CACHE 1
100 # else
101 #  define _CACHE xsc3
102 # endif
103 #endif
104 
105 #if defined(CONFIG_CPU_MOHAWK)
106 # ifdef _CACHE
107 #  define MULTI_CACHE 1
108 # else
109 #  define _CACHE mohawk
110 # endif
111 #endif
112 
113 #if defined(CONFIG_CPU_FEROCEON)
114 # define MULTI_CACHE 1
115 #endif
116 
117 #if defined(CONFIG_CPU_V6)
118 //# ifdef _CACHE
119 #  define MULTI_CACHE 1
120 //# else
121 //#  define _CACHE v6
122 //# endif
123 #endif
124 
125 #if defined(CONFIG_CPU_V7)
126 //# ifdef _CACHE
127 #  define MULTI_CACHE 1
128 //# else
129 //#  define _CACHE v7
130 //# endif
131 #endif
132 
133 #if !defined(_CACHE) && !defined(MULTI_CACHE)
134 #error Unknown cache maintainence model
135 #endif
136 
137 /*
138  * This flag is used to indicate that the page pointed to by a pte
139  * is dirty and requires cleaning before returning it to the user.
140  */
141 #define PG_dcache_dirty PG_arch_1
142 
143 /*
144  *	MM Cache Management
145  *	===================
146  *
147  *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
148  *	implement these methods.
149  *
150  *	Start addresses are inclusive and end addresses are exclusive;
151  *	start addresses should be rounded down, end addresses up.
152  *
153  *	See Documentation/cachetlb.txt for more information.
154  *	Please note that the implementation of these, and the required
155  *	effects are cache-type (VIVT/VIPT/PIPT) specific.
156  *
157  *	flush_kern_all()
158  *
159  *		Unconditionally clean and invalidate the entire cache.
160  *
161  *	flush_user_all()
162  *
163  *		Clean and invalidate all user space cache entries
164  *		before a change of page tables.
165  *
166  *	flush_user_range(start, end, flags)
167  *
168  *		Clean and invalidate a range of cache entries in the
169  *		specified address space before a change of page tables.
170  *		- start - user start address (inclusive, page aligned)
171  *		- end   - user end address   (exclusive, page aligned)
172  *		- flags - vma->vm_flags field
173  *
174  *	coherent_kern_range(start, end)
175  *
176  *		Ensure coherency between the Icache and the Dcache in the
177  *		region described by start, end.  If you have non-snooping
178  *		Harvard caches, you need to implement this function.
179  *		- start  - virtual start address
180  *		- end    - virtual end address
181  *
182  *	coherent_user_range(start, end)
183  *
184  *		Ensure coherency between the Icache and the Dcache in the
185  *		region described by start, end.  If you have non-snooping
186  *		Harvard caches, you need to implement this function.
187  *		- start  - virtual start address
188  *		- end    - virtual end address
189  *
190  *	flush_kern_dcache_area(kaddr, size)
191  *
192  *		Ensure that the data held in page is written back.
193  *		- kaddr  - page address
194  *		- size   - region size
195  *
196  *	DMA Cache Coherency
197  *	===================
198  *
199  *	dma_inv_range(start, end)
200  *
201  *		Invalidate (discard) the specified virtual address range.
202  *		May not write back any entries.  If 'start' or 'end'
203  *		are not cache line aligned, those lines must be written
204  *		back.
205  *		- start  - virtual start address
206  *		- end    - virtual end address
207  *
208  *	dma_clean_range(start, end)
209  *
210  *		Clean (write back) the specified virtual address range.
211  *		- start  - virtual start address
212  *		- end    - virtual end address
213  *
214  *	dma_flush_range(start, end)
215  *
216  *		Clean and invalidate the specified virtual address range.
217  *		- start  - virtual start address
218  *		- end    - virtual end address
219  */
220 
221 struct cpu_cache_fns {
222 	void (*flush_kern_all)(void);
223 	void (*flush_user_all)(void);
224 	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
225 
226 	void (*coherent_kern_range)(unsigned long, unsigned long);
227 	void (*coherent_user_range)(unsigned long, unsigned long);
228 	void (*flush_kern_dcache_area)(void *, size_t);
229 
230 	void (*dma_inv_range)(const void *, const void *);
231 	void (*dma_clean_range)(const void *, const void *);
232 	void (*dma_flush_range)(const void *, const void *);
233 };
234 
235 struct outer_cache_fns {
236 	void (*inv_range)(unsigned long, unsigned long);
237 	void (*clean_range)(unsigned long, unsigned long);
238 	void (*flush_range)(unsigned long, unsigned long);
239 };
240 
241 /*
242  * Select the calling method
243  */
244 #ifdef MULTI_CACHE
245 
246 extern struct cpu_cache_fns cpu_cache;
247 
248 #define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
249 #define __cpuc_flush_user_all		cpu_cache.flush_user_all
250 #define __cpuc_flush_user_range		cpu_cache.flush_user_range
251 #define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
252 #define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
253 #define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area
254 
255 /*
256  * These are private to the dma-mapping API.  Do not use directly.
