1 /* 2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/atomic.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/sched.h> 17 #include <linux/interrupt.h> 18 #include <linux/cpu_pm.h> 19 #include <linux/cpu.h> 20 #include <linux/cpumask.h> 21 #include <linux/kthread.h> 22 #include <linux/wait.h> 23 #include <linux/time.h> 24 #include <linux/clockchips.h> 25 #include <linux/hrtimer.h> 26 #include <linux/tick.h> 27 #include <linux/notifier.h> 28 #include <linux/mm.h> 29 #include <linux/mutex.h> 30 #include <linux/smp.h> 31 #include <linux/spinlock.h> 32 #include <linux/string.h> 33 #include <linux/sysfs.h> 34 #include <linux/irqchip/arm-gic.h> 35 #include <linux/moduleparam.h> 36 37 #include <asm/smp_plat.h> 38 #include <asm/cputype.h> 39 #include <asm/suspend.h> 40 #include <asm/mcpm.h> 41 #include <asm/bL_switcher.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/power_cpu_migrate.h> 45 46 47 /* 48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have 49 * __attribute_const__ and we don't want the compiler to assume any 50 * constness here as the value _does_ change along some code paths. 51 */ 52 53 static int read_mpidr(void) 54 { 55 unsigned int id; 56 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); 57 return id & MPIDR_HWID_BITMASK; 58 } 59 60 /* 61 * Get a global nanosecond time stamp for tracing. 62 */ 63 static s64 get_ns(void) 64 { 65 struct timespec ts; 66 getnstimeofday(&ts); 67 return timespec_to_ns(&ts); 68 } 69 70 /* 71 * bL switcher core code. 72 */ 73 74 static void bL_do_switch(void *_arg) 75 { 76 unsigned ib_mpidr, ib_cpu, ib_cluster; 77 long volatile handshake, **handshake_ptr = _arg; 78 79 pr_debug("%s\n", __func__); 80 81 ib_mpidr = cpu_logical_map(smp_processor_id()); 82 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 83 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 84 85 /* Advertise our handshake location */ 86 if (handshake_ptr) { 87 handshake = 0; 88 *handshake_ptr = &handshake; 89 } else 90 handshake = -1; 91 92 /* 93 * Our state has been saved at this point. Let's release our 94 * inbound CPU. 95 */ 96 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); 97 sev(); 98 99 /* 100 * From this point, we must assume that our counterpart CPU might 101 * have taken over in its parallel world already, as if execution 102 * just returned from cpu_suspend(). It is therefore important to 103 * be very careful not to make any change the other guy is not 104 * expecting. This is why we need stack isolation. 105 * 106 * Fancy under cover tasks could be performed here. For now 107 * we have none. 108 */ 109 110 /* 111 * Let's wait until our inbound is alive. 112 */ 113 while (!handshake) { 114 wfe(); 115 smp_mb(); 116 } 117 118 /* Let's put ourself down. */ 119 mcpm_cpu_power_down(); 120 121 /* should never get here */ 122 BUG(); 123 } 124 125 /* 126 * Stack isolation. To ensure 'current' remains valid, we just use another 127 * piece of our thread's stack space which should be fairly lightly used. 128 * The selected area starts just above the thread_info structure located 129 * at the very bottom of the stack, aligned to a cache line, and indexed 130 * with the cluster number. 131 */ 132 #define STACK_SIZE 512 133 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 134 static int bL_switchpoint(unsigned long _arg) 135 { 136 unsigned int mpidr = read_mpidr(); 137 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 138 void *stack = current_thread_info() + 1; 139 stack = PTR_ALIGN(stack, L1_CACHE_BYTES); 140 stack += clusterid * STACK_SIZE + STACK_SIZE; 141 call_with_stack(bL_do_switch, (void *)_arg, stack); 142 BUG(); 143 } 144 145 /* 146 * Generic switcher interface 147 */ 148 149 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; 150 static int bL_switcher_cpu_pairing[NR_CPUS]; 151 152 /* 153 * bL_switch_to - Switch to a specific cluster for the current CPU 154 * @new_cluster_id: the ID of the cluster to switch to. 155 * 156 * This function must be called on the CPU to be switched. 