xref: /linux/arch/arm/common/bL_switcher.c (revision 1bfbddb6f3a0dbb8c3996d1c4d4911d695737c15)
1 /*
2  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3  *
4  * Created by:	Nicolas Pitre, March 2012
5  * Copyright:	(C) 2012-2013  Linaro Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/time.h>
24 #include <linux/clockchips.h>
25 #include <linux/hrtimer.h>
26 #include <linux/tick.h>
27 #include <linux/notifier.h>
28 #include <linux/mm.h>
29 #include <linux/mutex.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 #include <linux/sysfs.h>
33 #include <linux/irqchip/arm-gic.h>
34 #include <linux/moduleparam.h>
35 
36 #include <asm/smp_plat.h>
37 #include <asm/cputype.h>
38 #include <asm/suspend.h>
39 #include <asm/mcpm.h>
40 #include <asm/bL_switcher.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/power_cpu_migrate.h>
44 
45 
46 /*
47  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
48  * __attribute_const__ and we don't want the compiler to assume any
49  * constness here as the value _does_ change along some code paths.
50  */
51 
52 static int read_mpidr(void)
53 {
54 	unsigned int id;
55 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
56 	return id & MPIDR_HWID_BITMASK;
57 }
58 
59 /*
60  * Get a global nanosecond time stamp for tracing.
61  */
62 static s64 get_ns(void)
63 {
64 	struct timespec ts;
65 	getnstimeofday(&ts);
66 	return timespec_to_ns(&ts);
67 }
68 
69 /*
70  * bL switcher core code.
71  */
72 
73 static void bL_do_switch(void *_arg)
74 {
75 	unsigned ib_mpidr, ib_cpu, ib_cluster;
76 	long volatile handshake, **handshake_ptr = _arg;
77 
78 	pr_debug("%s\n", __func__);
79 
80 	ib_mpidr = cpu_logical_map(smp_processor_id());
81 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
82 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
83 
84 	/* Advertise our handshake location */
85 	if (handshake_ptr) {
86 		handshake = 0;
87 		*handshake_ptr = &handshake;
88 	} else
89 		handshake = -1;
90 
91 	/*
92 	 * Our state has been saved at this point.  Let's release our
93 	 * inbound CPU.
94 	 */
95 	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
96 	sev();
97 
98 	/*
99 	 * From this point, we must assume that our counterpart CPU might
100 	 * have taken over in its parallel world already, as if execution
101 	 * just returned from cpu_suspend().  It is therefore important to
102 	 * be very careful not to make any change the other guy is not
103 	 * expecting.  This is why we need stack isolation.
104 	 *
105 	 * Fancy under cover tasks could be performed here.  For now
106 	 * we have none.
107 	 */
108 
109 	/*
110 	 * Let's wait until our inbound is alive.
111 	 */
112 	while (!handshake) {
113 		wfe();
114 		smp_mb();
115 	}
116 
117 	/* Let's put ourself down. */
118 	mcpm_cpu_power_down();
119 
120 	/* should never get here */
121 	BUG();
122 }
123 
124 /*
125  * Stack isolation.  To ensure 'current' remains valid, we just use another
126  * piece of our thread's stack space which should be fairly lightly used.
127  * The selected area starts just above the thread_info structure located
128  * at the very bottom of the stack, aligned to a cache line, and indexed
129  * with the cluster number.
130  */
131 #define STACK_SIZE 512
132 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
133 static int bL_switchpoint(unsigned long _arg)
134 {
135 	unsigned int mpidr = read_mpidr();
136 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
137 	void *stack = current_thread_info() + 1;
138 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
139 	stack += clusterid * STACK_SIZE + STACK_SIZE;
140 	call_with_stack(bL_do_switch, (void *)_arg, stack);
141 	BUG();
142 }
143 
144 /*
145  * Generic switcher interface
146  */
147 
148 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
149 static int bL_switcher_cpu_pairing[NR_CPUS];
150 
151 /*
152  * bL_switch_to - Switch to a specific cluster for the current CPU
153  * @new_cluster_id: the ID of the cluster to switch to.
154  *
155  * This function must be called on the CPU to be switched.
156  * Returns 0 on success, else a negative status code.
