1 /* 2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/interrupt.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/kthread.h> 21 #include <linux/wait.h> 22 #include <linux/clockchips.h> 23 #include <linux/hrtimer.h> 24 #include <linux/tick.h> 25 #include <linux/mm.h> 26 #include <linux/string.h> 27 #include <linux/sysfs.h> 28 #include <linux/irqchip/arm-gic.h> 29 30 #include <asm/smp_plat.h> 31 #include <asm/suspend.h> 32 #include <asm/mcpm.h> 33 #include <asm/bL_switcher.h> 34 35 36 /* 37 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have 38 * __attribute_const__ and we don't want the compiler to assume any 39 * constness here as the value _does_ change along some code paths. 40 */ 41 42 static int read_mpidr(void) 43 { 44 unsigned int id; 45 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); 46 return id & MPIDR_HWID_BITMASK; 47 } 48 49 /* 50 * bL switcher core code. 51 */ 52 53 static void bL_do_switch(void *_unused) 54 { 55 unsigned mpidr, cpuid, clusterid, ob_cluster, ib_cluster; 56 57 pr_debug("%s\n", __func__); 58 59 mpidr = read_mpidr(); 60 cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); 61 clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 62 ob_cluster = clusterid; 63 ib_cluster = clusterid ^ 1; 64 65 /* 66 * Our state has been saved at this point. Let's release our 67 * inbound CPU. 68 */ 69 mcpm_set_entry_vector(cpuid, ib_cluster, cpu_resume); 70 sev(); 71 72 /* 73 * From this point, we must assume that our counterpart CPU might 74 * have taken over in its parallel world already, as if execution 75 * just returned from cpu_suspend(). It is therefore important to 76 * be very careful not to make any change the other guy is not 77 * expecting. This is why we need stack isolation. 78 * 79 * Fancy under cover tasks could be performed here. For now 80 * we have none. 81 */ 82 83 /* Let's put ourself down. */ 84 mcpm_cpu_power_down(); 85 86 /* should never get here */ 87 BUG(); 88 } 89 90 /* 91 * Stack isolation. To ensure 'current' remains valid, we just use another 92 * piece of our thread's stack space which should be fairly lightly used. 93 * The selected area starts just above the thread_info structure located 94 * at the very bottom of the stack, aligned to a cache line, and indexed 95 * with the cluster number. 96 */ 97 #define STACK_SIZE 512 98 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 99 static int bL_switchpoint(unsigned long _arg) 100 { 101 unsigned int mpidr = read_mpidr(); 102 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 103 void *stack = current_thread_info() + 1; 104 stack = PTR_ALIGN(stack, L1_CACHE_BYTES); 105 stack += clusterid * STACK_SIZE + STACK_SIZE; 106 call_with_stack(bL_do_switch, (void *)_arg, stack); 107 BUG(); 108 } 109 110 /* 111 * Generic switcher interface 112 */ 113 114 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; 115 116 /* 117 * bL_switch_to - Switch to a specific cluster for the current CPU 118 * @new_cluster_id: the ID of the cluster to switch to. 119 * 120 * This function must be called on the CPU to be switched. 121 * Returns 0 on success, else a negative status code. 122 */ 123 static int bL_switch_to(unsigned int new_cluster_id) 124 { 125 unsigned int mpidr, cpuid, clusterid, ob_cluster, ib_cluster, this_cpu; 126 struct tick_device *tdev; 127 enum clock_event_mode tdev_mode; 128 int ret; 129 130 mpidr = read_mpidr(); 131 cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); 132 clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 133 ob_cluster = clusterid; 134 ib_cluster = clusterid ^ 1; 135 136 if (new_cluster_id == clusterid) 137 return 0; 138 139 