xref: /linux/arch/arm/include/asm/bitops.h (revision f7018c21350204c4cf628462f229d44d03545254)
1 /*
2  * Copyright 1995, Russell King.
3  * Various bits and pieces copyrights include:
4  *  Linus Torvalds (test_bit).
5  * Big endian support: Copyright 2001, Nicolas Pitre
6  *  reworked by rmk.
7  *
8  * bit 0 is the LSB of an "unsigned long" quantity.
9  *
10  * Please note that the code in this file should never be included
11  * from user space.  Many of these are not implemented in assembler
12  * since they would be too costly.  Also, they require privileged
13  * instructions (which are not available from user mode) to ensure
14  * that they are atomic.
15  */
16 
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
19 
20 #ifdef __KERNEL__
21 
22 #ifndef _LINUX_BITOPS_H
23 #error only <linux/bitops.h> can be included directly
24 #endif
25 
26 #include <linux/compiler.h>
27 #include <linux/irqflags.h>
28 
29 #define smp_mb__before_clear_bit()	smp_mb()
30 #define smp_mb__after_clear_bit()	smp_mb()
31 
32 /*
33  * These functions are the basis of our bit ops.
34  *
35  * First, the atomic bitops. These use native endian.
36  */
37 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
38 {
39 	unsigned long flags;
40 	unsigned long mask = 1UL << (bit & 31);
41 
42 	p += bit >> 5;
43 
44 	raw_local_irq_save(flags);
45 	*p |= mask;
46 	raw_local_irq_restore(flags);
47 }
48 
49 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
50 {
51 	unsigned long flags;
52 	unsigned long mask = 1UL << (bit & 31);
53 
54 	p += bit >> 5;
55 
56 	raw_local_irq_save(flags);
57 	*p &= ~mask;
58 	raw_local_irq_restore(flags);
59 }
60 
61 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
62 {
63 	unsigned long flags;
64 	unsigned long mask = 1UL << (bit & 31);
65 
66 	p += bit >> 5;
67 
68 	raw_local_irq_save(flags);
69 	*p ^= mask;
70 	raw_local_irq_restore(flags);
71 }
72 
73 static inline int
74 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
75 {
76 	unsigned long flags;
77 	unsigned int res;
78 	unsigned long mask = 1UL << (bit & 31);
79 
80 	p += bit >> 5;
81 
82 	raw_local_irq_save(flags);
83 	res = *p;
84 	*p = res | mask;
85 	raw_local_irq_restore(flags);
86 
87 	return (res & mask) != 0;
88 }
89 
90 static inline int
91 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
92 {
93 	unsigned long flags;
94 	unsigned int res;
95 	unsigned long mask = 1UL << (bit & 31);
96 
97 	p += bit >> 5;
98 
99 	raw_local_irq_save(flags);
100 	res = *p;
101 	*p = res & ~mask;
102 	raw_local_irq_restore(flags);
103 
104 	return (res & mask) != 0;
105 }
106 
107 static inline int
108 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
109 {
110 	unsigned long flags;
111 	unsigned int res;
112 	unsigned long mask = 1UL << (bit & 31);
113 
114 	p += bit >> 5;
115 
116 	raw_local_irq_save(flags);
117 	res = *p;
118 	*p = res ^ mask;
119 	raw_local_irq_restore(flags);
120 
121 	return (res & mask) != 0;
122 }
123 
124 #include <asm-generic/bitops/non-atomic.h>
125 
126 /*
127  *  A note about Endian-ness.
128  *  -------------------------
129  *
130  * When the ARM is put into big endian mode via CR15, the processor
131  * merely swaps the order of bytes within words, thus:
132  *
133  *          ------------ physical data bus bits -----------
134  *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
135  * little     byte 3       byte 2       byte 1      byte 0
136  * big        byte 0       byte 1       byte 2      byte 3
137  *
138  * This means that reading a 32-bit word at address 0 returns the same
139  * value irrespective of the endian mode bit.
140  *
141  * Peripheral devices should be connected with the data bus reversed in
142  * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
143  * available from http://www.arm.com/.
144  *
145  * The following assumes that the data bus connectivity for big endian
146  * mode has been followed.
147  *
148  * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
149  */
150 
151 /*
152  * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
153  */
154 extern void _set_bit(int nr, volatile unsigned long * p);
155 extern void _clear_bit(int nr, volatile unsigned long * p);
156 extern void _change_bit(int nr, volatile unsigned long * p);
157 extern int _test_and_set_bit(int nr, volatile unsigned long * p);
158 extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
159 extern int _test_and_change_bit(int nr, volatile unsigned long * p);
160 
161 /*
162  * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
163  */
164 extern int _find_first_zero_bit_le(const void * p, unsigned size);
165 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
166 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
167 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
168 
169 /*
170  * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
171  */
172 extern int _find_first_zero_bit_be(const void * p, unsigned size);
173 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
174 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
175 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
176 
177 #ifndef CONFIG_SMP
178 /*
179  * The __* form of bitops are non-atomic and may be reordered.
