1 /* 2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver 3 * 4 * Created by: Nicolas Pitre, March 2012 5 * Copyright: (C) 2012-2013 Linaro Limited 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/atomic.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/sched.h> 17 #include <linux/interrupt.h> 18 #include <linux/cpu_pm.h> 19 #include <linux/cpu.h> 20 #include <linux/cpumask.h> 21 #include <linux/kthread.h> 22 #include <linux/wait.h> 23 #include <linux/time.h> 24 #include <linux/clockchips.h> 25 #include <linux/hrtimer.h> 26 #include <linux/tick.h> 27 #include <linux/notifier.h> 28 #include <linux/mm.h> 29 #include <linux/mutex.h> 30 #include <linux/spinlock.h> 31 #include <linux/string.h> 32 #include <linux/sysfs.h> 33 #include <linux/irqchip/arm-gic.h> 34 #include <linux/moduleparam.h> 35 36 #include <asm/smp_plat.h> 37 #include <asm/cputype.h> 38 #include <asm/suspend.h> 39 #include <asm/mcpm.h> 40 #include <asm/bL_switcher.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/power_cpu_migrate.h> 44 45 46 /* 47 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have 48 * __attribute_const__ and we don't want the compiler to assume any 49 * constness here as the value _does_ change along some code paths. 50 */ 51 52 static int read_mpidr(void) 53 { 54 unsigned int id; 55 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); 56 return id & MPIDR_HWID_BITMASK; 57 } 58 59 /* 60 * Get a global nanosecond time stamp for tracing. 61 */ 62 static s64 get_ns(void) 63 { 64 struct timespec ts; 65 getnstimeofday(&ts); 66 return timespec_to_ns(&ts); 67 } 68 69 /* 70 * bL switcher core code. 71 */ 72 73 static void bL_do_switch(void *_arg) 74 { 75 unsigned ib_mpidr, ib_cpu, ib_cluster; 76 long volatile handshake, **handshake_ptr = _arg; 77 78 pr_debug("%s\n", __func__); 79 80 ib_mpidr = cpu_logical_map(smp_processor_id()); 81 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 82 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 83 84 /* Advertise our handshake location */ 85 if (handshake_ptr) { 86 handshake = 0; 87 *handshake_ptr = &handshake; 88 } else 89 handshake = -1; 90 91 /* 92 * Our state has been saved at this point. Let's release our 93 * inbound CPU. 94 */ 95 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); 96 sev(); 97 98 /* 99 * From this point, we must assume that our counterpart CPU might 100 * have taken over in its parallel world already, as if execution 101 * just returned from cpu_suspend(). It is therefore important to 102 * be very careful not to make any change the other guy is not 103 * expecting. This is why we need stack isolation. 104 * 105 * Fancy under cover tasks could be performed here. For now 106 * we have none. 107 */ 108 109 /* 110 * Let's wait until our inbound is alive. 111 */ 112 while (!handshake) { 113 wfe(); 114 smp_mb(); 115 } 116 117 /* Let's put ourself down. */ 118 mcpm_cpu_power_down(); 119 120 /* should never get here */ 121 BUG(); 122 } 123 124 /* 125 * Stack isolation. To ensure 'current' remains valid, we just use another 126 * piece of our thread's stack space which should be fairly lightly used. 127 * The selected area starts just above the thread_info structure located 128 * at the very bottom of the stack, aligned to a cache line, and indexed 129 * with the cluster number. 130 */ 131 #define STACK_SIZE 512 132 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); 133 static int bL_switchpoint(unsigned long _arg) 134 { 135 unsigned int mpidr = read_mpidr(); 136 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); 137 void *stack = current_thread_info() + 1; 138 stack = PTR_ALIGN(stack, L1_CACHE_BYTES); 139 stack += clusterid * STACK_SIZE + STACK_SIZE; 140 call_with_stack(bL_do_switch, (void *)_arg, stack); 141 BUG(); 142 } 143 144 /* 145 * Generic switcher interface 146 */ 147 148 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; 149 static int bL_switcher_cpu_pairing[NR_CPUS]; 150 151 /* 152 * bL_switch_to - Switch to a specific cluster for the current CPU 153 * @new_cluster_id: the ID of the cluster to switch to. 154 * 155 * This function must be called on the CPU to be switched. 