xref: /linux/arch/arm/crypto/aes-ce-glue.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * aes-ce-glue.c - wrapper code for ARMv8 AES
3  *
4  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <asm/hwcap.h>
12 #include <asm/neon.h>
13 #include <asm/hwcap.h>
14 #include <crypto/aes.h>
15 #include <crypto/ablk_helper.h>
16 #include <crypto/algapi.h>
17 #include <linux/module.h>
18 #include <crypto/xts.h>
19 
20 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
21 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
22 MODULE_LICENSE("GPL v2");
23 
24 /* defined in aes-ce-core.S */
25 asmlinkage u32 ce_aes_sub(u32 input);
26 asmlinkage void ce_aes_invert(void *dst, void *src);
27 
28 asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 				   int rounds, int blocks);
30 asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 				   int rounds, int blocks);
32 
33 asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
34 				   int rounds, int blocks, u8 iv[]);
35 asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
36 				   int rounds, int blocks, u8 iv[]);
37 
38 asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
39 				   int rounds, int blocks, u8 ctr[]);
40 
41 asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
42 				   int rounds, int blocks, u8 iv[],
43 				   u8 const rk2[], int first);
44 asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
45 				   int rounds, int blocks, u8 iv[],
46 				   u8 const rk2[], int first);
47 
48 struct aes_block {
49 	u8 b[AES_BLOCK_SIZE];
50 };
51 
52 static int num_rounds(struct crypto_aes_ctx *ctx)
53 {
54 	/*
55 	 * # of rounds specified by AES:
56 	 * 128 bit key		10 rounds
57 	 * 192 bit key		12 rounds
58 	 * 256 bit key		14 rounds
59 	 * => n byte key	=> 6 + (n/4) rounds
60 	 */
61 	return 6 + ctx->key_length / 4;
62 }
63 
64 static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
65 			    unsigned int key_len)
66 {
67 	/*
68 	 * The AES key schedule round constants
69 	 */
70 	static u8 const rcon[] = {
71 		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
72 	};
73 
74 	u32 kwords = key_len / sizeof(u32);
75 	struct aes_block *key_enc, *key_dec;
76 	int i, j;
77 
78 	if (key_len != AES_KEYSIZE_128 &&
79 	    key_len != AES_KEYSIZE_192 &&
80 	    key_len != AES_KEYSIZE_256)
81 		return -EINVAL;
82 
83 	memcpy(ctx->key_enc, in_key, key_len);
84 	ctx->key_length = key_len;
85 
86 	kernel_neon_begin();
87 	for (i = 0; i < sizeof(rcon); i++) {
88 		u32 *rki = ctx->key_enc + (i * kwords);
89 		u32 *rko = rki + kwords;
90 
91 		rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
92 		rko[0] = rko[0] ^ rki[0] ^ rcon[i];
93 		rko[1] = rko[0] ^ rki[1];
94 		rko[2] = rko[1] ^ rki[2];
95 		rko[3] = rko[2] ^ rki[3];
96 
97 		if (key_len == AES_KEYSIZE_192) {
98 			if (i >= 7)
99 				break;
100 			rko[4] = rko[3] ^ rki[4];
101 			rko[5] = rko[4] ^ rki[5];
102 		} else if (key_len == AES_KEYSIZE_256) {
103 			if (i >= 6)
104 				break;
105 			rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
106 			rko[5] = rko[4] ^ rki[5];
107 			rko[6] = rko[5] ^ rki[6];
108 			rko[7] = rko[6] ^ rki[7];
109 		}
110 	}
111 
112 	/*
113 	 * Generate the decryption keys for the Equivalent Inverse Cipher.
114 	 * This involves reversing the order of the round keys, and applying
115 	 * the Inverse Mix Columns transformation on all but the first and
116 	 * the last one.