180  */
181 #define ATOMIC_BITOP(name,nr,p)			\
182 	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183 #else
184 #define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
185 #endif
186 
187 /*
188  * Native endian atomic definitions.
189  */
190 #define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
191 #define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
192 #define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
193 #define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
194 #define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
195 #define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)
196 
197 #ifndef __ARMEB__
198 /*
199  * These are the little endian, atomic definitions.
200  */
201 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
202 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
203 #define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
204 #define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
205 
206 #else
207 /*
208  * These are the big endian, atomic definitions.
209  */
210 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
211 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
212 #define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
213 #define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
214 
215 #endif
216 
217 #if __LINUX_ARM_ARCH__ < 5
218 
219 #include <asm-generic/bitops/ffz.h>
220 #include <asm-generic/bitops/__fls.h>
221 #include <asm-generic/bitops/__ffs.h>
222 #include <asm-generic/bitops/fls.h>
223 #include <asm-generic/bitops/ffs.h>
224 
225 #else
226 
227 static inline int constant_fls(int x)
228 {
229 	int r = 32;
230 
231 	if (!x)
232 		return 0;
233 	if (!(x & 0xffff0000u)) {
234 		x <<= 16;
235 		r -= 16;
236 	}
237 	if (!(x & 0xff000000u)) {
238 		x <<= 8;
239 		r -= 8;
240 	}
241 	if (!(x & 0xf0000000u)) {
242 		x <<= 4;
243 		r -= 4;
244 	}
245 	if (!(x & 0xc0000000u)) {
246 		x <<= 2;
247 		r -= 2;
248 	}
249 	if (!(x & 0x80000000u)) {
250 		x <<= 1;
251 		r -= 1;
252 	}
253 	return r;
254 }
255 
256 /*
257  * On ARMv5 and above those functions can be implemented around the
258  * clz instruction for much better code efficiency.  __clz returns
259  * the number of leading zeros, zero input will return 32, and
260  * 0x80000000 will return 0.
261  */
262 static inline unsigned int __clz(unsigned int x)
263 {
264 	unsigned int ret;
265 
266 	asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
267 
268 	return ret;
269 }
270 
271 /*
272  * fls() returns zero if the input is zero, otherwise returns the bit
273  * position of the last set bit, where the LSB is 1 and MSB is 32.
274  */
275 static inline int fls(int x)
276 {
277 	if (__builtin_constant_p(x))
278 	       return constant_fls(x);
279 
280 	return 32 - __clz(x);
281 }
282 
283 /*
284  * __fls() returns the bit position of the last bit set, where the
285  * LSB is 0 and MSB is 31.  Zero input is undefined.
286  */
287 static inline unsigned long __fls(unsigned long x)
288 {
289 	return fls(x) - 1;
290 }
291 
292 /*
293  * ffs() returns zero if the input was zero, otherwise returns the bit
294  * position of the first set bit, where the LSB is 1 and MSB is 32.
295  */
296 static inline int ffs(int x)
297 {
298 	return fls(x & -x);
299 }
300 
301 /*
302  * __ffs() returns the bit position of the first bit set, where the
303  * LSB is 0 and MSB is 31.  Zero input is undefined.
304  */
305 static inline unsigned long __ffs(unsigned long x)
306 {
307 	return ffs(x) - 1;
308 }
309 
310 #define ffz(x) __ffs( ~(x) )
311 
312 #endif
313 
314 #include <asm-generic/bitops/fls64.h>
315 
316 #include <asm-generic/bitops/sched.h>
317 #include <asm-generic/bitops/hweight.h>
318 #include <asm-generic/bitops/lock.h>
319 
320 #ifdef __ARMEB__
321 
322 static inline int find_first_zero_bit_le(const void *p, unsigned size)
323 {
324 	return _find_first_zero_bit_le(p, size);
325 }
326 #define find_first_zero_bit_le find_first_zero_bit_le
327 
328 static inline int find_next_zero_bit_le(const void *p, int size, int offset)
329 {
330 	return _find_next_zero_bit_le(p, size, offset);
331 }
332 #define find_next_zero_bit_le find_next_zero_bit_le
333 
334 static inline int find_next_bit_le(const void *p, int size, int offset)
335 {
336 	return _find_next_bit_le(p, size, offset);
337 }
338 #define find_next_bit_le find_next_bit_le
339 
340 #endif
341 
342 #include <asm-generic/bitops/le.h>
343 
344 /*
345  * Ext2 is defined to use little-endian byte ordering.
346  */
347 #include <asm-generic/bitops/ext2-atomic-setbit.h>
348 
349 #endif /* __KERNEL__ */
350 
351 #endif /* _ARM_BITOPS_H */
352