156 * Returns 0 on success, else a negative status code. 157 */ 158 static int bL_switch_to(unsigned int new_cluster_id) 159 { 160 unsigned int mpidr, this_cpu, that_cpu; 161 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; 162 struct completion inbound_alive; 163 struct tick_device *tdev; 164 enum clock_event_mode tdev_mode; 165 long volatile *handshake_ptr; 166 int ipi_nr, ret; 167 168 this_cpu = smp_processor_id(); 169 ob_mpidr = read_mpidr(); 170 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); 171 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); 172 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); 173 174 if (new_cluster_id == ob_cluster) 175 return 0; 176 177 that_cpu = bL_switcher_cpu_pairing[this_cpu]; 178 ib_mpidr = cpu_logical_map(that_cpu); 179 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); 180 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); 181 182 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", 183 this_cpu, ob_mpidr, ib_mpidr); 184 185 this_cpu = smp_processor_id(); 186 187 /* Close the gate for our entry vectors */ 188 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); 189 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); 190 191 /* Install our "inbound alive" notifier. */ 192 init_completion(&inbound_alive); 193 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); 194 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); 195 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); 196 197 /* 198 * Let's wake up the inbound CPU now in case it requires some delay 199 * to come online, but leave it gated in our entry vector code. 200 */ 201 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); 202 if (ret) { 203 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); 204 return ret; 205 } 206 207 /* 208 * Raise a SGI on the inbound CPU to make sure it doesn't stall 209 * in a possible WFI, such as in bL_power_down(). 210 */ 211 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); 212 213 /* 214 * Wait for the inbound to come up. This allows for other 215 * tasks to be scheduled in the mean time. 216 */ 217 wait_for_completion(&inbound_alive); 218 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); 219 220 /* 221 * From this point we are entering the switch critical zone 222 * and can't take any interrupts anymore. 223 */ 224 local_irq_disable(); 225 local_fiq_disable(); 226 trace_cpu_migrate_begin(get_ns(), ob_mpidr); 227 228 /* redirect GIC's SGIs to our counterpart */ 229 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); 230 231 tdev = tick_get_device(this_cpu); 232 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) 233 tdev = NULL; 234 if (tdev) { 235 tdev_mode = tdev->evtdev->mode; 236 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); 237 } 238 239 ret = cpu_pm_enter(); 240 241 /* we can not tolerate errors at this point */ 242 if (ret) 243 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); 244 245 /* Swap the physical CPUs in the logical map for this logical CPU. */ 246 cpu_logical_map(this_cpu) = ib_mpidr; 247 cpu_logical_map(that_cpu) = ob_mpidr; 248 249 /* Let's do the actual CPU switch. */ 250 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); 251 if (ret > 0) 252 panic("%s: cpu_suspend() returned %d\n", __func__, ret); 253 254 /* We are executing on the inbound CPU at this point */ 255 mpidr = read_mpidr(); 256 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); 257 BUG_ON(mpidr != ib_mpidr); 258 259 mcpm_cpu_powered_up(); 260 261 ret = cpu_pm_exit(); 262 263 if (tdev) { 264 clockevents_set_mode(tdev->evtdev, tdev_mode); 265 clockevents_program_event(tdev->evtdev, 266 tdev->evtdev->next_event, 1); 267 } 268 269 trace_cpu_migrate_finish(get_ns(), ib_mpidr); 270 local_fiq_enable(); 271 local_irq_enable(); 272 273 *handshake_ptr = 1; 274 dsb_sev(); 275 276 if (ret) 277 pr_err("%s exiting with error %d\n", __func__, ret); 278 return ret; 279 } 280 281 struct bL_thread { 282 spinlock_t lock; 283 struct task_struct *task; 284 wait_queue_head_t wq; 285 int wanted_cluster; 286 struct completion started; 287 bL_switch_completion_handler completer; 288 void *completer_cookie; 289 }; 290 