117 	 */
118 	key_enc = (struct aes_block *)ctx->key_enc;
119 	key_dec = (struct aes_block *)ctx->key_dec;
120 	j = num_rounds(ctx);
121 
122 	key_dec[0] = key_enc[j];
123 	for (i = 1, j--; j > 0; i++, j--)
124 		ce_aes_invert(key_dec + i, key_enc + j);
125 	key_dec[i] = key_enc[0];
126 
127 	kernel_neon_end();
128 	return 0;
129 }
130 
131 static int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
132 			 unsigned int key_len)
133 {
134 	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
135 	int ret;
136 
137 	ret = ce_aes_expandkey(ctx, in_key, key_len);
138 	if (!ret)
139 		return 0;
140 
141 	tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
142 	return -EINVAL;
143 }
144 
145 struct crypto_aes_xts_ctx {
146 	struct crypto_aes_ctx key1;
147 	struct crypto_aes_ctx __aligned(8) key2;
148 };
149 
150 static int xts_set_key(struct crypto_tfm *tfm, const u8 *in_key,
151 		       unsigned int key_len)
152 {
153 	struct crypto_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
154 	int ret;
155 
156 	ret = xts_check_key(tfm, in_key, key_len);
157 	if (ret)
158 		return ret;
159 
160 	ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
161 	if (!ret)
162 		ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
163 				       key_len / 2);
164 	if (!ret)
165 		return 0;
166 
167 	tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
168 	return -EINVAL;
169 }
170 
171 static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
172 		       struct scatterlist *src, unsigned int nbytes)
173 {
174 	struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
175 	struct blkcipher_walk walk;
176 	unsigned int blocks;
177 	int err;
178 
179 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
180 	blkcipher_walk_init(&walk, dst, src, nbytes);
181 	err = blkcipher_walk_virt(desc, &walk);
182 
183 	kernel_neon_begin();
184 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
185 		ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
186 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
187 		err = blkcipher_walk_done(desc, &walk,
188 					  walk.nbytes % AES_BLOCK_SIZE);
189 	}
190 	kernel_neon_end();
191 	return err;
192 }
193 
194 static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
195 		       struct scatterlist *src, unsigned int nbytes)
196 {
197 	struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
198 	struct blkcipher_walk walk;
199 	unsigned int blocks;
200 	int err;
201 
202 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
203 	blkcipher_walk_init(&walk, dst, src, nbytes);
204 	err = blkcipher_walk_virt(desc, &walk);
205 
206 	kernel_neon_begin();
207 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
208 		ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
209 				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
210 		err = blkcipher_walk_done(desc, &walk,
211 					  walk.nbytes % AES_BLOCK_SIZE);
212 	}
213 	kernel_neon_end();
214 	return err;
215 }
216 
217 static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
218 		       struct scatterlist *src, unsigned int nbytes)
219 {
220 	struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
221 	struct blkcipher_walk walk;
222 	unsigned int blocks;
223 	int err;
224 
225 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
226 	blkcipher_walk_init(&walk, dst, src, nbytes);
227 	err = blkcipher_walk_virt(desc, &walk);
228 
229 	kernel_neon_begin();
230 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
231 		ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
232 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
233 				   walk.iv);
234 		err = blkcipher_walk_done(desc, &walk,
235 					  walk.nbytes % AES_BLOCK_SIZE);
236 	}
237 	kernel_neon_end();
238 	return err;
239 }
240 
241 static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
242 		       struct scatterlist *src, unsigned int nbytes)
243 {
244 	struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
245 	struct blkcipher_walk walk;
246 	unsigned int blocks;
247 	int err;
248 
249 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
250 	blkcipher_walk_init(&walk, dst, src, nbytes);
251 	err = blkcipher_walk_virt(desc, &walk);
252 
253 	kernel_neon_begin();
254 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
255 		ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
256 				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
257 				   walk.iv);
258 		err = blkcipher_walk_done(desc, &walk,
259 					  walk.nbytes % AES_BLOCK_SIZE);
260 	}
261 	kernel_neon_end();
262 	return err;
263 }
264 
265 static int ctr_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
266 		       struct scatterlist *src, unsigned int nbytes)
267 {
268 	struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
269 	struct blkcipher_walk walk;
270 	int err, blocks;
271 
272 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
273 	blkcipher_walk_init(&walk, dst, src, nbytes);
274 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
275 
276 	kernel_neon_begin();
277 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
278 		ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
279 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
280 				   walk.iv);
281 		nbytes -= blocks * AES_BLOCK_SIZE;
282 		if (nbytes && nbytes == walk.nbytes % AES_BLOCK_SIZE)
283 			break;
284 		err = blkcipher_walk_done(desc, &walk,
285 					  walk.nbytes % AES_BLOCK_SIZE);
286 	}
287 	if (nbytes) {
288 		u8 *tdst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
289 		u8 *tsrc = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
290 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
291 
292 		/*
293 		 * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need
294 		 * to tell aes_ctr_encrypt() to only read half a block.
