xref: /linux/arch/arm/common/bL_switcher.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3  *
4  * Created by:	Nicolas Pitre, March 2012
5  * Copyright:	(C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched/signal.h>
17 #include <uapi/linux/sched/types.h>
18 #include <linux/interrupt.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/kthread.h>
23 #include <linux/wait.h>
24 #include <linux/time.h>
25 #include <linux/clockchips.h>
26 #include <linux/hrtimer.h>
27 #include <linux/tick.h>
28 #include <linux/notifier.h>
29 #include <linux/mm.h>
30 #include <linux/mutex.h>
31 #include <linux/smp.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 #include <linux/sysfs.h>
35 #include <linux/irqchip/arm-gic.h>
36 #include <linux/moduleparam.h>
37 
38 #include <asm/smp_plat.h>
39 #include <asm/cputype.h>
40 #include <asm/suspend.h>
41 #include <asm/mcpm.h>
42 #include <asm/bL_switcher.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/power_cpu_migrate.h>
46 
47 
48 /*
49  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
50  * __attribute_const__ and we don't want the compiler to assume any
51  * constness here as the value _does_ change along some code paths.
52  */
53 
54 static int read_mpidr(void)
55 {
56 	unsigned int id;
57 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
58 	return id & MPIDR_HWID_BITMASK;
59 }
60 
61 /*
62  * bL switcher core code.
63  */
64 
65 static void bL_do_switch(void *_arg)
66 {
67 	unsigned ib_mpidr, ib_cpu, ib_cluster;
68 	long volatile handshake, **handshake_ptr = _arg;
69 
70 	pr_debug("%s\n", __func__);
71 
72 	ib_mpidr = cpu_logical_map(smp_processor_id());
73 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
74 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
75 
76 	/* Advertise our handshake location */
77 	if (handshake_ptr) {
78 		handshake = 0;
79 		*handshake_ptr = &handshake;
80 	} else
81 		handshake = -1;
82 
83 	/*
84 	 * Our state has been saved at this point.  Let's release our
85 	 * inbound CPU.
86 	 */
87 	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
88 	sev();
89 
90 	/*
91 	 * From this point, we must assume that our counterpart CPU might
92 	 * have taken over in its parallel world already, as if execution
93 	 * just returned from cpu_suspend().  It is therefore important to
94 	 * be very careful not to make any change the other guy is not
95 	 * expecting.  This is why we need stack isolation.
96 	 *
97 	 * Fancy under cover tasks could be performed here.  For now
98 	 * we have none.
99 	 */
100 
101 	/*
102 	 * Let's wait until our inbound is alive.
103 	 */
104 	while (!handshake) {
105 		wfe();
106 		smp_mb();
107 	}
108 
109 	/* Let's put ourself down. */
110 	mcpm_cpu_power_down();
111 
112 	/* should never get here */
113 	BUG();
114 }
115 
116 /*
117  * Stack isolation.  To ensure 'current' remains valid, we just use another
118  * piece of our thread's stack space which should be fairly lightly used.
119  * The selected area starts just above the thread_info structure located
120  * at the very bottom of the stack, aligned to a cache line, and indexed
121  * with the cluster number.
122  */
123 #define STACK_SIZE 512
124 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
125 static int bL_switchpoint(unsigned long _arg)
126 {
127 	unsigned int mpidr = read_mpidr();
128 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
129 	void *stack = current_thread_info() + 1;
130 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
131 	stack += clusterid * STACK_SIZE + STACK_SIZE;
132 	call_with_stack(bL_do_switch, (void *)_arg, stack);
133 	BUG();
134 }
135 
136 /*
137  * Generic switcher interface
138  */
139 
140 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
141 static int bL_switcher_cpu_pairing[NR_CPUS];
142 
143 /*
144  * bL_switch_to - Switch to a specific cluster for the current CPU
145  * @new_cluster_id: the ID of the cluster to switch to.