291 static struct bL_thread bL_threads[NR_CPUS]; 292 293 static int bL_switcher_thread(void *arg) 294 { 295 struct bL_thread *t = arg; 296 struct sched_param param = { .sched_priority = 1 }; 297 int cluster; 298 bL_switch_completion_handler completer; 299 void *completer_cookie; 300 301 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); 302 complete(&t->started); 303 304 do { 305 if (signal_pending(current)) 306 flush_signals(current); 307 wait_event_interruptible(t->wq, 308 t->wanted_cluster != -1 || 309 kthread_should_stop()); 310 311 spin_lock(&t->lock); 312 cluster = t->wanted_cluster; 313 completer = t->completer; 314 completer_cookie = t->completer_cookie; 315 t->wanted_cluster = -1; 316 t->completer = NULL; 317 spin_unlock(&t->lock); 318 319 if (cluster != -1) { 320 bL_switch_to(cluster); 321 322 if (completer) 323 completer(completer_cookie); 324 } 325 } while (!kthread_should_stop()); 326 327 return 0; 328 } 329 330 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) 331 { 332 struct task_struct *task; 333 334 task = kthread_create_on_node(bL_switcher_thread, arg, 335 cpu_to_node(cpu), "kswitcher_%d", cpu); 336 if (!IS_ERR(task)) { 337 kthread_bind(task, cpu); 338 wake_up_process(task); 339 } else 340 pr_err("%s failed for CPU %d\n", __func__, cpu); 341 return task; 342 } 343 344 /* 345 * bL_switch_request_cb - Switch to a specific cluster for the given CPU, 346 * with completion notification via a callback 347 * 348 * @cpu: the CPU to switch 349 * @new_cluster_id: the ID of the cluster to switch to. 350 * @completer: switch completion callback. if non-NULL, 351 * @completer(@completer_cookie) will be called on completion of 352 * the switch, in non-atomic context. 353 * @completer_cookie: opaque context argument for @completer. 354 * 355 * This function causes a cluster switch on the given CPU by waking up 356 * the appropriate switcher thread. This function may or may not return 357 * before the switch has occurred. 358 * 359 * If a @completer callback function is supplied, it will be called when 360 * the switch is complete. This can be used to determine asynchronously 361 * when the switch is complete, regardless of when bL_switch_request() 362 * returns. When @completer is supplied, no new switch request is permitted 363 * for the affected CPU until after the switch is complete, and @completer 364 * has returned. 365 */ 366 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, 367 bL_switch_completion_handler completer, 368 void *completer_cookie) 369 { 370 struct bL_thread *t; 371 372 if (cpu >= ARRAY_SIZE(bL_threads)) { 373 pr_err("%s: cpu %d out of bounds\n", __func__, cpu); 374 return -EINVAL; 375 } 376 377 t = &bL_threads[cpu]; 378 379 if (IS_ERR(t->task)) 380 return PTR_ERR(t->task); 381 if (!t->task) 382 return -ESRCH; 383 384 spin_lock(&t->lock); 385 if (t->completer) { 386 spin_unlock(&t->lock); 387 return -EBUSY; 388 } 389 t->completer = completer; 390 t->completer_cookie = completer_cookie; 391 t->wanted_cluster = new_cluster_id; 392 spin_unlock(&t->lock); 393 wake_up(&t->wq); 394 return 0; 395 } 396 EXPORT_SYMBOL_GPL(bL_switch_request_cb); 397 398 /* 399 * Activation and configuration code. 400 */ 401 402 static DEFINE_MUTEX(bL_switcher_activation_lock); 403 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); 404 static unsigned int bL_switcher_active; 405 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; 406 static cpumask_t bL_switcher_removed_logical_cpus; 407 408 int bL_switcher_register_notifier(struct notifier_block *nb) 409 { 410 return blocking_notifier_chain_register(&bL_activation_notifier, nb); 411 } 412 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); 413 414 int bL_switcher_unregister_notifier(struct notifier_block *nb) 415 { 416 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); 417 } 418 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); 419 420 static int bL_activation_notify(unsigned long val) 421 { 422 int ret; 423 424 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); 425 if (ret & NOTIFY_STOP_MASK) 426 pr_err("%s: notifier chain failed with status 0x%x\n", 427 __func__, ret); 428 return notifier_to_errno(ret); 