257  * Their sole purpose is to ensure that data held in the cache
258  * is visible to DMA, or data written by DMA to system memory is
259  * visible to the CPU.
260  */
261 #define dmac_inv_range			cpu_cache.dma_inv_range
262 #define dmac_clean_range		cpu_cache.dma_clean_range
263 #define dmac_flush_range		cpu_cache.dma_flush_range
264 
265 #else
266 
267 #define __cpuc_flush_kern_all		__glue(_CACHE,_flush_kern_cache_all)
268 #define __cpuc_flush_user_all		__glue(_CACHE,_flush_user_cache_all)
269 #define __cpuc_flush_user_range		__glue(_CACHE,_flush_user_cache_range)
270 #define __cpuc_coherent_kern_range	__glue(_CACHE,_coherent_kern_range)
271 #define __cpuc_coherent_user_range	__glue(_CACHE,_coherent_user_range)
272 #define __cpuc_flush_dcache_area	__glue(_CACHE,_flush_kern_dcache_area)
273 
274 extern void __cpuc_flush_kern_all(void);
275 extern void __cpuc_flush_user_all(void);
276 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
277 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
278 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
279 extern void __cpuc_flush_dcache_area(void *, size_t);
280 
281 /*
282  * These are private to the dma-mapping API.  Do not use directly.
283  * Their sole purpose is to ensure that data held in the cache
284  * is visible to DMA, or data written by DMA to system memory is
285  * visible to the CPU.
286  */
287 #define dmac_inv_range			__glue(_CACHE,_dma_inv_range)
288 #define dmac_clean_range		__glue(_CACHE,_dma_clean_range)
289 #define dmac_flush_range		__glue(_CACHE,_dma_flush_range)
290 
291 extern void dmac_inv_range(const void *, const void *);
292 extern void dmac_clean_range(const void *, const void *);
293 extern void dmac_flush_range(const void *, const void *);
294 
295 #endif
296 
297 #ifdef CONFIG_OUTER_CACHE
298 
299 extern struct outer_cache_fns outer_cache;
300 
301 static inline void outer_inv_range(unsigned long start, unsigned long end)
302 {
303 	if (outer_cache.inv_range)
304 		outer_cache.inv_range(start, end);
305 }
306 static inline void outer_clean_range(unsigned long start, unsigned long end)
307 {
308 	if (outer_cache.clean_range)
309 		outer_cache.clean_range(start, end);
310 }
311 static inline void outer_flush_range(unsigned long start, unsigned long end)
312 {
313 	if (outer_cache.flush_range)
314 		outer_cache.flush_range(start, end);
315 }
316 
317 #else
318 
319 static inline void outer_inv_range(unsigned long start, unsigned long end)
320 { }
321 static inline void outer_clean_range(unsigned long start, unsigned long end)
322 { }
323 static inline void outer_flush_range(unsigned long start, unsigned long end)
324 { }
325 
326 #endif
327 
328 /*
329  * Copy user data from/to a page which is mapped into a different
330  * processes address space.  Really, we want to allow our "user
331  * space" model to handle this.
332  */
333 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
334 	do {							\
335 		memcpy(dst, src, len);				\
336 		flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
337 	} while (0)
338 
339 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
340 	do {							\
341 		memcpy(dst, src, len);				\
342 	} while (0)
343 
344 /*
345  * Convert calls to our calling convention.