157  */
158 static int bL_switch_to(unsigned int new_cluster_id)
159 {
160 	unsigned int mpidr, this_cpu, that_cpu;
161 	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
162 	struct completion inbound_alive;
163 	struct tick_device *tdev;
164 	enum clock_event_mode tdev_mode;
165 	long volatile *handshake_ptr;
166 	int ipi_nr, ret;
167 
168 	this_cpu = smp_processor_id();
169 	ob_mpidr = read_mpidr();
170 	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
171 	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
172 	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
173 
174 	if (new_cluster_id == ob_cluster)
175 		return 0;
176 
177 	that_cpu = bL_switcher_cpu_pairing[this_cpu];
178 	ib_mpidr = cpu_logical_map(that_cpu);
179 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
180 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
181 
182 	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
183 		 this_cpu, ob_mpidr, ib_mpidr);
184 
185 	this_cpu = smp_processor_id();
186 
187 	/* Close the gate for our entry vectors */
188 	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
189 	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
190 
191 	/* Install our "inbound alive" notifier. */
192 	init_completion(&inbound_alive);
193 	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
194 	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
195 	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
196 
197 	/*
198 	 * Let's wake up the inbound CPU now in case it requires some delay
199 	 * to come online, but leave it gated in our entry vector code.
200 	 */
201 	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
202 	if (ret) {
203 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
204 		return ret;
205 	}
206 
207 	/*
208 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
209 	 * in a possible WFI, such as in bL_power_down().
210 	 */
211 	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
212 
213 	/*
214 	 * Wait for the inbound to come up.  This allows for other
215 	 * tasks to be scheduled in the mean time.
216 	 */
217 	wait_for_completion(&inbound_alive);
218 	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
219 
220 	/*
221 	 * From this point we are entering the switch critical zone
222 	 * and can't take any interrupts anymore.
223 	 */
224 	local_irq_disable();
225 	local_fiq_disable();
226 	trace_cpu_migrate_begin(get_ns(), ob_mpidr);
227 
228 	/* redirect GIC's SGIs to our counterpart */
229 	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
230 
231 	tdev = tick_get_device(this_cpu);
232 	if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
233 		tdev = NULL;
234 	if (tdev) {
235 		tdev_mode = tdev->evtdev->mode;
236 		clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
237 	}
238 
239 	ret = cpu_pm_enter();
240 
241 	/* we can not tolerate errors at this point */
242 	if (ret)
243 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
244 
245 	/* Swap the physical CPUs in the logical map for this logical CPU. */
246 	cpu_logical_map(this_cpu) = ib_mpidr;
247 	cpu_logical_map(that_cpu) = ob_mpidr;
248 
249 	/* Let's do the actual CPU switch. */
250 	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
251 	if (ret > 0)
252 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
253 
254 	/* We are executing on the inbound CPU at this point */
255 	mpidr = read_mpidr();
256 	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
257 	BUG_ON(mpidr != ib_mpidr);
258 
259 	mcpm_cpu_powered_up();
260 
261 	ret = cpu_pm_exit();
262 
263 	if (tdev) {
264 		clockevents_set_mode(tdev->evtdev, tdev_mode);
265 		clockevents_program_event(tdev->evtdev,
266 					  tdev->evtdev->next_event, 1);
267 	}
268 
269 	trace_cpu_migrate_finish(get_ns(), ib_mpidr);
270 	local_fiq_enable();
271 	local_irq_enable();
272 
273 	*handshake_ptr = 1;
274 	dsb_sev();
275 
276 	if (ret)
277 		pr_err("%s exiting with error %d\n", __func__, ret);
278 	return ret;
279 }
280 
281 struct bL_thread {
282 	spinlock_t lock;
283 	struct task_struct *task;
284 	wait_queue_head_t wq;
285 	int wanted_cluster;
286 	struct completion started;
287 	bL_switch_completion_handler completer;
288 	void *completer_cookie;
289 };
290 
291 static struct bL_thread bL_threads[NR_CPUS];
292 
293 static int bL_switcher_thread(void *arg)
294 {
295 	struct bL_thread *t = arg;
296 	struct sched_param param = { .sched_priority = 1 };
297 	int cluster;
298 	bL_switch_completion_handler completer;
299 	void *completer_cookie;
300 
301 	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
302 	complete(&t->started);
303 
304 	do {
305 		if (signal_pending(current))
306 			flush_signals(current);
307 		wait_event_interruptible(t->wq,
308 				t->wanted_cluster != -1 ||
309 				kthread_should_stop());
310 
311 		spin_lock(&t->lock);
312 		cluster = t->wanted_cluster;
313 		completer = t->completer;
314 		completer_cookie = t->completer_cookie;
315 		t->wanted_cluster = -1;
316 		t->completer = NULL;
317 		spin_unlock(&t->lock);
318 
319 		if (cluster != -1) {
320 			bL_switch_to(cluster);
321 
322 			if (completer)
323 				completer(completer_cookie);
324 		}
325 	} while (!kthread_should_stop());
326 
327 	return 0;
328 }
329 
330 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
331 {
332 	struct task_struct *task;
333 
334 	task = kthread_create_on_node(bL_switcher_thread, arg,
335 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
336 	if (!IS_ERR(task)) {
337 		kthread_bind(task, cpu);
338 		wake_up_process(task);
339 	} else
340 		pr_err("%s failed for CPU %d\n", __func__, cpu);
341 	return task;
342 }
343 
344 /*
345  * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
346  *      with completion notification via a callback
347  *
348  * @cpu: the CPU to switch
349  * @new_cluster_id: the ID of the cluster to switch to.
