xref: /linux/arch/arm/crypto/aes-neonbs-glue.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Bit sliced AES using NEON instructions
3  *
4  * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <asm/neon.h>
12 #include <crypto/aes.h>
13 #include <crypto/cbc.h>
14 #include <crypto/internal/simd.h>
15 #include <crypto/internal/skcipher.h>
16 #include <crypto/xts.h>
17 #include <linux/module.h>
18 
19 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
20 MODULE_LICENSE("GPL v2");
21 
22 MODULE_ALIAS_CRYPTO("ecb(aes)");
23 MODULE_ALIAS_CRYPTO("cbc(aes)");
24 MODULE_ALIAS_CRYPTO("ctr(aes)");
25 MODULE_ALIAS_CRYPTO("xts(aes)");
26 
27 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
28 
29 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
30 				  int rounds, int blocks);
31 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
32 				  int rounds, int blocks);
33 
34 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
35 				  int rounds, int blocks, u8 iv[]);
36 
37 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
38 				  int rounds, int blocks, u8 ctr[], u8 final[]);
39 
40 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
41 				  int rounds, int blocks, u8 iv[]);
42 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
43 				  int rounds, int blocks, u8 iv[]);
44 
45 struct aesbs_ctx {
46 	int	rounds;
47 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE);
48 };
49 
50 struct aesbs_cbc_ctx {
51 	struct aesbs_ctx	key;
52 	struct crypto_cipher	*enc_tfm;
53 };
54 
55 struct aesbs_xts_ctx {
56 	struct aesbs_ctx	key;
57 	struct crypto_cipher	*tweak_tfm;
58 };
59 
60 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
61 			unsigned int key_len)
62 {
63 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
64 	struct crypto_aes_ctx rk;
65 	int err;
66 
67 	err = crypto_aes_expand_key(&rk, in_key, key_len);
68 	if (err)
69 		return err;
70 
71 	ctx->rounds = 6 + key_len / 4;
72 
73 	kernel_neon_begin();
74 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
75 	kernel_neon_end();
76 
77 	return 0;
78 }
79 
80 static int __ecb_crypt(struct skcipher_request *req,
81 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
82 				  int rounds, int blocks))
83 {
84 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
85 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
86 	struct skcipher_walk walk;
87 	int err;
88 
89 	err = skcipher_walk_virt(&walk, req, true);
90 
91 	kernel_neon_begin();
92 	while (walk.nbytes >= AES_BLOCK_SIZE) {
93 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
94 
95 		if (walk.nbytes < walk.total)
96 			blocks = round_down(blocks,
97 					    walk.stride / AES_BLOCK_SIZE);
98 
99 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
100 		   ctx->rounds, blocks);
101 		err = skcipher_walk_done(&walk,
102 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
103 	}
104 	kernel_neon_end();
105 
106 	return err;
107 }
108 
109 static int ecb_encrypt(struct skcipher_request *req)
110 {
111 	return __ecb_crypt(req, aesbs_ecb_encrypt);
112 }
113 
114 static int ecb_decrypt(struct skcipher_request *req)
115 {
116 	return __ecb_crypt(req, aesbs_ecb_decrypt);
117 }
118 
119 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
120 			    unsigned int key_len)
121 {
122 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
123 	struct crypto_aes_ctx rk;
124 	int err;
125 
126 	err = crypto_aes_expand_key(&rk, in_key, key_len);
127 	if (err)
128 		return err;
129 
130 	ctx->key.rounds = 6 + key_len / 4;
131 
132 	kernel_neon_begin();
133 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
134 	kernel_neon_end();
135 
136 	return crypto_cipher_setkey(ctx->enc_tfm, in_key, key_len);
137 }
138 
139 static void cbc_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
140 {
141 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
142 
143 	crypto_cipher_encrypt_one(ctx->enc_tfm, dst, src);
144 }
145 
146 static int cbc_encrypt(struct skcipher_request *req)
147 {
148 	return crypto_cbc_encrypt_walk(req, cbc_encrypt_one);
149 }
150 
151 static int cbc_decrypt(struct skcipher_request *req)
152 {
153 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