157 * Returns 0 on success, else a negative status code. 158 */ 159 static int bL_switch_to(unsigned int new_cluster_id) 160 { 161 unsigned int mpidr, this_cpu, that_cpu; 162 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; 163 struct completion inbound_alive; 164 struct tick_device *tdev; 165 enum clock_event_mode tdev_mode; 166 long volatile *handshake_ptr; 167 int ipi_nr, ret; 168 169 this_cpu = smp_processor_id(); 170 ob_mpidr = read_mpidr(); 171 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); 172 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); 173 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); 174 175 if (new_cluster_id == ob_cluster) 176 return 0; 177 178 that_cpu = bL_switcher_cpu_pairing[this_cpu]; 179 ib_mpidr = cpu_logical_map(that_cpu); 180 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 181 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 182 183 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", 184 this_cpu, ob_mpidr, ib_mpidr); 185 186 this_cpu = smp_processor_id(); 187 188 /* Close the gate for our entry vectors */ 189 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); 190 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); 191 192 /* Install our "inbound alive" notifier. */ 193 init_completion(&inbound_alive); 194 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); 195 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); 196 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); 197 198 /* 199 * Let's wake up the inbound CPU now in case it requires some delay 200 * to come online, but leave it gated in our entry vector code. 201 */ 202 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); 203 if (ret) { 204 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); 205 return ret; 206 } 207 208 /* 209 * Raise a SGI on the inbound CPU to make sure it doesn't stall 210 * in a possible WFI, such as in bL_power_down(). 211 */ 212 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); 213 214 /* 215 * Wait for the inbound to come up. This allows for other 216 * tasks to be scheduled in the mean time. 217 */ 218 wait_for_completion(&inbound_alive); 219 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); 220 221 /* 222 * From this point we are entering the switch critical zone 223 * and can't take any interrupts anymore. 224 */ 225 local_irq_disable(); 226 local_fiq_disable(); 227 trace_cpu_migrate_begin(get_ns(), ob_mpidr); 228 229 /* redirect GIC's SGIs to our counterpart */ 230 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); 231 232 tdev = tick_get_device(this_cpu); 233 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) 234 tdev = NULL; 235 if (tdev) { 236 tdev_mode = tdev->evtdev->mode; 237 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); 238 } 239 240 ret = cpu_pm_enter(); 241 242 /* we can not tolerate errors at this point */ 243 if (ret) 244 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); 245 246 /* Swap the physical CPUs in the logical map for this logical CPU. */ 247 cpu_logical_map(this_cpu) = ib_mpidr; 248 cpu_logical_map(that_cpu) = ob_mpidr; 249 250 /* Let's do the actual CPU switch. */ 251 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); 252 if (ret > 0) 253 panic("%s: cpu_suspend() returned %d\n", __func__, ret); 254 255 /* We are executing on the inbound CPU at this point */ 256 mpidr = read_mpidr(); 257 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); 258 BUG_ON(mpidr != ib_mpidr); 259 260 mcpm_cpu_powered_up(); 261 262 ret = cpu_pm_exit(); 263 264 if (tdev) { 265 clockevents_set_mode(tdev->evtdev, tdev_mode); 266 clockevents_program_event(tdev->evtdev, 