xref: /linux/arch/arm/include/asm/bitops.h (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Copyright 1995, Russell King.
3  * Various bits and pieces copyrights include:
4  *  Linus Torvalds (test_bit).
5  * Big endian support: Copyright 2001, Nicolas Pitre
6  *  reworked by rmk.
7  *
8  * bit 0 is the LSB of an "unsigned long" quantity.
9  *
10  * Please note that the code in this file should never be included
11  * from user space.  Many of these are not implemented in assembler
12  * since they would be too costly.  Also, they require privileged
13  * instructions (which are not available from user mode) to ensure
14  * that they are atomic.
15  */
16 
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
19 
20 #ifdef __KERNEL__
21 
22 #ifndef _LINUX_BITOPS_H
23 #error only <linux/bitops.h> can be included directly
24 #endif
25 
26 #include <linux/compiler.h>
27 #include <linux/irqflags.h>
28 #include <asm/barrier.h>
29 
30 /*
31  * These functions are the basis of our bit ops.
32  *
33  * First, the atomic bitops. These use native endian.
34  */
35 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
36 {
37 	unsigned long flags;
38 	unsigned long mask = 1UL << (bit & 31);
39 
40 	p += bit >> 5;
41 
42 	raw_local_irq_save(flags);
43 	*p |= mask;
44 	raw_local_irq_restore(flags);
45 }
46 
47 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
48 {
49 	unsigned long flags;
50 	unsigned long mask = 1UL << (bit & 31);
51 
52 	p += bit >> 5;
53 
54 	raw_local_irq_save(flags);
55 	*p &= ~mask;
56 	raw_local_irq_restore(flags);
57 }
58 
59 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
60 {
61 	unsigned long flags;
62 	unsigned long mask = 1UL << (bit & 31);
63 
64 	p += bit >> 5;
65 
66 	raw_local_irq_save(flags);
67 	*p ^= mask;
68 	raw_local_irq_restore(flags);
69 }
70 
71 static inline int
72 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
73 {
74 	unsigned long flags;
75 	unsigned int res;
76 	unsigned long mask = 1UL << (bit & 31);
77 
78 	p += bit >> 5;
79 
80 	raw_local_irq_save(flags);
81 	res = *p;
82 	*p = res | mask;
83 	raw_local_irq_restore(flags);
84 
85 	return (res & mask) != 0;
86 }
87 
88 static inline int
89 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
90 {
91 	unsigned long flags;
92 	unsigned int res;
93 	unsigned long mask = 1UL << (bit & 31);
94 
95 	p += bit >> 5;
96 
97 	raw_local_irq_save(flags);
98 	res = *p;
99 	*p = res & ~mask;
100 	raw_local_irq_restore(flags);
101 
102 	return (res & mask) != 0;
103 }
104 
105 static inline int
106 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
107 {
108 	unsigned long flags;
109 	unsigned int res;
110 	unsigned long mask = 1UL << (bit & 31);
111 
112 	p += bit >> 5;
113 
114 	raw_local_irq_save(flags);
115 	res = *p;
116 	*p = res ^ mask;
117 	raw_local_irq_restore(flags);
118 
119 	return (res & mask) != 0;
120 }
121 
122 #include <asm-generic/bitops/non-atomic.h>
123 
124 /*
125  *  A note about Endian-ness.
126  *  -------------------------
127  *
128  * When the ARM is put into big endian mode via CR15, the processor
129  * merely swaps the order of bytes within words, thus:
130  *
131  *          ------------ physical data bus bits -----------
132  *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
133  * little     byte 3       byte 2       byte 1      byte 0
134  * big        byte 0       byte 1       byte 2      byte 3
135  *
136  * This means that reading a 32-bit word at address 0 returns the same
137  * value irrespective of the endian mode bit.
138  *
139  * Peripheral devices should be connected with the data bus reversed in
140  * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
141  * available from http://www.arm.com/.
142  *
143  * The following assumes that the data bus connectivity for big endian
144  * mode has been followed.
145  *
146  * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
147  */
148 
149 /*
150  * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
151  */
152 extern void _set_bit(int nr, volatile unsigned long * p);
153 extern void _clear_bit(int nr, volatile unsigned long * p);
154 extern void _change_bit(int nr, volatile unsigned long * p);
155 extern int _test_and_set_bit(int nr, volatile unsigned long * p);
156 extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
157 extern int _test_and_change_bit(int nr, volatile unsigned long * p);
158 
159 /*
160  * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
161  */
162 extern int _find_first_zero_bit_le(const void * p, unsigned size);
163 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
164 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
165 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
166 
167 /*
168  * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
169  */
170 extern int _find_first_zero_bit_be(const void * p, unsigned size);
171 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
172 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
173 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
174 
175 #ifndef CONFIG_SMP
176 /*
177  * The __* form of bitops are non-atomic and may be reordered.