pr_debug("before switch: CPU %d in cluster %d\n", cpuid, clusterid); 140 141 /* Close the gate for our entry vectors */ 142 mcpm_set_entry_vector(cpuid, ob_cluster, NULL); 143 mcpm_set_entry_vector(cpuid, ib_cluster, NULL); 144 145 /* 146 * Let's wake up the inbound CPU now in case it requires some delay 147 * to come online, but leave it gated in our entry vector code. 148 */ 149 ret = mcpm_cpu_power_up(cpuid, ib_cluster); 150 if (ret) { 151 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); 152 return ret; 153 } 154 155 /* 156 * From this point we are entering the switch critical zone 157 * and can't take any interrupts anymore. 158 */ 159 local_irq_disable(); 160 local_fiq_disable(); 161 162 this_cpu = smp_processor_id(); 163 164 /* redirect GIC's SGIs to our counterpart */ 165 gic_migrate_target(bL_gic_id[cpuid][ib_cluster]); 166 167 /* 168 * Raise a SGI on the inbound CPU to make sure it doesn't stall 169 * in a possible WFI, such as in mcpm_power_down(). 170 */ 171 arch_send_wakeup_ipi_mask(cpumask_of(this_cpu)); 172 173 tdev = tick_get_device(this_cpu); 174 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) 175 tdev = NULL; 176 if (tdev) { 177 tdev_mode = tdev->evtdev->mode; 178 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); 179 } 180 181 ret = cpu_pm_enter(); 182 183 /* we can not tolerate errors at this point */ 184 if (ret) 185 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); 186 187 /* Flip the cluster in the CPU logical map for this CPU. */ 188 cpu_logical_map(this_cpu) ^= (1 << 8); 189 190 /* Let's do the actual CPU switch. */ 191 ret = cpu_suspend(0, bL_switchpoint); 192 if (ret > 0) 193 panic("%s: cpu_suspend() returned %d\n", __func__, ret); 194 195 /* We are executing on the inbound CPU at this point */ 196 mpidr = read_mpidr(); 197 cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); 198 clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 199 pr_debug("after switch: CPU %d in cluster %d\n", cpuid, clusterid); 200 BUG_ON(clusterid != ib_cluster); 201 202 mcpm_cpu_powered_up(); 203 204 ret = cpu_pm_exit(); 205 206 if (tdev) { 207 clockevents_set_mode(tdev->evtdev, tdev_mode); 208 clockevents_program_event(tdev->evtdev, 209 tdev->evtdev->next_event, 1); 210 } 211 212 local_fiq_enable(); 213 local_irq_enable(); 214 215 if (ret) 216 pr_err("%s exiting with error %d\n", __func__, ret); 217 return ret; 218 } 219 220 struct bL_thread { 221 struct task_struct *task; 222 wait_queue_head_t wq; 223 int wanted_cluster; 224 struct completion started; 225 }; 226 227 static struct bL_thread bL_threads[NR_CPUS]; 228 229 static int bL_switcher_thread(void *arg) 230 { 231 struct bL_thread *t = arg; 232 struct sched_param param = { .sched_priority = 1 }; 233 int cluster; 234 235 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 236 complete(&t->started); 237 238 do { 239 if (signal_pending(current)) 240 flush_signals(current); 241 wait_event_interruptible(t->wq, 242 t->wanted_cluster != -1 || 243 kthread_should_stop()); 244 cluster = xchg(&t->wanted_cluster, -1); 245 if (cluster != -1) 246 bL_switch_to(cluster); 247 } while (!kthread_should_stop()); 248 249 return 0; 250 } 251 252 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) 253 { 254 struct task_struct *task; 255 256 task = kthread_create_on_node(bL_switcher_thread, arg, 257 cpu_to_node(cpu), "kswitcher_%d", cpu); 258 if (!IS_ERR(task)) { 259 kthread_bind(task, cpu); 260 wake_up_process(task); 261 } else 262 pr_err("%s failed for CPU %d\n", __func__, cpu); 263 return task; 264 } 265 266 /* 267 * bL_switch_request - Switch to a specific cluster for the given CPU 268 * 269 * @cpu: the CPU to switch 270 * @new_cluster_id: the ID of the cluster to switch to. 271 * 272 * This function causes a cluster switch on the given CPU by waking up 273 * the appropriate switcher thread. This function may or may not return 274 * before the switch has occurred. 