267 tdev->evtdev->next_event, 1); 268 } 269 270 trace_cpu_migrate_finish(get_ns(), ib_mpidr); 271 local_fiq_enable(); 272 local_irq_enable(); 273 274 *handshake_ptr = 1; 275 dsb_sev(); 276 277 if (ret) 278 pr_err("%s exiting with error %d\n", __func__, ret); 279 return ret; 280 } 281 282 struct bL_thread { 283 spinlock_t lock; 284 struct task_struct *task; 285 wait_queue_head_t wq; 286 int wanted_cluster; 287 struct completion started; 288 bL_switch_completion_handler completer; 289 void *completer_cookie; 290 }; 291 292 static struct bL_thread bL_threads[NR_CPUS]; 293 294 static int bL_switcher_thread(void *arg) 295 { 296 struct bL_thread *t = arg; 297 struct sched_param param = { .sched_priority = 1 }; 298 int cluster; 299 bL_switch_completion_handler completer; 300 void *completer_cookie; 301 302 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 303 complete(&t->started); 304 305 do { 306 if (signal_pending(current)) 307 flush_signals(current); 308 wait_event_interruptible(t->wq, 309 t->wanted_cluster != -1 || 310 kthread_should_stop()); 311 312 spin_lock(&t->lock); 313 cluster = t->wanted_cluster; 314 completer = t->completer; 315 completer_cookie = t->completer_cookie; 316 t->wanted_cluster = -1; 317 t->completer = NULL; 318 spin_unlock(&t->lock); 319 320 if (cluster != -1) { 321 bL_switch_to(cluster); 322 323 if (completer) 324 completer(completer_cookie); 325 } 326 } while (!kthread_should_stop()); 327 328 return 0; 329 } 330 331 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) 332 { 333 struct task_struct *task; 334 335 task = kthread_create_on_node(bL_switcher_thread, arg, 336 cpu_to_node(cpu), "kswitcher_%d", cpu); 337 if (!IS_ERR(task)) { 338 kthread_bind(task, cpu); 339 wake_up_process(task); 340 } else 341 pr_err("%s failed for CPU %d\n", __func__, cpu); 342 return task; 343 } 344 345 /* 346 * bL_switch_request_cb - Switch to a specific cluster for the given CPU, 347 * with completion notification via a callback 348 * 349 * @cpu: the CPU to switch 350 * @new_cluster_id: the ID of the cluster to switch to. 351 * @completer: switch completion callback. if non-NULL, 352 * @completer(@completer_cookie) will be called on completion of 353 * the switch, in non-atomic context. 354 * @completer_cookie: opaque context argument for @completer. 355 * 356 * This function causes a cluster switch on the given CPU by waking up 357 * the appropriate switcher thread. This function may or may not return 358 * before the switch has occurred. 359 * 360 * If a @completer callback function is supplied, it will be called when 361 * the switch is complete. This can be used to determine asynchronously 362 * when the switch is complete, regardless of when bL_switch_request() 363 * returns. When @completer is supplied, no new switch request is permitted 364 * for the affected CPU until after the switch is complete, and @completer 365 * has returned. 366 */ 367 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, 368 bL_switch_completion_handler completer, 369 void *completer_cookie) 370 { 371 struct bL_thread *t; 372 373 if (cpu >= ARRAY_SIZE(bL_threads)) { 374 pr_err("%s: cpu %d out of bounds\n", __func__, cpu); 375 return -EINVAL; 376 } 377 378 t = &bL_threads[cpu]; 379 380 if (IS_ERR(t->task)) 381 return PTR_ERR(t->task); 382 if (!t->task) 383 return -ESRCH; 384 385 spin_lock(&t->lock); 386 if (t->completer) { 387 spin_unlock(&t->lock); 388 return -EBUSY; 389 } 390 t->completer = completer; 391 t->completer_cookie = completer_cookie; 392 t->wanted_cluster = new_cluster_id; 393 spin_unlock(&t->lock); 394 wake_up(&t->wq); 395 return 0; 396 } 397 EXPORT_SYMBOL_GPL(bL_switch_request_cb); 398 399 /* 400 * Activation and configuration code. 401 */ 402 403 static DEFINE_MUTEX(bL_switcher_activation_lock); 404 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); 405 