1 /* 2 * Copyright 1995, Russell King. 3 * Various bits and pieces copyrights include: 4 * Linus Torvalds (test_bit). 5 * Big endian support: Copyright 2001, Nicolas Pitre 6 * reworked by rmk. 7 * 8 * bit 0 is the LSB of an "unsigned long" quantity. 9 * 10 * Please note that the code in this file should never be included 11 * from user space. Many of these are not implemented in assembler 12 * since they would be too costly. Also, they require privileged 13 * instructions (which are not available from user mode) to ensure 14 * that they are atomic. 15 */ 16 17 #ifndef __ASM_ARM_BITOPS_H 18 #define __ASM_ARM_BITOPS_H 19 20 #ifdef __KERNEL__ 21 22 #ifndef _LINUX_BITOPS_H 23 #error only <linux/bitops.h> can be included directly 24 #endif 25 26 #include <linux/compiler.h> 27 #include <linux/irqflags.h> 28 29 #define smp_mb__before_clear_bit() smp_mb() 30 #define smp_mb__after_clear_bit() smp_mb() 31 32 /* 33 * These functions are the basis of our bit ops. 34 * 35 * First, the atomic bitops. These use native endian. 36 */ 37 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) 38 { 39 unsigned long flags; 40 unsigned long mask = 1UL << (bit & 31); 41 42 p += bit >> 5; 43 44 raw_local_irq_save(flags); 45 *p |= mask; 46 raw_local_irq_restore(flags); 47 } 48 49 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) 50 { 51 unsigned long flags; 52 unsigned long mask = 1UL << (bit & 31); 53 54 p += bit >> 5; 55 56 raw_local_irq_save(flags); 57 *p &= ~mask; 58 raw_local_irq_restore(flags); 59 } 60 61 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) 62 { 63 unsigned long flags; 64 unsigned long mask = 1UL << (bit & 31); 65 66 p += bit >> 5; 67 68 raw_local_irq_save(flags); 69 *p ^= mask; 70 raw_local_irq_restore(flags); 71 } 72 73 static inline int 74 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) 75 { 76 unsigned long flags; 77 unsigned int res; 78 unsigned long mask = 1UL << (bit & 31); 79 80 p += bit >> 5; 81 82 raw_local_irq_save(flags); 83 res = *p; 84 *p = res | mask; 85 raw_local_irq_restore(flags); 86 87 return (res & mask) != 0; 88 } 89 90 static inline int 91 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) 92 { 93 unsigned long flags; 94 unsigned int res; 95 unsigned long mask = 1UL << (bit & 31); 96 97 p += bit >> 5; 98 99 raw_local_irq_save(flags); 100 res = *p; 101 *p = res & ~mask; 102 raw_local_irq_restore(flags); 103 104 return (res & mask) != 0; 105 } 106 107 static inline int 108 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) 109 { 110 unsigned long flags; 111 unsigned int res; 112 unsigned long mask = 1UL << (bit & 31); 113 114 p += bit >> 5; 115 116 raw_local_irq_save(flags); 117 res = *p; 118 *p = res ^ mask; 119 raw_local_irq_restore(flags); 120 121 return (res & mask) != 0; 122 } 123 124 #include <asm-generic/bitops/non-atomic.h> 125 126 /* 127 * A note about Endian-ness. 128 * ------------------------- 129 * 130 * When the ARM is put into big endian mode via CR15, the processor 131 * merely swaps the order of bytes within words, thus: 132 * 133 * ------------ physical data bus bits ----------- 134 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0 135 * little byte 3 byte 2 byte 1 byte 0 136 * big byte 0 byte 1 byte 2 byte 3 137 * 138 * This means that reading a 32-bit word at address 0 returns the same 139 * value irrespective of the endian mode bit. 140 * 141 * Peripheral devices should be connected with the data bus reversed in 142 * "Big Endian" mode. ARM Application Note 61 is applicable, and is 143 * available from http://www.arm.com/. 144 * 145 * The following assumes that the data bus connectivity for big endian 146 * mode has been followed. 147 * 148 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. 149 */ 150 151 /* 152 * Native endian assembly bitops. nr = 0 -> word 0 bit 0. 153 */ 154 extern void _set_bit(int nr, volatile unsigned long * p); 155 extern void _clear_bit(int nr, volatile unsigned long * p); 156 extern void _change_bit(int nr, volatile unsigned long * p); 157 extern int _test_and_set_bit(int nr, volatile unsigned long * p); 158 extern int _test_and_clear_bit(int nr, volatile unsigned long * p); 159 extern int _test_and_change_bit(int nr, volatile unsigned long * p); 160 161 /* 162 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. 163 */ 164 extern int _find_first_zero_bit_le(const void * p, unsigned size); 165 extern int _find_next_zero_bit_le(const void * p, int size, int offset); 166 extern int _find_first_bit_le(const unsigned long *p, unsigned size); 167 extern int _find_next_bit_le(const unsigned long *p, int size, int offset); 168 169 /* 170 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0. 