275 */ 276 int bL_switch_request(unsigned int cpu, unsigned int new_cluster_id) 277 { 278 struct bL_thread *t; 279 280 if (cpu >= ARRAY_SIZE(bL_threads)) { 281 pr_err("%s: cpu %d out of bounds\n", __func__, cpu); 282 return -EINVAL; 283 } 284 285 t = &bL_threads[cpu]; 286 if (IS_ERR(t->task)) 287 return PTR_ERR(t->task); 288 if (!t->task) 289 return -ESRCH; 290 291 t->wanted_cluster = new_cluster_id; 292 wake_up(&t->wq); 293 return 0; 294 } 295 EXPORT_SYMBOL_GPL(bL_switch_request); 296 297 /* 298 * Activation and configuration code. 299 */ 300 301 static unsigned int bL_switcher_active; 302 static unsigned int bL_switcher_cpu_original_cluster[MAX_CPUS_PER_CLUSTER]; 303 static cpumask_t bL_switcher_removed_logical_cpus; 304 305 static void bL_switcher_restore_cpus(void) 306 { 307 int i; 308 309 for_each_cpu(i, &bL_switcher_removed_logical_cpus) 310 cpu_up(i); 311 } 312 313 static int bL_switcher_halve_cpus(void) 314 { 315 int cpu, cluster, i, ret; 316 cpumask_t cluster_mask[2], common_mask; 317 318 cpumask_clear(&bL_switcher_removed_logical_cpus); 319 cpumask_clear(&cluster_mask[0]); 320 cpumask_clear(&cluster_mask[1]); 321 322 for_each_online_cpu(i) { 323 cpu = cpu_logical_map(i) & 0xff; 324 cluster = (cpu_logical_map(i) >> 8) & 0xff; 325 if (cluster >= 2) { 326 pr_err("%s: only dual cluster systems are supported\n", __func__); 327 return -EINVAL; 328 } 329 cpumask_set_cpu(cpu, &cluster_mask[cluster]); 330 } 331 332 if (!cpumask_and(&common_mask, &cluster_mask[0], &cluster_mask[1])) { 333 pr_err("%s: no common set of CPUs\n", __func__); 334 return -EINVAL; 335 } 336 337 for_each_online_cpu(i) { 338 cpu = cpu_logical_map(i) & 0xff; 339 cluster = (cpu_logical_map(i) >> 8) & 0xff; 340 341 if (cpumask_test_cpu(cpu, &common_mask)) { 342 /* Let's take note of the GIC ID for this CPU */ 343 int gic_id = gic_get_cpu_id(i); 344 if (gic_id < 0) { 345 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); 346 return -EINVAL; 347 } 348 bL_gic_id[cpu][cluster] = gic_id; 349 pr_info("GIC ID for CPU %u cluster %u is %u\n", 350 cpu, cluster, gic_id); 351 352 /* 353 * We keep only those logical CPUs which number 354 * is equal to their physical CPU number. This is 355 * not perfect but good enough for now. 356 */ 357 if (cpu == i) { 358 bL_switcher_cpu_original_cluster[cpu] = cluster; 359 continue; 360 } 361 } 362 363 ret = cpu_down(i); 364 if (ret) { 365 bL_switcher_restore_cpus(); 366 return ret; 367 } 368 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); 369 } 370 371 return 0; 372 } 373 374 static int bL_switcher_enable(void) 375 { 376 int cpu, ret; 377 378 cpu_hotplug_driver_lock(); 379 if (bL_switcher_active) { 380 cpu_hotplug_driver_unlock(); 381 return 0; 382 } 383 384 pr_info("big.LITTLE switcher initializing\n"); 385 386 ret = bL_switcher_halve_cpus(); 387 if (ret) { 388 cpu_hotplug_driver_unlock(); 389 return ret; 390 } 391 392 for_each_online_cpu(cpu) { 393 struct bL_thread *t = &bL_threads[cpu]; 394 init_waitqueue_head(&t->wq); 395 init_completion(&t->started); 396 t->wanted_cluster = -1; 397 t->task = bL_switcher_thread_create(cpu, t); 398 } 399 400 bL_switcher_active = 1; 401 cpu_hotplug_driver_unlock(); 402 403 pr_info("big.LITTLE switcher initialized\n"); 404 return 0; 405 } 406 407 #ifdef CONFIG_SYSFS 408 409 static void bL_switcher_disable(void) 410 { 411 unsigned int cpu, cluster, i; 412 struct bL_thread *t; 413 struct task_struct *task; 414 415 cpu_hotplug_driver_lock(); 416 if (!bL_switcher_active) { 417 cpu_hotplug_driver_unlock(); 418 return; 419 } 420 bL_switcher_active = 0; 421 422 /* 423 * To deactivate the switcher, we must shut down the switcher 424 * threads to prevent any other requests from being accepted. 