178  */
179 #define ATOMIC_BITOP(name,nr,p)			\
180 	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
181 #else
182 #define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
183 #endif
184 
185 /*
186  * Native endian atomic definitions.
187  */
188 #define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
189 #define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
190 #define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
191 #define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
192 #define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
193 #define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)
194 
195 #ifndef __ARMEB__
196 /*
197  * These are the little endian, atomic definitions.
198  */
199 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
200 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
201 #define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
202 #define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
203 
204 #else
205 /*
206  * These are the big endian, atomic definitions.
207  */
208 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
209 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
210 #define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
211 #define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
212 
213 #endif
214 
215 #if __LINUX_ARM_ARCH__ < 5
216 
217 #include <asm-generic/bitops/ffz.h>
218 #include <asm-generic/bitops/__fls.h>
219 #include <asm-generic/bitops/__ffs.h>
220 #include <asm-generic/bitops/fls.h>
221 #include <asm-generic/bitops/ffs.h>
222 
223 #else
224 
225 static inline int constant_fls(int x)
226 {
227 	int r = 32;
228 
229 	if (!x)
230 		return 0;
231 	if (!(x & 0xffff0000u)) {
232 		x <<= 16;
233 		r -= 16;
234 	}
235 	if (!(x & 0xff000000u)) {
236 		x <<= 8;
237 		r -= 8;
238 	}
239 	if (!(x & 0xf0000000u)) {
240 		x <<= 4;
241 		r -= 4;
242 	}
243 	if (!(x & 0xc0000000u)) {
244 		x <<= 2;
245 		r -= 2;
246 	}
247 	if (!(x & 0x80000000u)) {
248 		x <<= 1;
249 		r -= 1;
250 	}
251 	return r;
252 }
253 
254 /*
255  * On ARMv5 and above those functions can be implemented around the
256  * clz instruction for much better code efficiency.  __clz returns
257  * the number of leading zeros, zero input will return 32, and
258  * 0x80000000 will return 0.
259  */
260 static inline unsigned int __clz(unsigned int x)
261 {
262 	unsigned int ret;
263 
264 	asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
265 
266 	return ret;
267 }
268 
269 /*
270  * fls() returns zero if the input is zero, otherwise returns the bit
271  * position of the last set bit, where the LSB is 1 and MSB is 32.
272  */
273 static inline int fls(int x)
274 {
275 	if (__builtin_constant_p(x))
276 	       return constant_fls(x);
277 
278 	return 32 - __clz(x);
279 }
280 
281 /*
282  * __fls() returns the bit position of the last bit set, where the
283  * LSB is 0 and MSB is 31.  Zero input is undefined.
284  */
285 static inline unsigned long __fls(unsigned long x)
286 {
287 	return fls(x) - 1;
288 }
289 
290 /*
291  * ffs() returns zero if the input was zero, otherwise returns the bit
292  * position of the first set bit, where the LSB is 1 and MSB is 32.
293  */
294 static inline int ffs(int x)
295 {
296 	return fls(x & -x);
297 }
298 
299 /*
300  * __ffs() returns the bit position of the first bit set, where the
301  * LSB is 0 and MSB is 31.  Zero input is undefined.
302  */
303 static inline unsigned long __ffs(unsigned long x)
304 {
305 	return ffs(x) - 1;
306 }
307 
308 #define ffz(x) __ffs( ~(x) )
309 
310 #endif
311 
312 #include <asm-generic/bitops/fls64.h>
313 
314 #include <asm-generic/bitops/sched.h>
315 #include <asm-generic/bitops/hweight.h>
316 #include <asm-generic/bitops/lock.h>
317 
318 #ifdef __ARMEB__
319 
320 static inline int find_first_zero_bit_le(const void *p, unsigned size)
321 {
322 	return _find_first_zero_bit_le(p, size);
323 }
324 #define find_first_zero_bit_le find_first_zero_bit_le
325 
326 static inline int find_next_zero_bit_le(const void *p, int size, int offset)
327 {
328 	return _find_next_zero_bit_le(p, size, offset);
329 }
330 #define find_next_zero_bit_le find_next_zero_bit_le
331 
332 static inline int find_next_bit_le(const void *p, int size, int offset)
333 {
334 	return _find_next_bit_le(p, size, offset);
335 }
336 #define find_next_bit_le find_next_bit_le
337 
338 #endif
339 
340 #include <asm-generic/bitops/le.h>
341 
342 /*
343  * Ext2 is defined to use little-endian byte ordering.
344  */
345 #include <asm-generic/bitops/ext2-atomic-setbit.h>
346 
347 #endif /* __KERNEL__ */
348 
349 #endif /* _ARM_BITOPS_H */
350