350  * @completer: switch completion callback.  if non-NULL,
351  *	@completer(@completer_cookie) will be called on completion of
352  *	the switch, in non-atomic context.
353  * @completer_cookie: opaque context argument for @completer.
354  *
355  * This function causes a cluster switch on the given CPU by waking up
356  * the appropriate switcher thread.  This function may or may not return
357  * before the switch has occurred.
358  *
359  * If a @completer callback function is supplied, it will be called when
360  * the switch is complete.  This can be used to determine asynchronously
361  * when the switch is complete, regardless of when bL_switch_request()
362  * returns.  When @completer is supplied, no new switch request is permitted
363  * for the affected CPU until after the switch is complete, and @completer
364  * has returned.
365  */
366 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
367 			 bL_switch_completion_handler completer,
368 			 void *completer_cookie)
369 {
370 	struct bL_thread *t;
371 
372 	if (cpu >= ARRAY_SIZE(bL_threads)) {
373 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
374 		return -EINVAL;
375 	}
376 
377 	t = &bL_threads[cpu];
378 
379 	if (IS_ERR(t->task))
380 		return PTR_ERR(t->task);
381 	if (!t->task)
382 		return -ESRCH;
383 
384 	spin_lock(&t->lock);
385 	if (t->completer) {
386 		spin_unlock(&t->lock);
387 		return -EBUSY;
388 	}
389 	t->completer = completer;
390 	t->completer_cookie = completer_cookie;
391 	t->wanted_cluster = new_cluster_id;
392 	spin_unlock(&t->lock);
393 	wake_up(&t->wq);
394 	return 0;
395 }
396 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
397 
398 /*
399  * Activation and configuration code.
400  */
401 
402 static DEFINE_MUTEX(bL_switcher_activation_lock);
403 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
404 static unsigned int bL_switcher_active;
405 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
406 static cpumask_t bL_switcher_removed_logical_cpus;
407 
408 int bL_switcher_register_notifier(struct notifier_block *nb)
409 {
410 	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
411 }
412 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
413 
414 int bL_switcher_unregister_notifier(struct notifier_block *nb)
415 {
416 	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
417 }
418 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
419 
420 static int bL_activation_notify(unsigned long val)
421 {
422 	int ret;
423 
424 	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
425 	if (ret & NOTIFY_STOP_MASK)
426 		pr_err("%s: notifier chain failed with status 0x%x\n",
427 			__func__, ret);
428 	return notifier_to_errno(ret);
429 }
430 
431 static void bL_switcher_restore_cpus(void)
432 {
433 	int i;
434 
435 	for_each_cpu(i, &bL_switcher_removed_logical_cpus)
436 		cpu_up(i);
437 }
438 
439 static int bL_switcher_halve_cpus(void)
440 {
441 	int i, j, cluster_0, gic_id, ret;
442 	unsigned int cpu, cluster, mask;
443 	cpumask_t available_cpus;
444 
445 	/* First pass to validate what we have */
446 	mask = 0;
447 	for_each_online_cpu(i) {
448 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
449 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
450 		if (cluster >= 2) {
451 			pr_err("%s: only dual cluster systems are supported\n", __func__);
452 			return -EINVAL;
453 		}
454 		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
455 			return -EINVAL;
456 		mask |= (1 << cluster);
457 	}
458 	if (mask != 3) {
459 		pr_err("%s: no CPU pairing possible\n", __func__);
460 		return -EINVAL;
461 	}
462 
463 	/*
464 	 * Now let's do the pairing.  We match each CPU with another CPU
465 	 * from a different cluster.  To get a uniform scheduling behavior
466 	 * without fiddling with CPU topology and compute capacity data,
467 	 * we'll use logical CPUs initially belonging to the same cluster.