346  */
347 #define flush_cache_all()		__cpuc_flush_kern_all()
348 
349 static inline void vivt_flush_cache_mm(struct mm_struct *mm)
350 {
351 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
352 		__cpuc_flush_user_all();
353 }
354 
355 static inline void
356 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
357 {
358 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
359 		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
360 					vma->vm_flags);
361 }
362 
363 static inline void
364 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
365 {
366 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
367 		unsigned long addr = user_addr & PAGE_MASK;
368 		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
369 	}
370 }
371 
372 static inline void
373 vivt_flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
374 			 unsigned long uaddr, void *kaddr,
375 			 unsigned long len, int write)
376 {
377 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
378 		unsigned long addr = (unsigned long)kaddr;
379 		__cpuc_coherent_kern_range(addr, addr + len);
380 	}
381 }
382 
383 #ifndef CONFIG_CPU_CACHE_VIPT
384 #define flush_cache_mm(mm) \
385 		vivt_flush_cache_mm(mm)
386 #define flush_cache_range(vma,start,end) \
387 		vivt_flush_cache_range(vma,start,end)
388 #define flush_cache_page(vma,addr,pfn) \
389 		vivt_flush_cache_page(vma,addr,pfn)
390 #define flush_ptrace_access(vma,page,ua,ka,len,write) \
391 		vivt_flush_ptrace_access(vma,page,ua,ka,len,write)
392 #else
393 extern void flush_cache_mm(struct mm_struct *mm);
394 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
395 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
396 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
397 				unsigned long uaddr, void *kaddr,
398 				unsigned long len, int write);
399 #endif
400 
401 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
402 
403 /*
404  * flush_cache_user_range is used when we want to ensure that the
405  * Harvard caches are synchronised for the user space address range.
406  * This is used for the ARM private sys_cacheflush system call.
407  */
408 #define flush_cache_user_range(vma,start,end) \
409 	__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
410 
411 /*
412  * Perform necessary cache operations to ensure that data previously
413  * stored within this range of addresses can be executed by the CPU.
414  */
415 #define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
416 
417 /*
418  * Perform necessary cache operations to ensure that the TLB will
419  * see data written in the specified area.
420  */
421 #define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
422 
423 /*
424  * flush_dcache_page is used when the kernel has written to the page
425  * cache page at virtual address page->virtual.
426  *
427  * If this page isn't mapped (ie, page_mapping == NULL), or it might
428  * have userspace mappings, then we _must_ always clean + invalidate
429  * the dcache entries associated with the kernel mapping.
430  *
431  * Otherwise we can defer the operation, and clean the cache when we are
432  * about to change to user space.  This is the same method as used on SPARC64.
433  * See update_mmu_cache for the user space part.
434  */
435 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
436 extern void flush_dcache_page(struct page *);
437 
438 static inline void __flush_icache_all(void)
439 {
440 #ifdef CONFIG_ARM_ERRATA_411920
441 	extern void v6_icache_inval_all(void);
442 	v6_icache_inval_all();
443 #else
444 	asm("mcr	p15, 0, %0, c7, c5, 0	@ invalidate I-cache\n"
445 	    :
446 	    : "r" (0));
447 #endif
448 }
449 
450 #define ARCH_HAS_FLUSH_ANON_PAGE
451 static inline void flush_anon_page(struct vm_area_struct *vma,
452 			 struct page *page, unsigned long vmaddr)
453 {
454 	extern void __flush_anon_page(struct vm_area_struct *vma,
455 				struct page *, unsigned long);
456 	if (PageAnon(page))
457 		__flush_anon_page(vma, page, vmaddr);
458 }
459 
460 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
461 static inline void flush_kernel_dcache_page(struct page *page)
462 {
463 	/* highmem pages are always flushed upon kunmap already */
464 	if ((cache_is_vivt() || cache_is_vipt_aliasing()) && !PageHighMem(page))
465 		__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
466 }
467 
468 #define flush_dcache_mmap_lock(mapping) \
469 	spin_lock_irq(&(mapping)->tree_lock)
470 #define flush_dcache_mmap_unlock(mapping) \
471 	spin_unlock_irq(&(mapping)->tree_lock)
472 
473 #define flush_icache_user_range(vma,page,addr,len) \
474 	flush_dcache_page(page)
475 
476 /*
477  * We don't appear to need to do anything here.  In fact, if we did, we'd
478  * duplicate cache flushing elsewhere performed by flush_dcache_page().
479  */
480 #define flush_icache_page(vma,page)	do { } while (0)
481 
482 /*
483  * flush_cache_vmap() is used when creating mappings (eg, via vmap,
484  * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
485  * caches, since the direct-mappings of these pages may contain cached
486  * data, we need to do a full cache flush to ensure that writebacks
487  * don't corrupt data placed into these pages via the new mappings.
488  */
489 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
490 {
491 	if (!cache_is_vipt_nonaliasing())
492 		flush_cache_all();
493 	else
494 		/*
495 		 * set_pte_at() called from vmap_pte_range() does not
496 		 * have a DSB after cleaning the cache line.
497 		 */
498 		dsb();
499 }
500 
501 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
502 {
503 	if (!cache_is_vipt_nonaliasing())
504 		flush_cache_all();
505 }
506 
507 #endif
508