static unsigned int bL_switcher_active; 406 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; 407 static cpumask_t bL_switcher_removed_logical_cpus; 408 409 int bL_switcher_register_notifier(struct notifier_block *nb) 410 { 411 return blocking_notifier_chain_register(&bL_activation_notifier, nb); 412 } 413 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); 414 415 int bL_switcher_unregister_notifier(struct notifier_block *nb) 416 { 417 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); 418 } 419 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); 420 421 static int bL_activation_notify(unsigned long val) 422 { 423 int ret; 424 425 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); 426 if (ret & NOTIFY_STOP_MASK) 427 pr_err("%s: notifier chain failed with status 0x%x\n", 428 __func__, ret); 429 return notifier_to_errno(ret); 430 } 431 432 static void bL_switcher_restore_cpus(void) 433 { 434 int i; 435 436 for_each_cpu(i, &bL_switcher_removed_logical_cpus) 437 cpu_up(i); 438 } 439 440 static int bL_switcher_halve_cpus(void) 441 { 442 int i, j, cluster_0, gic_id, ret; 443 unsigned int cpu, cluster, mask; 444 cpumask_t available_cpus; 445 446 /* First pass to validate what we have */ 447 mask = 0; 448 for_each_online_cpu(i) { 449 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 450 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 451 if (cluster >= 2) { 452 pr_err("%s: only dual cluster systems are supported\n", __func__); 453 return -EINVAL; 454 } 455 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) 456 return -EINVAL; 457 mask |= (1 << cluster); 458 } 459 if (mask != 3) { 460 pr_err("%s: no CPU pairing possible\n", __func__); 461 return -EINVAL; 462 } 463 464 /* 465 * Now let's do the pairing. We match each CPU with another CPU 466 * from a different cluster. To get a uniform scheduling behavior 467 * without fiddling with CPU topology and compute capacity data, 468 * we'll use logical CPUs initially belonging to the same cluster. 469 */ 470 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); 471 cpumask_copy(&available_cpus, cpu_online_mask); 472 cluster_0 = -1; 473 for_each_cpu(i, &available_cpus) { 474 int match = -1; 475 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 476 if (cluster_0 == -1) 477 cluster_0 = cluster; 478 if (cluster != cluster_0) 479 continue; 480 cpumask_clear_cpu(i, &available_cpus); 481 for_each_cpu(j, &available_cpus) { 482 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); 483 /* 484 * Let's remember the last match to create "odd" 485 * pairings on purpose in order for other code not 486 * to assume any relation between physical and 487 * logical CPU numbers. 488 */ 489 if (cluster != cluster_0) 490 match = j; 491 } 492 if (match != -1) { 493 bL_switcher_cpu_pairing[i] = match; 494 cpumask_clear_cpu(match, &available_cpus); 495 pr_info("CPU%d paired with CPU%d\n", i, match); 496 } 497 } 498 499 /* 500 * Now we disable the unwanted CPUs i.e. everything that has no 501 * pairing information (that includes the pairing counterparts). 502 */ 503 cpumask_clear(&bL_switcher_removed_logical_cpus); 504 for_each_online_cpu(i) { 505 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 506 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 507 508 /* Let's take note of the GIC ID for this CPU */ 509 gic_id = gic_get_cpu_id(i); 510 if (gic_id < 0) { 511 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); 512 bL_switcher_restore_cpus(); 513 return -EINVAL; 514 } 515 bL_gic_id[cpu][cluster] = gic_id; 516 pr_info("GIC ID for CPU %u cluster %u is %u\n", 517 cpu, cluster, gic_id); 518 519 if (bL_switcher_cpu_pairing[i] != -1) { 520 bL_switcher_cpu_original_cluster[i] = cluster; 521 continue; 522 } 523 524 ret = cpu_down(i); 525 if (ret) { 526 bL_switcher_restore_cpus(); 527 return ret; 528 } 529 