425 * Then, if the final cluster for given logical CPU is not the 426 * same as the original one, we'll recreate a switcher thread 427 * just for the purpose of switching the CPU back without any 428 * possibility for interference from external requests. 429 */ 430 for_each_online_cpu(cpu) { 431 BUG_ON(cpu != (cpu_logical_map(cpu) & 0xff)); 432 t = &bL_threads[cpu]; 433 task = t->task; 434 t->task = NULL; 435 if (!task || IS_ERR(task)) 436 continue; 437 kthread_stop(task); 438 /* no more switch may happen on this CPU at this point */ 439 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 440 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 441 continue; 442 init_completion(&t->started); 443 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; 444 task = bL_switcher_thread_create(cpu, t); 445 if (!IS_ERR(task)) { 446 wait_for_completion(&t->started); 447 kthread_stop(task); 448 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 449 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 450 continue; 451 } 452 /* If execution gets here, we're in trouble. */ 453 pr_crit("%s: unable to restore original cluster for CPU %d\n", 454 __func__, cpu); 455 for_each_cpu(i, &bL_switcher_removed_logical_cpus) { 456 if ((cpu_logical_map(i) & 0xff) != cpu) 457 continue; 458 pr_crit("%s: CPU %d can't be restored\n", 459 __func__, i); 460 cpumask_clear_cpu(i, &bL_switcher_removed_logical_cpus); 461 break; 462 } 463 } 464 465 bL_switcher_restore_cpus(); 466 cpu_hotplug_driver_unlock(); 467 } 468 469 static ssize_t bL_switcher_active_show(struct kobject *kobj, 470 struct kobj_attribute *attr, char *buf) 471 { 472 return sprintf(buf, "%u\n", bL_switcher_active); 473 } 474 475 static ssize_t bL_switcher_active_store(struct kobject *kobj, 476 struct kobj_attribute *attr, const char *buf, size_t count) 477 { 478 int ret; 479 480 switch (buf[0]) { 481 case '0': 482 bL_switcher_disable(); 483 ret = 0; 484 break; 485 case '1': 486 ret = bL_switcher_enable(); 487 break; 488 default: 489 ret = -EINVAL; 490 } 491 492 return (ret >= 0) ? count : ret; 493 } 494 495 static struct kobj_attribute bL_switcher_active_attr = 496 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); 497 498 static struct attribute *bL_switcher_attrs[] = { 499 &bL_switcher_active_attr.attr, 500 NULL, 501 }; 502 503 static struct attribute_group bL_switcher_attr_group = { 504 .attrs = bL_switcher_attrs, 505 }; 506 507 static struct kobject *bL_switcher_kobj; 508 509 static int __init bL_switcher_sysfs_init(void) 510 { 511 int ret; 512 513 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); 514 if (!bL_switcher_kobj) 515 return -ENOMEM; 516 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); 517 if (ret) 518 kobject_put(bL_switcher_kobj); 519 return ret; 520 } 521 522 #endif /* CONFIG_SYSFS */ 523 524 static int __init bL_switcher_init(void) 525 { 526 int ret; 527 528 if (MAX_NR_CLUSTERS != 2) { 529 pr_err("%s: only dual cluster systems are supported\n", __func__); 530 return -EINVAL; 531 } 532 533 ret = bL_switcher_enable(); 534 if (ret) 535 return ret; 536 537 #ifdef CONFIG_SYSFS 538 ret = bL_switcher_sysfs_init(); 539 if (ret) 540 pr_err("%s: unable to create sysfs entry\n", __func__); 541 #endif 542 543 return 0; 544 } 545 546 late_initcall(bL_switcher_init); 547