146  *
147  * This function must be called on the CPU to be switched.
148  * Returns 0 on success, else a negative status code.
149  */
150 static int bL_switch_to(unsigned int new_cluster_id)
151 {
152 	unsigned int mpidr, this_cpu, that_cpu;
153 	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
154 	struct completion inbound_alive;
155 	long volatile *handshake_ptr;
156 	int ipi_nr, ret;
157 
158 	this_cpu = smp_processor_id();
159 	ob_mpidr = read_mpidr();
160 	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
161 	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
162 	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
163 
164 	if (new_cluster_id == ob_cluster)
165 		return 0;
166 
167 	that_cpu = bL_switcher_cpu_pairing[this_cpu];
168 	ib_mpidr = cpu_logical_map(that_cpu);
169 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
170 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
171 
172 	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
173 		 this_cpu, ob_mpidr, ib_mpidr);
174 
175 	this_cpu = smp_processor_id();
176 
177 	/* Close the gate for our entry vectors */
178 	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
179 	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
180 
181 	/* Install our "inbound alive" notifier. */
182 	init_completion(&inbound_alive);
183 	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
184 	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
185 	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
186 
187 	/*
188 	 * Let's wake up the inbound CPU now in case it requires some delay
189 	 * to come online, but leave it gated in our entry vector code.
190 	 */
191 	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
192 	if (ret) {
193 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
194 		return ret;
195 	}
196 
197 	/*
198 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
199 	 * in a possible WFI, such as in bL_power_down().
200 	 */
201 	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
202 
203 	/*
204 	 * Wait for the inbound to come up.  This allows for other
205 	 * tasks to be scheduled in the mean time.
206 	 */
207 	wait_for_completion(&inbound_alive);
208 	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
209 
210 	/*
211 	 * From this point we are entering the switch critical zone
212 	 * and can't take any interrupts anymore.
213 	 */
214 	local_irq_disable();
215 	local_fiq_disable();
216 	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
217 
218 	/* redirect GIC's SGIs to our counterpart */
219 	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
220 
221 	tick_suspend_local();
222 
223 	ret = cpu_pm_enter();
224 
225 	/* we can not tolerate errors at this point */
226 	if (ret)
227 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
228 
229 	/* Swap the physical CPUs in the logical map for this logical CPU. */
230 	cpu_logical_map(this_cpu) = ib_mpidr;
231 	cpu_logical_map(that_cpu) = ob_mpidr;
232 
233 	/* Let's do the actual CPU switch. */
234 	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
235 	if (ret > 0)
236 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
237 
238 	/* We are executing on the inbound CPU at this point */
239 	mpidr = read_mpidr();
240 	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
241 	BUG_ON(mpidr != ib_mpidr);
242 
243 	mcpm_cpu_powered_up();
244 
245 	ret = cpu_pm_exit();
246 
247 	tick_resume_local();
248 
249 	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
250 	local_fiq_enable();
251 	local_irq_enable();
252 
253 	*handshake_ptr = 1;
254 	dsb_sev();
255 
256 	if (ret)