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); 530 } 531 532 return 0; 533 } 534 535 /* Determine the logical CPU a given physical CPU is grouped on. */ 536 int bL_switcher_get_logical_index(u32 mpidr) 537 { 538 int cpu; 539 540 if (!bL_switcher_active) 541 return -EUNATCH; 542 543 mpidr &= MPIDR_HWID_BITMASK; 544 for_each_online_cpu(cpu) { 545 int pairing = bL_switcher_cpu_pairing[cpu]; 546 if (pairing == -1) 547 continue; 548 if ((mpidr == cpu_logical_map(cpu)) || 549 (mpidr == cpu_logical_map(pairing))) 550 return cpu; 551 } 552 return -EINVAL; 553 } 554 555 static void bL_switcher_trace_trigger_cpu(void *__always_unused info) 556 { 557 trace_cpu_migrate_current(get_ns(), read_mpidr()); 558 } 559 560 int bL_switcher_trace_trigger(void) 561 { 562 int ret; 563 564 preempt_disable(); 565 566 bL_switcher_trace_trigger_cpu(NULL); 567 ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true); 568 569 preempt_enable(); 570 571 return ret; 572 } 573 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger); 574 575 static int bL_switcher_enable(void) 576 { 577 int cpu, ret; 578 579 mutex_lock(&bL_switcher_activation_lock); 580 cpu_hotplug_driver_lock(); 581 if (bL_switcher_active) { 582 cpu_hotplug_driver_unlock(); 583 mutex_unlock(&bL_switcher_activation_lock); 584 return 0; 585 } 586 587 pr_info("big.LITTLE switcher initializing\n"); 588 589 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); 590 if (ret) 591 goto error; 592 593 ret = bL_switcher_halve_cpus(); 594 if (ret) 595 goto error; 596 597 bL_switcher_trace_trigger(); 598 599 for_each_online_cpu(cpu) { 600 struct bL_thread *t = &bL_threads[cpu]; 601 spin_lock_init(&t->lock); 602 init_waitqueue_head(&t->wq); 603 init_completion(&t->started); 604 t->wanted_cluster = -1; 605 t->task = bL_switcher_thread_create(cpu, t); 606 } 607 608 bL_switcher_active = 1; 609 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 610 pr_info("big.LITTLE switcher initialized\n"); 611 goto out; 612 613 error: 614 pr_warn("big.LITTLE switcher initialization failed\n"); 615 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 616 617 out: 618 cpu_hotplug_driver_unlock(); 619 mutex_unlock(&bL_switcher_activation_lock); 620 return ret; 621 } 622 623 #ifdef CONFIG_SYSFS 624 625 static void bL_switcher_disable(void) 626 { 627 unsigned int cpu, cluster; 628 struct bL_thread *t; 629 struct task_struct *task; 630 631 mutex_lock(&bL_switcher_activation_lock); 632 cpu_hotplug_driver_lock(); 633 634 if (!bL_switcher_active) 635 goto out; 636 637 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { 638 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 639 goto out; 640 } 641 642 bL_switcher_active = 0; 643 644 /* 645 * To deactivate the switcher, we must shut down the switcher 646 * threads to prevent any other requests from being accepted. 647 * Then, if the final cluster for given logical CPU is not the 648 * same as the original one, we'll recreate a switcher thread 649 * just for the purpose of switching the CPU back without any 650 * possibility for interference from external requests. 651 */ 652 for_each_online_cpu(cpu) { 653 t = &bL_threads[cpu]; 654 task = t->task; 655 t->task = NULL; 656 if (!task || IS_ERR(task)) 657 continue; 658 kthread_stop(task); 659 /* no more switch may happen on this CPU at this point */ 660 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 661 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 662 continue; 663 init_completion(&t->started); 664 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; 665 task = bL_switcher_thread_create(cpu, t); 666 if (!IS_ERR(task)) { 667 wait_for_completion(&t->started); 668 kthread_stop(task); 669 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 670 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 671 continue; 672 } 673 /* If execution