xref: /linux/arch/arm/common/bL_switcher.c (revision 6b7437aed1568076cefa4d42747b1515dcb848db)
1 /*
2  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3  *
4  * Created by:	Nicolas Pitre, March 2012
5  * Copyright:	(C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/kthread.h>
21 #include <linux/wait.h>
22 #include <linux/clockchips.h>
23 #include <linux/hrtimer.h>
24 #include <linux/tick.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/sysfs.h>
28 #include <linux/irqchip/arm-gic.h>
29 
30 #include <asm/smp_plat.h>
31 #include <asm/suspend.h>
32 #include <asm/mcpm.h>
33 #include <asm/bL_switcher.h>
34 
35 
36 /*
37  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
38  * __attribute_const__ and we don't want the compiler to assume any
39  * constness here as the value _does_ change along some code paths.
40  */
41 
42 static int read_mpidr(void)
43 {
44 	unsigned int id;
45 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
46 	return id & MPIDR_HWID_BITMASK;
47 }
48 
49 /*
50  * bL switcher core code.
51  */
52 
53 static void bL_do_switch(void *_unused)
54 {
55 	unsigned mpidr, cpuid, clusterid, ob_cluster, ib_cluster;
56 
57 	pr_debug("%s\n", __func__);
58 
59 	mpidr = read_mpidr();
60 	cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
61 	clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
62 	ob_cluster = clusterid;
63 	ib_cluster = clusterid ^ 1;
64 
65 	/*
66 	 * Our state has been saved at this point.  Let's release our
67 	 * inbound CPU.
68 	 */
69 	mcpm_set_entry_vector(cpuid, ib_cluster, cpu_resume);
70 	sev();
71 
72 	/*
73 	 * From this point, we must assume that our counterpart CPU might
74 	 * have taken over in its parallel world already, as if execution
75 	 * just returned from cpu_suspend().  It is therefore important to
76 	 * be very careful not to make any change the other guy is not
77 	 * expecting.  This is why we need stack isolation.
78 	 *
79 	 * Fancy under cover tasks could be performed here.  For now
80 	 * we have none.
81 	 */
82 
83 	/* Let's put ourself down. */
84 	mcpm_cpu_power_down();
85 
86 	/* should never get here */
87 	BUG();
88 }
89 
90 /*
91  * Stack isolation.  To ensure 'current' remains valid, we just use another
92  * piece of our thread's stack space which should be fairly lightly used.
93  * The selected area starts just above the thread_info structure located
94  * at the very bottom of the stack, aligned to a cache line, and indexed
95  * with the cluster number.
96  */
97 #define STACK_SIZE 512
98 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
99 static int bL_switchpoint(unsigned long _arg)
100 {
101 	unsigned int mpidr = read_mpidr();
102 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
103 	void *stack = current_thread_info() + 1;
104 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
105 	stack += clusterid * STACK_SIZE + STACK_SIZE;
106 	call_with_stack(bL_do_switch, (void *)_arg, stack);
107 	BUG();
108 }
109 
110 /*
111  * Generic switcher interface
112  */
113 
114 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
115 
116 /*
117  * bL_switch_to - Switch to a specific cluster for the current CPU
118  * @new_cluster_id: the ID of the cluster to switch to.
119  *
120  * This function must be called on the CPU to be switched.
121  * Returns 0 on success, else a negative status code.
122  */
123 static int bL_switch_to(unsigned int new_cluster_id)
124 {
125 	unsigned int mpidr, cpuid, clusterid, ob_cluster, ib_cluster, this_cpu;
126 	struct tick_device *tdev;
127 	enum clock_event_mode tdev_mode;
128 	int ret;
129 
130 	mpidr = read_mpidr();
131 	cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
132 	clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
133 	ob_cluster = clusterid;
134 	ib_cluster = clusterid ^ 1;
135 
136 	if (new_cluster_id == clusterid)
137 		return 0;
138 
139 	pr_debug("before switch: CPU %d in cluster %d\n", cpuid, clusterid);
140 
141 	/* Close the gate for our entry vectors */
142 	mcpm_set_entry_vector(cpuid, ob_cluster, NULL);
143 	mcpm_set_entry_vector(cpuid, ib_cluster, NULL);
144 
145 	/*
146 	 * Let's wake up the inbound CPU now in case it requires some delay
147 	 * to come online, but leave it gated in our entry vector code.