295 		 */
296 		blocks = (nbytes <= 8) ? -1 : 1;
297 
298 		ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc,
299 				   num_rounds(ctx), blocks, walk.iv);
300 		memcpy(tdst, tail, nbytes);
301 		err = blkcipher_walk_done(desc, &walk, 0);
302 	}
303 	kernel_neon_end();
304 
305 	return err;
306 }
307 
308 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
309 		       struct scatterlist *src, unsigned int nbytes)
310 {
311 	struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
312 	int err, first, rounds = num_rounds(&ctx->key1);
313 	struct blkcipher_walk walk;
314 	unsigned int blocks;
315 
316 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
317 	blkcipher_walk_init(&walk, dst, src, nbytes);
318 	err = blkcipher_walk_virt(desc, &walk);
319 
320 	kernel_neon_begin();
321 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
322 		ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
323 				   (u8 *)ctx->key1.key_enc, rounds, blocks,
324 				   walk.iv, (u8 *)ctx->key2.key_enc, first);
325 		err = blkcipher_walk_done(desc, &walk,
326 					  walk.nbytes % AES_BLOCK_SIZE);
327 	}
328 	kernel_neon_end();
329 
330 	return err;
331 }
332 
333 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
334 		       struct scatterlist *src, unsigned int nbytes)
335 {
336 	struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
337 	int err, first, rounds = num_rounds(&ctx->key1);
338 	struct blkcipher_walk walk;
339 	unsigned int blocks;
340 
341 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
342 	blkcipher_walk_init(&walk, dst, src, nbytes);
343 	err = blkcipher_walk_virt(desc, &walk);
344 
345 	kernel_neon_begin();
346 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
347 		ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
348 				   (u8 *)ctx->key1.key_dec, rounds, blocks,
349 				   walk.iv, (u8 *)ctx->key2.key_enc, first);
350 		err = blkcipher_walk_done(desc, &walk,
351 					  walk.nbytes % AES_BLOCK_SIZE);
352 	}
353 	kernel_neon_end();
354 
355 	return err;
356 }
357 
358 static struct crypto_alg aes_algs[] = { {
359 	.cra_name		= "__ecb-aes-ce",
360 	.cra_driver_name	= "__driver-ecb-aes-ce",
361 	.cra_priority		= 0,
362 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
363 				  CRYPTO_ALG_INTERNAL,
364 	.cra_blocksize		= AES_BLOCK_SIZE,
365 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
366 	.cra_alignmask		= 7,
367 	.cra_type		= &crypto_blkcipher_type,
368 	.cra_module		= THIS_MODULE,
369 	.cra_blkcipher = {
370 		.min_keysize	= AES_MIN_KEY_SIZE,
371 		.max_keysize	= AES_MAX_KEY_SIZE,
372 		.ivsize		= 0,
373 		.setkey		= ce_aes_setkey,
374 		.encrypt	= ecb_encrypt,
375 		.decrypt	= ecb_decrypt,
376 	},
377 }, {
378 	.cra_name		= "__cbc-aes-ce",
379 	.cra_driver_name	= "__driver-cbc-aes-ce",
380 	.cra_priority		= 0,
381 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
382 				  CRYPTO_ALG_INTERNAL,
383 	.cra_blocksize		= AES_BLOCK_SIZE,
384 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
385 	.cra_alignmask		= 7,
386 	.cra_type		= &crypto_blkcipher_type,
387 	.cra_module		= THIS_MODULE,
388 	.cra_blkcipher = {
389 		.min_keysize	= AES_MIN_KEY_SIZE,
390 		.max_keysize	= AES_MAX_KEY_SIZE,
391 		.ivsize		= AES_BLOCK_SIZE,
392 		.setkey		= ce_aes_setkey,
393 		.encrypt	= cbc_encrypt,
394 		.decrypt	= cbc_decrypt,
395 	},
396 }, {
397 	.cra_name		= "__ctr-aes-ce",
398 	.cra_driver_name	= "__driver-ctr-aes-ce",
399 	.cra_priority		= 0,
400 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
401 				  CRYPTO_ALG_INTERNAL,
402 	.cra_blocksize		= 1,
403 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
404 	.cra_alignmask		= 7,
405 	.cra_type		= &crypto_blkcipher_type,
406 	.cra_module		= THIS_MODULE,
407 	.cra_blkcipher = {
408 		.min_keysize	= AES_MIN_KEY_SIZE,
409 		.max_keysize	= AES_MAX_KEY_SIZE,