257 		pr_err("%s exiting with error %d\n", __func__, ret);
258 	return ret;
259 }
260 
261 struct bL_thread {
262 	spinlock_t lock;
263 	struct task_struct *task;
264 	wait_queue_head_t wq;
265 	int wanted_cluster;
266 	struct completion started;
267 	bL_switch_completion_handler completer;
268 	void *completer_cookie;
269 };
270 
271 static struct bL_thread bL_threads[NR_CPUS];
272 
273 static int bL_switcher_thread(void *arg)
274 {
275 	struct bL_thread *t = arg;
276 	struct sched_param param = { .sched_priority = 1 };
277 	int cluster;
278 	bL_switch_completion_handler completer;
279 	void *completer_cookie;
280 
281 	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
282 	complete(&t->started);
283 
284 	do {
285 		if (signal_pending(current))
286 			flush_signals(current);
287 		wait_event_interruptible(t->wq,
288 				t->wanted_cluster != -1 ||
289 				kthread_should_stop());
290 
291 		spin_lock(&t->lock);
292 		cluster = t->wanted_cluster;
293 		completer = t->completer;
294 		completer_cookie = t->completer_cookie;
295 		t->wanted_cluster = -1;
296 		t->completer = NULL;
297 		spin_unlock(&t->lock);
298 
299 		if (cluster != -1) {
300 			bL_switch_to(cluster);
301 
302 			if (completer)
303 				completer(completer_cookie);
304 		}
305 	} while (!kthread_should_stop());
306 
307 	return 0;
308 }
309 
310 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
311 {
312 	struct task_struct *task;
313 
314 	task = kthread_create_on_node(bL_switcher_thread, arg,
315 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
316 	if (!IS_ERR(task)) {
317 		kthread_bind(task, cpu);
318 		wake_up_process(task);
319 	} else
320 		pr_err("%s failed for CPU %d\n", __func__, cpu);
321 	return task;
322 }
323 
324 /*
325  * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
326  *      with completion notification via a callback
327  *
328  * @cpu: the CPU to switch
329  * @new_cluster_id: the ID of the cluster to switch to.
330  * @completer: switch completion callback.  if non-NULL,
331  *	@completer(@completer_cookie) will be called on completion of
332  *	the switch, in non-atomic context.
333  * @completer_cookie: opaque context argument for @completer.
334  *
335  * This function causes a cluster switch on the given CPU by waking up
336  * the appropriate switcher thread.  This function may or may not return
337  * before the switch has occurred.
338  *
339  * If a @completer callback function is supplied, it will be called when
340  * the switch is complete.  This can be used to determine asynchronously
341  * when the switch is complete, regardless of when bL_switch_request()
342  * returns.  When @completer is supplied, no new switch request is permitted
343  * for the affected CPU until after the switch is complete, and @completer
344  * has returned.
345  */
346 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
347 			 bL_switch_completion_handler completer,
348 			 void *completer_cookie)
349 {
350 	struct bL_thread *t;
351 
352 	if (cpu >= ARRAY_SIZE(bL_threads)) {
353 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
354 		return -EINVAL;
355 	}
356 
357 	t = &bL_threads[cpu];
358 
359 	if (IS_ERR(t->task))
360 		return PTR_ERR(t->task);
361 	if (!t->task)
362 		return -ESRCH;
363 
364 	spin_lock(&t->lock);
365 	if (t->completer) {
366 		spin_unlock(&t->lock);
367 		return -EBUSY;
368 	}
369 	t->completer = completer;
370 	t->completer_cookie = completer_cookie;
371 	t->wanted_cluster = new_cluster_id;
372 	spin_unlock(&t->lock);
373 	wake_up(&t->wq);
374 	return 0;
375 }
376 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
377 
378 /*
379  * Activation and configuration code.