468 	 */
469 	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
470 	cpumask_copy(&available_cpus, cpu_online_mask);
471 	cluster_0 = -1;
472 	for_each_cpu(i, &available_cpus) {
473 		int match = -1;
474 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
475 		if (cluster_0 == -1)
476 			cluster_0 = cluster;
477 		if (cluster != cluster_0)
478 			continue;
479 		cpumask_clear_cpu(i, &available_cpus);
480 		for_each_cpu(j, &available_cpus) {
481 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
482 			/*
483 			 * Let's remember the last match to create "odd"
484 			 * pairings on purpose in order for other code not
485 			 * to assume any relation between physical and
486 			 * logical CPU numbers.
487 			 */
488 			if (cluster != cluster_0)
489 				match = j;
490 		}
491 		if (match != -1) {
492 			bL_switcher_cpu_pairing[i] = match;
493 			cpumask_clear_cpu(match, &available_cpus);
494 			pr_info("CPU%d paired with CPU%d\n", i, match);
495 		}
496 	}
497 
498 	/*
499 	 * Now we disable the unwanted CPUs i.e. everything that has no
500 	 * pairing information (that includes the pairing counterparts).
501 	 */
502 	cpumask_clear(&bL_switcher_removed_logical_cpus);
503 	for_each_online_cpu(i) {
504 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
505 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
506 
507 		/* Let's take note of the GIC ID for this CPU */
508 		gic_id = gic_get_cpu_id(i);
509 		if (gic_id < 0) {
510 			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
511 			bL_switcher_restore_cpus();
512 			return -EINVAL;
513 		}
514 		bL_gic_id[cpu][cluster] = gic_id;
515 		pr_info("GIC ID for CPU %u cluster %u is %u\n",
516 			cpu, cluster, gic_id);
517 
518 		if (bL_switcher_cpu_pairing[i] != -1) {
519 			bL_switcher_cpu_original_cluster[i] = cluster;
520 			continue;
521 		}
522 
523 		ret = cpu_down(i);
524 		if (ret) {
525 			bL_switcher_restore_cpus();
526 			return ret;
527 		}
528 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
529 	}
530 
531 	return 0;
532 }
533 
534 static int bL_switcher_enable(void)
535 {
536 	int cpu, ret;
537 
538 	mutex_lock(&bL_switcher_activation_lock);
539 	cpu_hotplug_driver_lock();
540 	if (bL_switcher_active) {
541 		cpu_hotplug_driver_unlock();
542 		mutex_unlock(&bL_switcher_activation_lock);
543 		return 0;
544 	}
545 
546 	pr_info("big.LITTLE switcher initializing\n");
547 
548 	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
549 	if (ret)
550 		goto error;
551 
552 	ret = bL_switcher_halve_cpus();
553 	if (ret)
554 		goto error;
555 
556 	for_each_online_cpu(cpu) {
557 		struct bL_thread *t = &bL_threads[cpu];
558 		spin_lock_init(&t->lock);
559 		init_waitqueue_head(&t->wq);
560 		init_completion(&t->started);
561 		t->wanted_cluster = -1;
562 		t->task = bL_switcher_thread_create(cpu, t);
563 	}
564 
565 	bL_switcher_active = 1;
566 	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
567 	pr_info("big.LITTLE switcher initialized\n");
568 	goto out;
569 
570 error:
571 	pr_warn("big.LITTLE switcher initialization failed\n");
572 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
573 
574 out:
575 	cpu_hotplug_driver_unlock();
576 	mutex_unlock(&bL_switcher_activation_lock);
577 	return ret;
578 }
579 
580 #ifdef CONFIG_SYSFS
581 
582 static void bL_switcher_disable(void)
583 {
584 	unsigned int cpu, cluster;
585 	struct bL_thread *t;
586 	struct task_struct *task;
587 
588 	mutex_lock(&bL_switcher_activation_lock);
589 	cpu_hotplug_driver_lock();
590 
591 	if (!bL_switcher_active)
592 		goto out;
593 
594 	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
595 		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
596 		goto out;
597 	}
598 
599 	bL_switcher_active = 0;
600 
601 	/*
602 	 * To deactivate the switcher, we must shut down the switcher
603 	 * threads to prevent any other requests from being accepted.
604 	 * Then, if the final cluster for given logical CPU is not the
605 	 * same as the original one, we'll recreate a switcher thread
606 	 * just for the purpose of switching the CPU back without any
607 	 * possibility for interference from external requests.