410 		.ivsize		= AES_BLOCK_SIZE,
411 		.setkey		= ce_aes_setkey,
412 		.encrypt	= ctr_encrypt,
413 		.decrypt	= ctr_encrypt,
414 	},
415 }, {
416 	.cra_name		= "__xts-aes-ce",
417 	.cra_driver_name	= "__driver-xts-aes-ce",
418 	.cra_priority		= 0,
419 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
420 				  CRYPTO_ALG_INTERNAL,
421 	.cra_blocksize		= AES_BLOCK_SIZE,
422 	.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
423 	.cra_alignmask		= 7,
424 	.cra_type		= &crypto_blkcipher_type,
425 	.cra_module		= THIS_MODULE,
426 	.cra_blkcipher = {
427 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
428 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
429 		.ivsize		= AES_BLOCK_SIZE,
430 		.setkey		= xts_set_key,
431 		.encrypt	= xts_encrypt,
432 		.decrypt	= xts_decrypt,
433 	},
434 }, {
435 	.cra_name		= "ecb(aes)",
436 	.cra_driver_name	= "ecb-aes-ce",
437 	.cra_priority		= 300,
438 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
439 	.cra_blocksize		= AES_BLOCK_SIZE,
440 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
441 	.cra_alignmask		= 7,
442 	.cra_type		= &crypto_ablkcipher_type,
443 	.cra_module		= THIS_MODULE,
444 	.cra_init		= ablk_init,
445 	.cra_exit		= ablk_exit,
446 	.cra_ablkcipher = {
447 		.min_keysize	= AES_MIN_KEY_SIZE,
448 		.max_keysize	= AES_MAX_KEY_SIZE,
449 		.ivsize		= 0,
450 		.setkey		= ablk_set_key,
451 		.encrypt	= ablk_encrypt,
452 		.decrypt	= ablk_decrypt,
453 	}
454 }, {
455 	.cra_name		= "cbc(aes)",
456 	.cra_driver_name	= "cbc-aes-ce",
457 	.cra_priority		= 300,
458 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
459 	.cra_blocksize		= AES_BLOCK_SIZE,
460 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
461 	.cra_alignmask		= 7,
462 	.cra_type		= &crypto_ablkcipher_type,
463 	.cra_module		= THIS_MODULE,
464 	.cra_init		= ablk_init,
465 	.cra_exit		= ablk_exit,
466 	.cra_ablkcipher = {
467 		.min_keysize	= AES_MIN_KEY_SIZE,
468 		.max_keysize	= AES_MAX_KEY_SIZE,
469 		.ivsize		= AES_BLOCK_SIZE,
470 		.setkey		= ablk_set_key,
471 		.encrypt	= ablk_encrypt,
472 		.decrypt	= ablk_decrypt,
473 	}
474 }, {
475 	.cra_name		= "ctr(aes)",
476 	.cra_driver_name	= "ctr-aes-ce",
477 	.cra_priority		= 300,
478 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
479 	.cra_blocksize		= 1,
480 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
481 	.cra_alignmask		= 7,
482 	.cra_type		= &crypto_ablkcipher_type,
483 	.cra_module		= THIS_MODULE,
484 	.cra_init		= ablk_init,
485 	.cra_exit		= ablk_exit,
486 	.cra_ablkcipher = {
487 		.min_keysize	= AES_MIN_KEY_SIZE,
488 		.max_keysize	= AES_MAX_KEY_SIZE,
489 		.ivsize		= AES_BLOCK_SIZE,
490 		.setkey		= ablk_set_key,
491 		.encrypt	= ablk_encrypt,
492 		.decrypt	= ablk_decrypt,
493 	}
494 }, {
495 	.cra_name		= "xts(aes)",
496 	.cra_driver_name	= "xts-aes-ce",
497 	.cra_priority		= 300,
498 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
499 	.cra_blocksize		= AES_BLOCK_SIZE,
500 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
501 	.cra_alignmask		= 7,
502 	.cra_type		= &crypto_ablkcipher_type,
503 	.cra_module		= THIS_MODULE,
504 	.cra_init		= ablk_init,
505 	.cra_exit		= ablk_exit,
506 	.cra_ablkcipher = {
507 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
508 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
509 		.ivsize		= AES_BLOCK_SIZE,
510 		.setkey		= ablk_set_key,
511 		.encrypt	= ablk_encrypt,
512 		.decrypt	= ablk_decrypt,
513 	}
514 } };
515 
516 static int __init aes_init(void)
517 {
518 	if (!(elf_hwcap2 & HWCAP2_AES))
519 		return -ENODEV;
520 	return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs));
521 }
522 
523 static void __exit aes_exit(void)
524 {
525 	crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs));
526 }
527 
528 module_init(aes_init);
529 module_exit(aes_exit);
530