380  */
381 
382 static DEFINE_MUTEX(bL_switcher_activation_lock);
383 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
384 static unsigned int bL_switcher_active;
385 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
386 static cpumask_t bL_switcher_removed_logical_cpus;
387 
388 int bL_switcher_register_notifier(struct notifier_block *nb)
389 {
390 	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
391 }
392 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
393 
394 int bL_switcher_unregister_notifier(struct notifier_block *nb)
395 {
396 	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
397 }
398 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
399 
400 static int bL_activation_notify(unsigned long val)
401 {
402 	int ret;
403 
404 	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
405 	if (ret & NOTIFY_STOP_MASK)
406 		pr_err("%s: notifier chain failed with status 0x%x\n",
407 			__func__, ret);
408 	return notifier_to_errno(ret);
409 }
410 
411 static void bL_switcher_restore_cpus(void)
412 {
413 	int i;
414 
415 	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
416 		struct device *cpu_dev = get_cpu_device(i);
417 		int ret = device_online(cpu_dev);
418 		if (ret)
419 			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
420 	}
421 }
422 
423 static int bL_switcher_halve_cpus(void)
424 {
425 	int i, j, cluster_0, gic_id, ret;
426 	unsigned int cpu, cluster, mask;
427 	cpumask_t available_cpus;
428 
429 	/* First pass to validate what we have */
430 	mask = 0;
431 	for_each_online_cpu(i) {
432 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
433 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
434 		if (cluster >= 2) {
435 			pr_err("%s: only dual cluster systems are supported\n", __func__);
436 			return -EINVAL;
437 		}
438 		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
439 			return -EINVAL;
440 		mask |= (1 << cluster);
441 	}
442 	if (mask != 3) {
443 		pr_err("%s: no CPU pairing possible\n", __func__);
444 		return -EINVAL;
445 	}
446 
447 	/*
448 	 * Now let's do the pairing.  We match each CPU with another CPU
449 	 * from a different cluster.  To get a uniform scheduling behavior
450 	 * without fiddling with CPU topology and compute capacity data,
451 	 * we'll use logical CPUs initially belonging to the same cluster.
452 	 */
453 	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
454 	cpumask_copy(&available_cpus, cpu_online_mask);
455 	cluster_0 = -1;
456 	for_each_cpu(i, &available_cpus) {
457 		int match = -1;
458 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
459 		if (cluster_0 == -1)
460 			cluster_0 = cluster;
461 		if (cluster != cluster_0)
462 			continue;
463 		cpumask_clear_cpu(i, &available_cpus);
464 		for_each_cpu(j, &available_cpus) {
465 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
466 			/*
467 			 * Let's remember the last match to create "odd"
468 			 * pairings on purpose in order for other code not
469 			 * to assume any relation between physical and
470 			 * logical CPU numbers.
471 			 */
472 			if (cluster != cluster_0)
473 				match = j;
474 		}
475 		if (match != -1) {
476 			bL_switcher_cpu_pairing[i] = match;
477 			cpumask_clear_cpu(match, &available_cpus);
478 			pr_info("CPU%d paired with CPU%d\n", i, match);
479 		}
480 	}
481 
482 	/*
483 	 * Now we disable the unwanted CPUs i.e. everything that has no
484 	 * pairing information (that includes the pairing counterparts).
485 	 */
486 	cpumask_clear(&bL_switcher_removed_logical_cpus);
487 	for_each_online_cpu(i) {
488 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
489 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
490 
491 		/* Let's take note of the GIC ID for this CPU */