154 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
155 	struct skcipher_walk walk;
156 	int err;
157 
158 	err = skcipher_walk_virt(&walk, req, true);
159 
160 	kernel_neon_begin();
161 	while (walk.nbytes >= AES_BLOCK_SIZE) {
162 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
163 
164 		if (walk.nbytes < walk.total)
165 			blocks = round_down(blocks,
166 					    walk.stride / AES_BLOCK_SIZE);
167 
168 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
169 				  ctx->key.rk, ctx->key.rounds, blocks,
170 				  walk.iv);
171 		err = skcipher_walk_done(&walk,
172 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
173 	}
174 	kernel_neon_end();
175 
176 	return err;
177 }
178 
179 static int cbc_init(struct crypto_tfm *tfm)
180 {
181 	struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm);
182 
183 	ctx->enc_tfm = crypto_alloc_cipher("aes", 0, 0);
184 	if (IS_ERR(ctx->enc_tfm))
185 		return PTR_ERR(ctx->enc_tfm);
186 	return 0;
187 }
188 
189 static void cbc_exit(struct crypto_tfm *tfm)
190 {
191 	struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm);
192 
193 	crypto_free_cipher(ctx->enc_tfm);
194 }
195 
196 static int ctr_encrypt(struct skcipher_request *req)
197 {
198 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
199 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
200 	struct skcipher_walk walk;
201 	u8 buf[AES_BLOCK_SIZE];
202 	int err;
203 
204 	err = skcipher_walk_virt(&walk, req, true);
205 
206 	kernel_neon_begin();
207 	while (walk.nbytes > 0) {
208 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
209 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
210 
211 		if (walk.nbytes < walk.total) {
212 			blocks = round_down(blocks,
213 					    walk.stride / AES_BLOCK_SIZE);
214 			final = NULL;
215 		}
216 
217 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
218 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
219 
220 		if (final) {
221 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
222 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
223 
224 			if (dst != src)
225 				memcpy(dst, src, walk.total % AES_BLOCK_SIZE);
226 			crypto_xor(dst, final, walk.total % AES_BLOCK_SIZE);
227 
228 			err = skcipher_walk_done(&walk, 0);
229 			break;
230 		}
231 		err = skcipher_walk_done(&walk,
232 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
233 	}
234 	kernel_neon_end();
235 
236 	return err;
237 }
238 
239 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
240 			    unsigned int key_len)
241 {
242 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
243 	int err;
244 
245 	err = xts_verify_key(tfm, in_key, key_len);
246 	if (err)
247 		return err;
248 
249 	key_len /= 2;
250 	err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len);
251 	if (err)
252 		return err;
253 
254 	return aesbs_setkey(tfm, in_key, key_len);
255 }
256 
257 static int xts_init(struct crypto_tfm *tfm)
258 {
259 	struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm);
260 
261 	ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0);
262 	if (IS_ERR(ctx->tweak_tfm))
263 		return PTR_ERR(ctx->tweak_tfm);
264 	return 0;
265 }
266 
267 static void xts_exit(struct crypto_tfm *tfm)
268 {
269 	struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm);
270 
271 	crypto_free_cipher(ctx->tweak_tfm);
272 }
273 
274 static int __xts_crypt(struct skcipher_request *req,
275 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
276 				  int rounds, int blocks, u8 iv[]))
277 {
278 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
279 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
280 	struct skcipher_walk walk;
281 	int err;
282 
283 	err = skcipher_walk_virt(&walk, req, true);
284 
285 	crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv);
286 
287 	kernel_neon_begin();
288 	while (walk.nbytes >= AES_BLOCK_SIZE) {
289 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
290 
291 		if (walk.nbytes < walk.total)
292 			blocks = round_down(blocks,
293 					    walk.stride / AES_BLOCK_SIZE);
294 
295 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
296 		   ctx->key.rounds, blocks, walk.iv);
297 		err = skcipher_walk_done(&walk,