608 	 */
609 	for_each_online_cpu(cpu) {
610 		t = &bL_threads[cpu];
611 		task = t->task;
612 		t->task = NULL;
613 		if (!task || IS_ERR(task))
614 			continue;
615 		kthread_stop(task);
616 		/* no more switch may happen on this CPU at this point */
617 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
618 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
619 			continue;
620 		init_completion(&t->started);
621 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
622 		task = bL_switcher_thread_create(cpu, t);
623 		if (!IS_ERR(task)) {
624 			wait_for_completion(&t->started);
625 			kthread_stop(task);
626 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
627 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
628 				continue;
629 		}
630 		/* If execution gets here, we're in trouble. */
631 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
632 			__func__, cpu);
633 		pr_crit("%s: CPU %d can't be restored\n",
634 			__func__, bL_switcher_cpu_pairing[cpu]);
635 		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
636 				  &bL_switcher_removed_logical_cpus);
637 	}
638 
639 	bL_switcher_restore_cpus();
640 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
641 
642 out:
643 	cpu_hotplug_driver_unlock();
644 	mutex_unlock(&bL_switcher_activation_lock);
645 }
646 
647 static ssize_t bL_switcher_active_show(struct kobject *kobj,
648 		struct kobj_attribute *attr, char *buf)
649 {
650 	return sprintf(buf, "%u\n", bL_switcher_active);
651 }
652 
653 static ssize_t bL_switcher_active_store(struct kobject *kobj,
654 		struct kobj_attribute *attr, const char *buf, size_t count)
655 {
656 	int ret;
657 
658 	switch (buf[0]) {
659 	case '0':
660 		bL_switcher_disable();
661 		ret = 0;
662 		break;
663 	case '1':
664 		ret = bL_switcher_enable();
665 		break;
666 	default:
667 		ret = -EINVAL;
668 	}
669 
670 	return (ret >= 0) ? count : ret;
671 }
672 
673 static struct kobj_attribute bL_switcher_active_attr =
674 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
675 
676 static struct attribute *bL_switcher_attrs[] = {
677 	&bL_switcher_active_attr.attr,
678 	NULL,
679 };
680 
681 static struct attribute_group bL_switcher_attr_group = {
682 	.attrs = bL_switcher_attrs,
683 };
684 
685 static struct kobject *bL_switcher_kobj;
686 
687 static int __init bL_switcher_sysfs_init(void)
688 {
689 	int ret;
690 
691 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
692 	if (!bL_switcher_kobj)
693 		return -ENOMEM;
694 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
695 	if (ret)
696 		kobject_put(bL_switcher_kobj);
697 	return ret;
698 }
699 
700 #endif  /* CONFIG_SYSFS */
701 
702 bool bL_switcher_get_enabled(void)
703 {
704 	mutex_lock(&bL_switcher_activation_lock);
705 
706 	return bL_switcher_active;
707 }
708 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
709 
710 void bL_switcher_put_enabled(void)
711 {
712 	mutex_unlock(&bL_switcher_activation_lock);
713 }
714 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
715 
716 /*
717  * Veto any CPU hotplug operation on those CPUs we've removed
718  * while the switcher is active.
719  * We're just not ready to deal with that given the trickery involved.
720  */
721 static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
722 					unsigned long action, void *hcpu)
723 {
724 	if (bL_switcher_active) {
725 		int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
726 		switch (action & 0xf) {
727 		case CPU_UP_PREPARE:
728 		case CPU_DOWN_PREPARE:
729 			if (pairing == -1)
730 				return NOTIFY_BAD;
731 		}
732 	}
733 	return NOTIFY_DONE;
734 }
735 
736 static bool no_bL_switcher;
737 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
738 
739 static int __init bL_switcher_init(void)
740 {
741 	int ret;
742 
743 	if (MAX_NR_CLUSTERS != 2) {
744 		pr_err("%s: only dual cluster systems are supported\n", __func__);
745 		return -EINVAL;
746 	}
747 
748 	cpu_notifier(bL_switcher_hotplug_callback, 0);
749 
750 	if (!no_bL_switcher) {
751 		ret = bL_switcher_enable();
752 		if (ret)
753 			return ret;
754 	}
755 
756 #ifdef CONFIG_SYSFS
757 	ret = bL_switcher_sysfs_init();
758 	if (ret)
759 		pr_err("%s: unable to create sysfs entry\n", __func__);
760 #endif
761 
762 	return 0;
763 }
764 
765 late_initcall(bL_switcher_init);
766