xref: /linux/arch/arm/include/asm/bitops.h (revision f312eff8164879e04923d41e9dd23e7850937d85)
1 /*
2  * Copyright 1995, Russell King.
3  * Various bits and pieces copyrights include:
4  *  Linus Torvalds (test_bit).
5  * Big endian support: Copyright 2001, Nicolas Pitre
6  *  reworked by rmk.
7  *
8  * bit 0 is the LSB of an "unsigned long" quantity.
9  *
10  * Please note that the code in this file should never be included
11  * from user space.  Many of these are not implemented in assembler
12  * since they would be too costly.  Also, they require privileged
13  * instructions (which are not available from user mode) to ensure
14  * that they are atomic.
15  */
16 
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
19 
20 #ifdef __KERNEL__
21 
22 #ifndef _LINUX_BITOPS_H
23 #error only <linux/bitops.h> can be included directly
24 #endif
25 
26 #include <linux/compiler.h>
27 #include <asm/system.h>
28 
29 #define smp_mb__before_clear_bit()	mb()
30 #define smp_mb__after_clear_bit()	mb()
31 
32 /*
33  * These functions are the basis of our bit ops.
34  *
35  * First, the atomic bitops. These use native endian.
36  */
37 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
38 {
39 	unsigned long flags;
40 	unsigned long mask = 1UL << (bit & 31);
41 
42 	p += bit >> 5;
43 
44 	raw_local_irq_save(flags);
45 	*p |= mask;
46 	raw_local_irq_restore(flags);
47 }
48 
49 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
50 {
51 	unsigned long flags;
52 	unsigned long mask = 1UL << (bit & 31);
53 
54 	p += bit >> 5;
55 
56 	raw_local_irq_save(flags);
57 	*p &= ~mask;
58 	raw_local_irq_restore(flags);
59 }
60 
61 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
62 {
63 	unsigned long flags;
64 	unsigned long mask = 1UL << (bit & 31);
65 
66 	p += bit >> 5;
67 
68 	raw_local_irq_save(flags);
69 	*p ^= mask;
70 	raw_local_irq_restore(flags);
71 }
72 
73 static inline int
74 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
75 {
76 	unsigned long flags;
77 	unsigned int res;
78 	unsigned long mask = 1UL << (bit & 31);
79 
80 	p += bit >> 5;
81 
82 	raw_local_irq_save(flags);
83 	res = *p;
84 	*p = res | mask;
85 	raw_local_irq_restore(flags);
86 
87 	return (res & mask) != 0;
88 }
89 
90 static inline int
91 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
92 {
93 	unsigned long flags;
94 	unsigned int res;
95 	unsigned long mask = 1UL << (bit & 31);
96 
97 	p += bit >> 5;
98 
99 	raw_local_irq_save(flags);
100 	res = *p;
101 	*p = res & ~mask;
102 	raw_local_irq_restore(flags);
103 
104 	return (res & mask) != 0;
105 }
106 
107 static inline int
108 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
109 {
110 	unsigned long flags;
111 	unsigned int res;
112 	unsigned long mask = 1UL << (bit & 31);
113 
114 	p += bit >> 5;
115 
116 	raw_local_irq_save(flags);
117 	res = *p;
118 	*p = res ^ mask;
119 	raw_local_irq_restore(flags);
120 
121 	return (res & mask) != 0;
122 }
123 
124 #include <asm-generic/bitops/non-atomic.h>
125 
126 /*
127  *  A note about Endian-ness.
128  *  -------------------------
129  *
130  * When the ARM is put into big endian mode via CR15, the processor
131  * merely swaps the order of bytes within words, thus:
132  *
133  *          ------------ physical data bus bits -----------
134  *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
135  * little     byte 3       byte 2       byte 1      byte 0
136  * big        byte 0       byte 1       byte 2      byte 3
137  *
138  * This means that reading a 32-bit word at address 0 returns the same
139  * value irrespective of the endian mode bit.
140  *
141  * Peripheral devices should be connected with the data bus reversed in
142  * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
143  * available from http://www.arm.com/.
144  *
145  * The following assumes that the data bus connectivity for big endian
146  * mode has been followed.
147  *
148  * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
149  */
150 
151 /*
152  * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
153  */
154 extern void _set_bit(int nr, volatile unsigned long * p);
155 extern void _clear_bit(int nr, volatile unsigned long * p);
156 extern void _change_bit(int nr, volatile unsigned long * p);
157 extern int _test_and_set_bit(int nr, volatile unsigned long * p);
158 extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
159 extern int _test_and_change_bit(int nr, volatile unsigned long * p);
160 
161 /*
162  * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
163  */
164 extern int _find_first_zero_bit_le(const void * p, unsigned size);
165 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
166 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
167 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
168 
169 /*
170  * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
171  */
172 extern int _find_first_zero_bit_be(const void * p, unsigned size);
173 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
174 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
175 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
176 
177 #ifndef CONFIG_SMP
178 /*
179  * The __* form of bitops are non-atomic and may be reordered.
180  */
181 #define ATOMIC_BITOP(name,nr,p)			\
182 	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183 #else
184 #define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
185 #endif
186 
187 /*
188  * Native endian atomic definitions.