148 	 */
149 	ret = mcpm_cpu_power_up(cpuid, ib_cluster);
150 	if (ret) {
151 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
152 		return ret;
153 	}
154 
155 	/*
156 	 * From this point we are entering the switch critical zone
157 	 * and can't take any interrupts anymore.
158 	 */
159 	local_irq_disable();
160 	local_fiq_disable();
161 
162 	this_cpu = smp_processor_id();
163 
164 	/* redirect GIC's SGIs to our counterpart */
165 	gic_migrate_target(bL_gic_id[cpuid][ib_cluster]);
166 
167 	/*
168 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
169 	 * in a possible WFI, such as in mcpm_power_down().
170 	 */
171 	arch_send_wakeup_ipi_mask(cpumask_of(this_cpu));
172 
173 	tdev = tick_get_device(this_cpu);
174 	if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
175 		tdev = NULL;
176 	if (tdev) {
177 		tdev_mode = tdev->evtdev->mode;
178 		clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
179 	}
180 
181 	ret = cpu_pm_enter();
182 
183 	/* we can not tolerate errors at this point */
184 	if (ret)
185 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
186 
187 	/* Flip the cluster in the CPU logical map for this CPU. */
188 	cpu_logical_map(this_cpu) ^= (1 << 8);
189 
190 	/* Let's do the actual CPU switch. */
191 	ret = cpu_suspend(0, bL_switchpoint);
192 	if (ret > 0)
193 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
194 
195 	/* We are executing on the inbound CPU at this point */
196 	mpidr = read_mpidr();
197 	cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
198 	clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
199 	pr_debug("after switch: CPU %d in cluster %d\n", cpuid, clusterid);
200 	BUG_ON(clusterid != ib_cluster);
201 
202 	mcpm_cpu_powered_up();
203 
204 	ret = cpu_pm_exit();
205 
206 	if (tdev) {
207 		clockevents_set_mode(tdev->evtdev, tdev_mode);
208 		clockevents_program_event(tdev->evtdev,
209 					  tdev->evtdev->next_event, 1);
210 	}
211 
212 	local_fiq_enable();
213 	local_irq_enable();
214 
215 	if (ret)
216 		pr_err("%s exiting with error %d\n", __func__, ret);
217 	return ret;
218 }
219 
220 struct bL_thread {
221 	struct task_struct *task;
222 	wait_queue_head_t wq;
223 	int wanted_cluster;
224 	struct completion started;
225 };
226 
227 static struct bL_thread bL_threads[NR_CPUS];
228 
229 static int bL_switcher_thread(void *arg)
230 {
231 	struct bL_thread *t = arg;
232 	struct sched_param param = { .sched_priority = 1 };
233 	int cluster;
234 
235 	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
236 	complete(&t->started);
237 
238 	do {
239 		if (signal_pending(current))
240 			flush_signals(current);
241 		wait_event_interruptible(t->wq,
242 				t->wanted_cluster != -1 ||
243 				kthread_should_stop());
244 		cluster = xchg(&t->wanted_cluster, -1);
245 		if (cluster != -1)
246 			bL_switch_to(cluster);
247 	} while (!kthread_should_stop());
248 
249 	return 0;
250 }
251 
252 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
253 {
254 	struct task_struct *task;
255 
256 	task = kthread_create_on_node(bL_switcher_thread, arg,
257 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
258 	if (!IS_ERR(task)) {
259 		kthread_bind(task, cpu);
260 		wake_up_process(task);
261 	} else
262 		pr_err("%s failed for CPU %d\n", __func__, cpu);
263 	return task;
264 }
265 
266 /*
267  * bL_switch_request - Switch to a specific cluster for the given CPU
268  *
269  * @cpu: the CPU to switch
270  * @new_cluster_id: the ID of the cluster to switch to.
271  *
272  * This function causes a cluster switch on the given CPU by waking up
273  * the appropriate switcher thread.  This function may or may not return
274  * before the switch has occurred.