429 } 430 431 static void bL_switcher_restore_cpus(void) 432 { 433 int i; 434 435 for_each_cpu(i, &bL_switcher_removed_logical_cpus) 436 cpu_up(i); 437 } 438 439 static int bL_switcher_halve_cpus(void) 440 { 441 int i, j, cluster_0, gic_id, ret; 442 unsigned int cpu, cluster, mask; 443 cpumask_t available_cpus; 444 445 /* First pass to validate what we have */ 446 mask = 0; 447 for_each_online_cpu(i) { 448 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 449 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 450 if (cluster >= 2) { 451 pr_err("%s: only dual cluster systems are supported\n", __func__); 452 return -EINVAL; 453 } 454 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) 455 return -EINVAL; 456 mask |= (1 << cluster); 457 } 458 if (mask != 3) { 459 pr_err("%s: no CPU pairing possible\n", __func__); 460 return -EINVAL; 461 } 462 463 /* 464 * Now let's do the pairing. We match each CPU with another CPU 465 * from a different cluster. To get a uniform scheduling behavior 466 * without fiddling with CPU topology and compute capacity data, 467 * we'll use logical CPUs initially belonging to the same cluster. 468 */ 469 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); 470 cpumask_copy(&available_cpus, cpu_online_mask); 471 cluster_0 = -1; 472 for_each_cpu(i, &available_cpus) { 473 int match = -1; 474 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 475 if (cluster_0 == -1) 476 cluster_0 = cluster; 477 if (cluster != cluster_0) 478 continue; 479 cpumask_clear_cpu(i, &available_cpus); 480 for_each_cpu(j, &available_cpus) { 481 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); 482 /* 483 * Let's remember the last match to create "odd" 484 * pairings on purpose in order for other code not 485 * to assume any relation between physical and 486 * logical CPU numbers. 487 */ 488 if (cluster != cluster_0) 489 match = j; 490 } 491 if (match != -1) { 492 bL_switcher_cpu_pairing[i] = match; 493 cpumask_clear_cpu(match, &available_cpus); 494 pr_info("CPU%d paired with CPU%d\n", i, match); 495 } 496 } 497 498 /* 499 * Now we disable the unwanted CPUs i.e. everything that has no 500 * pairing information (that includes the pairing counterparts). 501 */ 502 cpumask_clear(&bL_switcher_removed_logical_cpus); 503 for_each_online_cpu(i) { 504 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); 505 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); 506 507 /* Let's take note of the GIC ID for this CPU */ 508 gic_id = gic_get_cpu_id(i); 509 if (gic_id < 0) { 510 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); 511 bL_switcher_restore_cpus(); 512 return -EINVAL; 513 } 514 bL_gic_id[cpu][cluster] = gic_id; 515 pr_info("GIC ID for CPU %u cluster %u is %u\n", 516 cpu, cluster, gic_id); 517 518 if (bL_switcher_cpu_pairing[i] != -1) { 519 bL_switcher_cpu_original_cluster[i] = cluster; 520 continue; 521 } 522 523 ret = cpu_down(i); 524 if (ret) { 525 bL_switcher_restore_cpus(); 526 return ret; 527 } 528 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); 529 } 530 531 return 0; 532 } 533 534 static int bL_switcher_enable(void) 535 { 536 int cpu, ret; 537 538 mutex_lock(&bL_switcher_activation_lock); 539 cpu_hotplug_driver_lock(); 540 if (bL_switcher_active) { 541 cpu_hotplug_driver_unlock(); 542 mutex_unlock(&bL_switcher_activation_lock); 543 return 0; 544 } 545 546 pr_info("big.LITTLE switcher initializing\n"); 547 548 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); 549 if (ret) 550 goto error; 551 552 ret = bL_switcher_halve_cpus(); 553 if (ret) 554 goto error; 555 556 for_each_online_cpu(cpu) { 557 struct bL_thread *t = &bL_threads[cpu]; 558 spin_lock_init(&t->lock); 559 init_waitqueue_head(&t->wq); 560 init_completion(&t->started); 561 t->wanted_cluster = -1; 562 t->task = bL_switcher_thread_create(cpu, t); 563 } 564 565 bL_switcher_active = 1; 566 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 567 pr_info("big.LITTLE switcher initialized\n"); 568 goto out; 569 570 error: 571 pr_warn("big.LITTLE switcher initialization failed\n"); 572 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 573 574 out: 575 cpu_hotplug_driver_unlock(); 