171 */ 172 extern int _find_first_zero_bit_be(const void * p, unsigned size); 173 extern int _find_next_zero_bit_be(const void * p, int size, int offset); 174 extern int _find_first_bit_be(const unsigned long *p, unsigned size); 175 extern int _find_next_bit_be(const unsigned long *p, int size, int offset); 176 177 #ifndef CONFIG_SMP 178 /* 179 * The __* form of bitops are non-atomic and may be reordered. 180 */ 181 #define ATOMIC_BITOP(name,nr,p) \ 182 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p)) 183 #else 184 #define ATOMIC_BITOP(name,nr,p) _##name(nr,p) 185 #endif 186 187 /* 188 * Native endian atomic definitions. 189 */ 190 #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p) 191 #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p) 192 #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p) 193 #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p) 194 #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p) 195 #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p) 196 197 #ifndef __ARMEB__ 198 /* 199 * These are the little endian, atomic definitions. 200 */ 201 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) 202 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) 203 #define find_first_bit(p,sz) _find_first_bit_le(p,sz) 204 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) 205 206 #else 207 /* 208 * These are the big endian, atomic definitions. 209 */ 210 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz) 211 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off) 212 #define find_first_bit(p,sz) _find_first_bit_be(p,sz) 213 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off) 214 215 #endif 216 217 #if __LINUX_ARM_ARCH__ < 5 218 219 #include <asm-generic/bitops/ffz.h> 220 #include <asm-generic/bitops/__fls.h> 221 #include <asm-generic/bitops/__ffs.h> 222 #include <asm-generic/bitops/fls.h> 223 #include <asm-generic/bitops/ffs.h> 224 225 #else 226 227 static inline int constant_fls(int x) 228 { 229 int r = 32; 230 231 if (!x) 232 return 0; 233 if (!(x & 0xffff0000u)) { 234 x <<= 16; 235 r -= 16; 236 } 237 if (!(x & 0xff000000u)) { 238 x <<= 8; 239 r -= 8; 240 } 241 if (!(x & 0xf0000000u)) { 242 x <<= 4; 243 r -= 4; 244 } 245 if (!(x & 0xc0000000u)) { 246 x <<= 2; 247 r -= 2; 248 } 249 if (!(x & 0x80000000u)) { 250 x <<= 1; 251 r -= 1; 252 } 253 return r; 254 } 255 256 /* 257 * On ARMv5 and above those functions can be implemented around the 258 * clz instruction for much better code efficiency. __clz returns 259 * the number of leading zeros, zero input will return 32, and 260 * 0x80000000 will return 0. 261 */ 262 static inline unsigned int __clz(unsigned int x) 263 { 264 unsigned int ret; 265 266 asm("clz\t%0, %1" : "=r" (ret) : "r" (x)); 267 268 return ret; 269 } 270 271 /* 272 * fls() returns zero if the input is zero, otherwise returns the bit 273 * position of the last set bit, where the LSB is 1 and MSB is 32. 274 */ 275 static inline int fls(int x) 276 { 277 if (__builtin_constant_p(x)) 278 return constant_fls(x); 279 280 return 32 - __clz(x); 281 } 282 283 /* 284 * __fls() returns the bit position of the last bit set, where the 285 * LSB is 0 and MSB is 31. Zero input is undefined. 286 */ 287 static inline unsigned long __fls(unsigned long x) 288 { 289 return fls(x) - 1; 290 } 291 292 /* 293 * ffs() returns zero if the input was zero, otherwise returns the bit 294 * position of the first set bit, where the LSB is 1 and MSB is 32. 295 */ 296 static inline int ffs(int x) 297 { 298 return fls(x & -x); 299 } 300 301 /* 302 * __ffs() returns the bit position of the first bit set, where the 303 * LSB is 0 and MSB is 31. Zero input is undefined. 304 */ 305 static inline unsigned long __ffs(unsigned long x) 306 { 307 return ffs(x) - 1; 308 } 309 310 #define ffz(x) __ffs( ~(x) ) 311 312 #endif 313 314 #include <asm-generic/bitops/fls64.h> 315 316 #include <asm-generic/bitops/sched.h> 317 #include <asm-generic/bitops/hweight.h> 318 #include <asm-generic/bitops/lock.h> 319 320 #ifdef __ARMEB__ 321 322 static inline int find_first_zero_bit_le(const void *p, unsigned size) 323 { 324 return _find_first_zero_bit_le(p, size); 325 } 326 #define find_first_zero_bit_le find_first_zero_bit_le 327 328 static inline int find_next_zero_bit_le(const void *p, int size, int offset) 329 { 330 return _find_next_zero_bit_le(p, size, offset); 331 } 332 #define find_next_zero_bit_le find_next_zero_bit_le 333 334 static inline int find_next_bit_le(const void *p, int size, int offset) 335 { 336 return _find_next_bit_le(p, size, offset); 337 } 338 #define find_next_bit_le find_next_bit_le 339 340 #endif 341 342 #include <asm-generic/bitops/le.h> 343 344 /* 345 * Ext2 is defined to use little-endian byte ordering. 346 */ 347 #include <asm-generic/bitops/ext2-atomic-setbit.h> 348 349 #endif /* __KERNEL__ */ 350 351 #endif /* _ARM_BITOPS_H */ 352