275  */
276 int bL_switch_request(unsigned int cpu, unsigned int new_cluster_id)
277 {
278 	struct bL_thread *t;
279 
280 	if (cpu >= ARRAY_SIZE(bL_threads)) {
281 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
282 		return -EINVAL;
283 	}
284 
285 	t = &bL_threads[cpu];
286 	if (IS_ERR(t->task))
287 		return PTR_ERR(t->task);
288 	if (!t->task)
289 		return -ESRCH;
290 
291 	t->wanted_cluster = new_cluster_id;
292 	wake_up(&t->wq);
293 	return 0;
294 }
295 EXPORT_SYMBOL_GPL(bL_switch_request);
296 
297 /*
298  * Activation and configuration code.
299  */
300 
301 static unsigned int bL_switcher_active;
302 static unsigned int bL_switcher_cpu_original_cluster[MAX_CPUS_PER_CLUSTER];
303 static cpumask_t bL_switcher_removed_logical_cpus;
304 
305 static void bL_switcher_restore_cpus(void)
306 {
307 	int i;
308 
309 	for_each_cpu(i, &bL_switcher_removed_logical_cpus)
310 		cpu_up(i);
311 }
312 
313 static int bL_switcher_halve_cpus(void)
314 {
315 	int cpu, cluster, i, ret;
316 	cpumask_t cluster_mask[2], common_mask;
317 
318 	cpumask_clear(&bL_switcher_removed_logical_cpus);
319 	cpumask_clear(&cluster_mask[0]);
320 	cpumask_clear(&cluster_mask[1]);
321 
322 	for_each_online_cpu(i) {
323 		cpu = cpu_logical_map(i) & 0xff;
324 		cluster = (cpu_logical_map(i) >> 8) & 0xff;
325 		if (cluster >= 2) {
326 			pr_err("%s: only dual cluster systems are supported\n", __func__);
327 			return -EINVAL;
328 		}
329 		cpumask_set_cpu(cpu, &cluster_mask[cluster]);
330 	}
331 
332 	if (!cpumask_and(&common_mask, &cluster_mask[0], &cluster_mask[1])) {
333 		pr_err("%s: no common set of CPUs\n", __func__);
334 		return -EINVAL;
335 	}
336 
337 	for_each_online_cpu(i) {
338 		cpu = cpu_logical_map(i) & 0xff;
339 		cluster = (cpu_logical_map(i) >> 8) & 0xff;
340 
341 		if (cpumask_test_cpu(cpu, &common_mask)) {
342 			/* Let's take note of the GIC ID for this CPU */
343 			int gic_id = gic_get_cpu_id(i);
344 			if (gic_id < 0) {
345 				pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
346 				return -EINVAL;
347 			}
348 			bL_gic_id[cpu][cluster] = gic_id;
349 			pr_info("GIC ID for CPU %u cluster %u is %u\n",
350 				cpu, cluster, gic_id);
351 
352 			/*
353 			 * We keep only those logical CPUs which number
354 			 * is equal to their physical CPU number. This is
355 			 * not perfect but good enough for now.
356 			 */
357 			if (cpu == i) {
358 				bL_switcher_cpu_original_cluster[cpu] = cluster;
359 				continue;
360 			}
361 		}
362 
363 		ret = cpu_down(i);
364 		if (ret) {
365 			bL_switcher_restore_cpus();
366 			return ret;
367 		}
368 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
369 	}
370 
371 	return 0;
372 }
373 
374 static int bL_switcher_enable(void)
375 {
376 	int cpu, ret;
377 
378 	cpu_hotplug_driver_lock();
379 	if (bL_switcher_active) {
380 		cpu_hotplug_driver_unlock();
381 		return 0;
382 	}
383 
384 	pr_info("big.LITTLE switcher initializing\n");
385 
386 	ret = bL_switcher_halve_cpus();
387 	if (ret) {
388 		cpu_hotplug_driver_unlock();
389 		return ret;
390 	}
391 
392 	for_each_online_cpu(cpu) {
393 		struct bL_thread *t = &bL_threads[cpu];
394 		init_waitqueue_head(&t->wq);
395 		init_completion(&t->started);
396 		t->wanted_cluster = -1;
397 		t->task = bL_switcher_thread_create(cpu, t);
398 	}
399 
400 	bL_switcher_active = 1;
401 	cpu_hotplug_driver_unlock();
402 
403 	pr_info("big.LITTLE switcher initialized\n");
404 	return 0;
405 }
406 
407 #ifdef CONFIG_SYSFS
408 
409 static void bL_switcher_disable(void)
410 {
411 	unsigned int cpu, cluster, i;
412 	struct bL_thread *t;
413 	struct task_struct *task;
414 
415 	cpu_hotplug_driver_lock();
416 	if (!bL_switcher_active) {
417 		cpu_hotplug_driver_unlock();
418 		return;
419 	}
420 	bL_switcher_active = 0;
421 
422 	/*
423 	 * To deactivate the switcher, we must shut down the switcher
424 	 * threads to prevent any other requests from being accepted.