492 		gic_id = gic_get_cpu_id(i);
493 		if (gic_id < 0) {
494 			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
495 			bL_switcher_restore_cpus();
496 			return -EINVAL;
497 		}
498 		bL_gic_id[cpu][cluster] = gic_id;
499 		pr_info("GIC ID for CPU %u cluster %u is %u\n",
500 			cpu, cluster, gic_id);
501 
502 		if (bL_switcher_cpu_pairing[i] != -1) {
503 			bL_switcher_cpu_original_cluster[i] = cluster;
504 			continue;
505 		}
506 
507 		ret = device_offline(get_cpu_device(i));
508 		if (ret) {
509 			bL_switcher_restore_cpus();
510 			return ret;
511 		}
512 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
513 	}
514 
515 	return 0;
516 }
517 
518 /* Determine the logical CPU a given physical CPU is grouped on. */
519 int bL_switcher_get_logical_index(u32 mpidr)
520 {
521 	int cpu;
522 
523 	if (!bL_switcher_active)
524 		return -EUNATCH;
525 
526 	mpidr &= MPIDR_HWID_BITMASK;
527 	for_each_online_cpu(cpu) {
528 		int pairing = bL_switcher_cpu_pairing[cpu];
529 		if (pairing == -1)
530 			continue;
531 		if ((mpidr == cpu_logical_map(cpu)) ||
532 		    (mpidr == cpu_logical_map(pairing)))
533 			return cpu;
534 	}
535 	return -EINVAL;
536 }
537 
538 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
539 {
540 	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
541 }
542 
543 int bL_switcher_trace_trigger(void)
544 {
545 	int ret;
546 
547 	preempt_disable();
548 
549 	bL_switcher_trace_trigger_cpu(NULL);
550 	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
551 
552 	preempt_enable();
553 
554 	return ret;
555 }
556 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
557 
558 static int bL_switcher_enable(void)
559 {
560 	int cpu, ret;
561 
562 	mutex_lock(&bL_switcher_activation_lock);
563 	lock_device_hotplug();
564 	if (bL_switcher_active) {
565 		unlock_device_hotplug();
566 		mutex_unlock(&bL_switcher_activation_lock);
567 		return 0;
568 	}
569 
570 	pr_info("big.LITTLE switcher initializing\n");
571 
572 	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
573 	if (ret)
574 		goto error;
575 
576 	ret = bL_switcher_halve_cpus();
577 	if (ret)
578 		goto error;
579 
580 	bL_switcher_trace_trigger();
581 
582 	for_each_online_cpu(cpu) {
583 		struct bL_thread *t = &bL_threads[cpu];
584 		spin_lock_init(&t->lock);
585 		init_waitqueue_head(&t->wq);
586 		init_completion(&t->started);
587 		t->wanted_cluster = -1;
588 		t->task = bL_switcher_thread_create(cpu, t);
589 	}
590 
591 	bL_switcher_active = 1;
592 	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
593 	pr_info("big.LITTLE switcher initialized\n");
594 	goto out;
595 
596 error:
597 	pr_warn("big.LITTLE switcher initialization failed\n");
598 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
599 
600 out:
601 	unlock_device_hotplug();
602 	mutex_unlock(&bL_switcher_activation_lock);
603 	return ret;
604 }
605 
606 #ifdef CONFIG_SYSFS
607 
608 static void bL_switcher_disable(void)
609 {
610 	unsigned int cpu, cluster;
611 	struct bL_thread *t;
612 	struct task_struct *task;
613 
614 	mutex_lock(&bL_switcher_activation_lock);
615 	lock_device_hotplug();
616 
617 	if (!bL_switcher_active)
618 		goto out;
619 
620 	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
621 		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
622 		goto out;
623 	}
624 
625 	bL_switcher_active = 0;
626 
627 	/*
628 	 * To deactivate the switcher, we must shut down the switcher
629 	 * threads to prevent any other requests from being accepted.
630 	 * Then, if the final cluster for given logical CPU is not the
631 	 * same as the original one, we'll recreate a switcher thread
632 	 * just for the purpose of switching the CPU back without any
633 	 * possibility for interference from external requests.