gets here, we're in trouble. */ 674 pr_crit("%s: unable to restore original cluster for CPU %d\n", 675 __func__, cpu); 676 pr_crit("%s: CPU %d can't be restored\n", 677 __func__, bL_switcher_cpu_pairing[cpu]); 678 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], 679 &bL_switcher_removed_logical_cpus); 680 } 681 682 bL_switcher_restore_cpus(); 683 bL_switcher_trace_trigger(); 684 685 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 686 687 out: 688 cpu_hotplug_driver_unlock(); 689 mutex_unlock(&bL_switcher_activation_lock); 690 } 691 692 static ssize_t bL_switcher_active_show(struct kobject *kobj, 693 struct kobj_attribute *attr, char *buf) 694 { 695 return sprintf(buf, "%u\n", bL_switcher_active); 696 } 697 698 static ssize_t bL_switcher_active_store(struct kobject *kobj, 699 struct kobj_attribute *attr, const char *buf, size_t count) 700 { 701 int ret; 702 703 switch (buf[0]) { 704 case '0': 705 bL_switcher_disable(); 706 ret = 0; 707 break; 708 case '1': 709 ret = bL_switcher_enable(); 710 break; 711 default: 712 ret = -EINVAL; 713 } 714 715 return (ret >= 0) ? count : ret; 716 } 717 718 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj, 719 struct kobj_attribute *attr, const char *buf, size_t count) 720 { 721 int ret = bL_switcher_trace_trigger(); 722 723 return ret ? ret : count; 724 } 725 726 static struct kobj_attribute bL_switcher_active_attr = 727 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); 728 729 static struct kobj_attribute bL_switcher_trace_trigger_attr = 730 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store); 731 732 static struct attribute *bL_switcher_attrs[] = { 733 &bL_switcher_active_attr.attr, 734 &bL_switcher_trace_trigger_attr.attr, 735 NULL, 736 }; 737 738 static struct attribute_group bL_switcher_attr_group = { 739 .attrs = bL_switcher_attrs, 740 }; 741 742 static struct kobject *bL_switcher_kobj; 743 744 static int __init bL_switcher_sysfs_init(void) 745 { 746 int ret; 747 748 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); 749 if (!bL_switcher_kobj) 750 return -ENOMEM; 751 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); 752 if (ret) 753 kobject_put(bL_switcher_kobj); 754 return ret; 755 } 756 757 #endif /* CONFIG_SYSFS */ 758 759 bool bL_switcher_get_enabled(void) 760 { 761 mutex_lock(&bL_switcher_activation_lock); 762 763 return bL_switcher_active; 764 } 765 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); 766 767 void bL_switcher_put_enabled(void) 768 { 769 mutex_unlock(&bL_switcher_activation_lock); 770 } 771 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); 772 773 /* 774 * Veto any CPU hotplug operation on those CPUs we've removed 775 * while the switcher is active. 776 * We're just not ready to deal with that given the trickery involved. 777 */ 778 static int bL_switcher_hotplug_callback(struct notifier_block *nfb, 779 unsigned long action, void *hcpu) 780 { 781 if (bL_switcher_active) { 782 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu]; 783 switch (action & 0xf) { 784 case CPU_UP_PREPARE: 785 case CPU_DOWN_PREPARE: 786 if (pairing == -1) 787 return NOTIFY_BAD; 788 } 789 } 790 return NOTIFY_DONE; 791 } 792 793 static bool no_bL_switcher; 794 core_param(no_bL_switcher, no_bL_switcher, bool, 0644); 795 796 static int __init bL_switcher_init(void) 797 { 798 int ret; 799 800 if (MAX_NR_CLUSTERS != 2) { 801 pr_err("%s: only dual cluster systems are supported\n", __func__); 802 return -EINVAL; 803 } 804 805 cpu_notifier(bL_switcher_hotplug_callback, 0); 806 807 if (!no_bL_switcher) { 808 ret = bL_switcher_enable(); 809 if (ret) 810 return ret; 811 } 812 813 #ifdef CONFIG_SYSFS 814 ret = bL_switcher_sysfs_init(); 815 if (ret) 816 pr_err("%s: unable to create sysfs entry\n", __func__); 817 #endif 818 819 return 0; 820 } 821 822 late_initcall(bL_switcher_init); 823