298 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
299 	}
300 	kernel_neon_end();
301 
302 	return err;
303 }
304 
305 static int xts_encrypt(struct skcipher_request *req)
306 {
307 	return __xts_crypt(req, aesbs_xts_encrypt);
308 }
309 
310 static int xts_decrypt(struct skcipher_request *req)
311 {
312 	return __xts_crypt(req, aesbs_xts_decrypt);
313 }
314 
315 static struct skcipher_alg aes_algs[] = { {
316 	.base.cra_name		= "__ecb(aes)",
317 	.base.cra_driver_name	= "__ecb-aes-neonbs",
318 	.base.cra_priority	= 250,
319 	.base.cra_blocksize	= AES_BLOCK_SIZE,
320 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
321 	.base.cra_module	= THIS_MODULE,
322 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
323 
324 	.min_keysize		= AES_MIN_KEY_SIZE,
325 	.max_keysize		= AES_MAX_KEY_SIZE,
326 	.walksize		= 8 * AES_BLOCK_SIZE,
327 	.setkey			= aesbs_setkey,
328 	.encrypt		= ecb_encrypt,
329 	.decrypt		= ecb_decrypt,
330 }, {
331 	.base.cra_name		= "__cbc(aes)",
332 	.base.cra_driver_name	= "__cbc-aes-neonbs",
333 	.base.cra_priority	= 250,
334 	.base.cra_blocksize	= AES_BLOCK_SIZE,
335 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
336 	.base.cra_module	= THIS_MODULE,
337 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
338 	.base.cra_init		= cbc_init,
339 	.base.cra_exit		= cbc_exit,
340 
341 	.min_keysize		= AES_MIN_KEY_SIZE,
342 	.max_keysize		= AES_MAX_KEY_SIZE,
343 	.walksize		= 8 * AES_BLOCK_SIZE,
344 	.ivsize			= AES_BLOCK_SIZE,
345 	.setkey			= aesbs_cbc_setkey,
346 	.encrypt		= cbc_encrypt,
347 	.decrypt		= cbc_decrypt,
348 }, {
349 	.base.cra_name		= "__ctr(aes)",
350 	.base.cra_driver_name	= "__ctr-aes-neonbs",
351 	.base.cra_priority	= 250,
352 	.base.cra_blocksize	= 1,
353 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
354 	.base.cra_module	= THIS_MODULE,
355 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
356 
357 	.min_keysize		= AES_MIN_KEY_SIZE,
358 	.max_keysize		= AES_MAX_KEY_SIZE,
359 	.chunksize		= AES_BLOCK_SIZE,
360 	.walksize		= 8 * AES_BLOCK_SIZE,
361 	.ivsize			= AES_BLOCK_SIZE,
362 	.setkey			= aesbs_setkey,
363 	.encrypt		= ctr_encrypt,
364 	.decrypt		= ctr_encrypt,
365 }, {
366 	.base.cra_name		= "__xts(aes)",
367 	.base.cra_driver_name	= "__xts-aes-neonbs",
368 	.base.cra_priority	= 250,
369 	.base.cra_blocksize	= AES_BLOCK_SIZE,
370 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
371 	.base.cra_module	= THIS_MODULE,
372 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
373 	.base.cra_init		= xts_init,
374 	.base.cra_exit		= xts_exit,
375 
376 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
377 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
378 	.walksize		= 8 * AES_BLOCK_SIZE,
379 	.ivsize			= AES_BLOCK_SIZE,
380 	.setkey			= aesbs_xts_setkey,
381 	.encrypt		= xts_encrypt,
382 	.decrypt		= xts_decrypt,
383 } };
384 
385 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
386 
387 static void aes_exit(void)
388 {
389 	int i;
390 
391 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
392 		if (aes_simd_algs[i])
393 			simd_skcipher_free(aes_simd_algs[i]);
394 
395 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
396 }
397 
398 static int __init aes_init(void)
399 {
400 	struct simd_skcipher_alg *simd;
401 	const char *basename;
402 	const char *algname;
403 	const char *drvname;
404 	int err;
405 	int i;
406 
407 	if (!(elf_hwcap & HWCAP_NEON))
408 		return -ENODEV;
409 
410 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
411 	if (err)
412 		return err;
413 
414 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
415 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
416 			continue;
417 
418 		algname = aes_algs[i].base.cra_name + 2;
419 		drvname = aes_algs[i].base.cra_driver_name + 2;
420 		basename = aes_algs[i].base.cra_driver_name;
421 		simd = simd_skcipher_create_compat(algname, drvname, basename);
422 		err = PTR_ERR(simd);
423 		if (IS_ERR(simd))
424 			goto unregister_simds;
425 
426 		aes_simd_algs[i] = simd;
427 	}
428 	return 0;
429 
430 unregister_simds:
431 	aes_exit();
432 	return err;
433 }
434 
435 late_initcall(aes_init);
436 module_exit(aes_exit);
437