189  */
190 #define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
191 #define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
192 #define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
193 #define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
194 #define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
195 #define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)
196 
197 #ifndef __ARMEB__
198 /*
199  * These are the little endian, atomic definitions.
200  */
201 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
202 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
203 #define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
204 #define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
205 
206 #define WORD_BITOFF_TO_LE(x)		((x))
207 
208 #else
209 /*
210  * These are the big endian, atomic definitions.
211  */
212 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
213 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
214 #define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
215 #define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
216 
217 #define WORD_BITOFF_TO_LE(x)		((x) ^ 0x18)
218 
219 #endif
220 
221 #if __LINUX_ARM_ARCH__ < 5
222 
223 #include <asm-generic/bitops/ffz.h>
224 #include <asm-generic/bitops/__fls.h>
225 #include <asm-generic/bitops/__ffs.h>
226 #include <asm-generic/bitops/fls.h>
227 #include <asm-generic/bitops/ffs.h>
228 
229 #else
230 
231 static inline int constant_fls(int x)
232 {
233 	int r = 32;
234 
235 	if (!x)
236 		return 0;
237 	if (!(x & 0xffff0000u)) {
238 		x <<= 16;
239 		r -= 16;
240 	}
241 	if (!(x & 0xff000000u)) {
242 		x <<= 8;
243 		r -= 8;
244 	}
245 	if (!(x & 0xf0000000u)) {
246 		x <<= 4;
247 		r -= 4;
248 	}
249 	if (!(x & 0xc0000000u)) {
250 		x <<= 2;
251 		r -= 2;
252 	}
253 	if (!(x & 0x80000000u)) {
254 		x <<= 1;
255 		r -= 1;
256 	}
257 	return r;
258 }
259 
260 /*
261  * On ARMv5 and above those functions can be implemented around
262  * the clz instruction for much better code efficiency.
263  */
264 
265 static inline int fls(int x)
266 {
267 	int ret;
268 
269 	if (__builtin_constant_p(x))
270 	       return constant_fls(x);
271 
272 	asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
273        	ret = 32 - ret;
274 	return ret;
275 }
276 
277 #define __fls(x) (fls(x) - 1)
278 #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
279 #define __ffs(x) (ffs(x) - 1)
280 #define ffz(x) __ffs( ~(x) )
281 
282 #endif
283 
284 #include <asm-generic/bitops/fls64.h>
285 
286 #include <asm-generic/bitops/sched.h>
287 #include <asm-generic/bitops/hweight.h>
288 #include <asm-generic/bitops/lock.h>
289 
290 static inline void __set_bit_le(int nr, void *addr)
291 {
292 	__set_bit(WORD_BITOFF_TO_LE(nr), addr);
293 }
294 
295 static inline void __clear_bit_le(int nr, void *addr)
296 {
297 	__clear_bit(WORD_BITOFF_TO_LE(nr), addr);
298 }
299 
300 static inline int __test_and_set_bit_le(int nr, void *addr)
301 {
302 	return __test_and_set_bit(WORD_BITOFF_TO_LE(nr), addr);
303 }
304 
305 static inline int test_and_set_bit_le(int nr, void *addr)
306 {
307 	return test_and_set_bit(WORD_BITOFF_TO_LE(nr), addr);
308 }
309 
310 static inline int __test_and_clear_bit_le(int nr, void *addr)
311 {
312 	return __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), addr);
313 }
314 
315 static inline int test_and_clear_bit_le(int nr, void *addr)
316 {
317 	return test_and_clear_bit(WORD_BITOFF_TO_LE(nr), addr);
318 }
319 
320 static inline int test_bit_le(int nr, const void *addr)
321 {
322 	return test_bit(WORD_BITOFF_TO_LE(nr), addr);
323 }
324 
325 static inline int find_first_zero_bit_le(const void *p, unsigned size)
326 {
327 	return _find_first_zero_bit_le(p, size);
328 }
329 
330 static inline int find_next_zero_bit_le(const void *p, int size, int offset)
331 {
332 	return _find_next_zero_bit_le(p, size, offset);
333 }
334 
335 static inline int find_next_bit_le(const void *p, int size, int offset)
336 {
337 	return _find_next_bit_le(p, size, offset);
338 }
339 
340 /*
341  * Ext2 is defined to use little-endian byte ordering.
342  */
343 #define ext2_set_bit_atomic(lock, nr, p)	\
344 		test_and_set_bit_le(nr, p)
345 #define ext2_clear_bit_atomic(lock, nr, p)	\
346 		test_and_clear_bit_le(nr, p)
347 
348 /*
349  * Minix is defined to use little-endian byte ordering.
350  * These do not need to be atomic.
351  */
352 #define minix_set_bit __set_bit_le
353 #define minix_test_bit test_bit_le
354 #define minix_test_and_set_bit __test_and_set_bit_le
355 #define minix_test_and_clear_bit __test_and_clear_bit_le
356 #define minix_find_first_zero_bit find_first_zero_bit_le
357 
358 #endif /* __KERNEL__ */
359 
360 #endif /* _ARM_BITOPS_H */
361