634 	 */
635 	for_each_online_cpu(cpu) {
636 		t = &bL_threads[cpu];
637 		task = t->task;
638 		t->task = NULL;
639 		if (!task || IS_ERR(task))
640 			continue;
641 		kthread_stop(task);
642 		/* no more switch may happen on this CPU at this point */
643 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
644 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
645 			continue;
646 		init_completion(&t->started);
647 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
648 		task = bL_switcher_thread_create(cpu, t);
649 		if (!IS_ERR(task)) {
650 			wait_for_completion(&t->started);
651 			kthread_stop(task);
652 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
653 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
654 				continue;
655 		}
656 		/* If execution gets here, we're in trouble. */
657 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
658 			__func__, cpu);
659 		pr_crit("%s: CPU %d can't be restored\n",
660 			__func__, bL_switcher_cpu_pairing[cpu]);
661 		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
662 				  &bL_switcher_removed_logical_cpus);
663 	}
664 
665 	bL_switcher_restore_cpus();
666 	bL_switcher_trace_trigger();
667 
668 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
669 
670 out:
671 	unlock_device_hotplug();
672 	mutex_unlock(&bL_switcher_activation_lock);
673 }
674 
675 static ssize_t bL_switcher_active_show(struct kobject *kobj,
676 		struct kobj_attribute *attr, char *buf)
677 {
678 	return sprintf(buf, "%u\n", bL_switcher_active);
679 }
680 
681 static ssize_t bL_switcher_active_store(struct kobject *kobj,
682 		struct kobj_attribute *attr, const char *buf, size_t count)
683 {
684 	int ret;
685 
686 	switch (buf[0]) {
687 	case '0':
688 		bL_switcher_disable();
689 		ret = 0;
690 		break;
691 	case '1':
692 		ret = bL_switcher_enable();
693 		break;
694 	default:
695 		ret = -EINVAL;
696 	}
697 
698 	return (ret >= 0) ? count : ret;
699 }
700 
701 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
702 		struct kobj_attribute *attr, const char *buf, size_t count)
703 {
704 	int ret = bL_switcher_trace_trigger();
705 
706 	return ret ? ret : count;
707 }
708 
709 static struct kobj_attribute bL_switcher_active_attr =
710 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
711 
712 static struct kobj_attribute bL_switcher_trace_trigger_attr =
713 	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
714 
715 static struct attribute *bL_switcher_attrs[] = {
716 	&bL_switcher_active_attr.attr,
717 	&bL_switcher_trace_trigger_attr.attr,
718 	NULL,
719 };
720 
721 static struct attribute_group bL_switcher_attr_group = {
722 	.attrs = bL_switcher_attrs,
723 };
724 
725 static struct kobject *bL_switcher_kobj;
726 
727 static int __init bL_switcher_sysfs_init(void)
728 {
729 	int ret;
730 
731 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
732 	if (!bL_switcher_kobj)
733 		return -ENOMEM;
734 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
735 	if (ret)
736 		kobject_put(bL_switcher_kobj);
737 	return ret;
738 }
739 
740 #endif  /* CONFIG_SYSFS */
741 
742 bool bL_switcher_get_enabled(void)
743 {
744 	mutex_lock(&bL_switcher_activation_lock);
745 
746 	return bL_switcher_active;
747 }
748 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
749 
750 void bL_switcher_put_enabled(void)
751 {
752 	mutex_unlock(&bL_switcher_activation_lock);
753 }
754 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
755 
756 /*
757  * Veto any CPU hotplug operation on those CPUs we've removed
758  * while the switcher is active.
759  * We're just not ready to deal with that given the trickery involved.
760  */
761 static int bL_switcher_cpu_pre(unsigned int cpu)
762 {
763 	int pairing;
764 
765 	if (!bL_switcher_active)
766 		return 0;
767 
768 	pairing = bL_switcher_cpu_pairing[cpu];
769 
770 	if (pairing == -1)
771 		return -EINVAL;
772 	return 0;
773 }
774 
775 static bool no_bL_switcher;
776 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
777 
778 static int __init bL_switcher_init(void)
779 {
780 	int ret;
781 
782 	if (!mcpm_is_available())
783 		return -ENODEV;
784 
785 	cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
786 				  bL_switcher_cpu_pre, NULL);
787 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
788 					NULL, bL_switcher_cpu_pre);
789 	if (ret < 0) {
790 		cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
791 		pr_err("bL_switcher: Failed to allocate a hotplug state\n");
792 		return ret;
793 	}
794 	if (!no_bL_switcher) {
795 		ret = bL_switcher_enable();
796 		if (ret)
797 			return ret;
798 	}
799 
800 #ifdef CONFIG_SYSFS
801 	ret = bL_switcher_sysfs_init();
802 	if (ret)
803 		pr_err("%s: unable to create sysfs entry\n", __func__);
804 #endif
805 
806 	return 0;
807 }
808 
809 late_initcall(bL_switcher_init);
810