425 	 * Then, if the final cluster for given logical CPU is not the
426 	 * same as the original one, we'll recreate a switcher thread
427 	 * just for the purpose of switching the CPU back without any
428 	 * possibility for interference from external requests.
429 	 */
430 	for_each_online_cpu(cpu) {
431 		BUG_ON(cpu != (cpu_logical_map(cpu) & 0xff));
432 		t = &bL_threads[cpu];
433 		task = t->task;
434 		t->task = NULL;
435 		if (!task || IS_ERR(task))
436 			continue;
437 		kthread_stop(task);
438 		/* no more switch may happen on this CPU at this point */
439 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
440 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
441 			continue;
442 		init_completion(&t->started);
443 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
444 		task = bL_switcher_thread_create(cpu, t);
445 		if (!IS_ERR(task)) {
446 			wait_for_completion(&t->started);
447 			kthread_stop(task);
448 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
449 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
450 				continue;
451 		}
452 		/* If execution gets here, we're in trouble. */
453 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
454 			__func__, cpu);
455 		for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
456 			if ((cpu_logical_map(i) & 0xff) != cpu)
457 				continue;
458 			pr_crit("%s: CPU %d can't be restored\n",
459 				__func__, i);
460 			cpumask_clear_cpu(i, &bL_switcher_removed_logical_cpus);
461 			break;
462 		}
463 	}
464 
465 	bL_switcher_restore_cpus();
466 	cpu_hotplug_driver_unlock();
467 }
468 
469 static ssize_t bL_switcher_active_show(struct kobject *kobj,
470 		struct kobj_attribute *attr, char *buf)
471 {
472 	return sprintf(buf, "%u\n", bL_switcher_active);
473 }
474 
475 static ssize_t bL_switcher_active_store(struct kobject *kobj,
476 		struct kobj_attribute *attr, const char *buf, size_t count)
477 {
478 	int ret;
479 
480 	switch (buf[0]) {
481 	case '0':
482 		bL_switcher_disable();
483 		ret = 0;
484 		break;
485 	case '1':
486 		ret = bL_switcher_enable();
487 		break;
488 	default:
489 		ret = -EINVAL;
490 	}
491 
492 	return (ret >= 0) ? count : ret;
493 }
494 
495 static struct kobj_attribute bL_switcher_active_attr =
496 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
497 
498 static struct attribute *bL_switcher_attrs[] = {
499 	&bL_switcher_active_attr.attr,
500 	NULL,
501 };
502 
503 static struct attribute_group bL_switcher_attr_group = {
504 	.attrs = bL_switcher_attrs,
505 };
506 
507 static struct kobject *bL_switcher_kobj;
508 
509 static int __init bL_switcher_sysfs_init(void)
510 {
511 	int ret;
512 
513 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
514 	if (!bL_switcher_kobj)
515 		return -ENOMEM;
516 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
517 	if (ret)
518 		kobject_put(bL_switcher_kobj);
519 	return ret;
520 }
521 
522 #endif  /* CONFIG_SYSFS */
523 
524 static int __init bL_switcher_init(void)
525 {
526 	int ret;
527 
528 	if (MAX_NR_CLUSTERS != 2) {
529 		pr_err("%s: only dual cluster systems are supported\n", __func__);
530 		return -EINVAL;
531 	}
532 
533 	ret = bL_switcher_enable();
534 	if (ret)
535 		return ret;
536 
537 #ifdef CONFIG_SYSFS
538 	ret = bL_switcher_sysfs_init();
539 	if (ret)
540 		pr_err("%s: unable to create sysfs entry\n", __func__);
541 #endif
542 
543 	return 0;
544 }
545 
546 late_initcall(bL_switcher_init);
547