576 mutex_unlock(&bL_switcher_activation_lock); 577 return ret; 578 } 579 580 #ifdef CONFIG_SYSFS 581 582 static void bL_switcher_disable(void) 583 { 584 unsigned int cpu, cluster; 585 struct bL_thread *t; 586 struct task_struct *task; 587 588 mutex_lock(&bL_switcher_activation_lock); 589 cpu_hotplug_driver_lock(); 590 591 if (!bL_switcher_active) 592 goto out; 593 594 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { 595 bL_activation_notify(BL_NOTIFY_POST_ENABLE); 596 goto out; 597 } 598 599 bL_switcher_active = 0; 600 601 /* 602 * To deactivate the switcher, we must shut down the switcher 603 * threads to prevent any other requests from being accepted. 604 * Then, if the final cluster for given logical CPU is not the 605 * same as the original one, we'll recreate a switcher thread 606 * just for the purpose of switching the CPU back without any 607 * possibility for interference from external requests. 608 */ 609 for_each_online_cpu(cpu) { 610 t = &bL_threads[cpu]; 611 task = t->task; 612 t->task = NULL; 613 if (!task || IS_ERR(task)) 614 continue; 615 kthread_stop(task); 616 /* no more switch may happen on this CPU at this point */ 617 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 618 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 619 continue; 620 init_completion(&t->started); 621 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; 622 task = bL_switcher_thread_create(cpu, t); 623 if (!IS_ERR(task)) { 624 wait_for_completion(&t->started); 625 kthread_stop(task); 626 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); 627 if (cluster == bL_switcher_cpu_original_cluster[cpu]) 628 continue; 629 } 630 /* If execution gets here, we're in trouble. */ 631 pr_crit("%s: unable to restore original cluster for CPU %d\n", 632 __func__, cpu); 633 pr_crit("%s: CPU %d can't be restored\n", 634 __func__, bL_switcher_cpu_pairing[cpu]); 635 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], 636 &bL_switcher_removed_logical_cpus); 637 } 638 639 bL_switcher_restore_cpus(); 640 bL_activation_notify(BL_NOTIFY_POST_DISABLE); 641 642 out: 643 cpu_hotplug_driver_unlock(); 644 mutex_unlock(&bL_switcher_activation_lock); 645 } 646 647 static ssize_t bL_switcher_active_show(struct kobject *kobj, 648 struct kobj_attribute *attr, char *buf) 649 { 650 return sprintf(buf, "%u\n", bL_switcher_active); 651 } 652 653 static ssize_t bL_switcher_active_store(struct kobject *kobj, 654 struct kobj_attribute *attr, const char *buf, size_t count) 655 { 656 int ret; 657 658 switch (buf[0]) { 659 case '0': 660 bL_switcher_disable(); 661 ret = 0; 662 break; 663 case '1': 664 ret = bL_switcher_enable(); 665 break; 666 default: 667 ret = -EINVAL; 668 } 669 670 return (ret >= 0) ? count : ret; 671 } 672 673 static struct kobj_attribute bL_switcher_active_attr = 674 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); 675 676 static struct attribute *bL_switcher_attrs[] = { 677 &bL_switcher_active_attr.attr, 678 NULL, 679 }; 680 681 static struct attribute_group bL_switcher_attr_group = { 682 .attrs = bL_switcher_attrs, 683 }; 684 685 static struct kobject *bL_switcher_kobj; 686 687 static int __init bL_switcher_sysfs_init(void) 688 { 689 int ret; 690 691 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); 692 if (!bL_switcher_kobj) 693 return -ENOMEM; 694 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); 695 if (ret) 696 kobject_put(bL_switcher_kobj); 697 return ret; 698 } 699 700 #endif /* CONFIG_SYSFS */ 701 702 bool bL_switcher_get_enabled(void) 703 { 704 mutex_lock(&bL_switcher_activation_lock); 705 706 return bL_switcher_active; 707 } 708 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); 709 710 void bL_switcher_put_enabled(void) 711 { 712 mutex_unlock(&bL_switcher_activation_lock); 713 } 714 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); 715 716 /* 717 * Veto any CPU hotplug operation on those CPUs we've removed 718 * while the switcher is active. 719 * We're just not ready to deal with that given the trickery involved. 720 */ 721 static int bL_switcher_hotplug_callback(struct notifier_block *nfb, 722 unsigned long action, void *hcpu) 723 { 724 if (bL_switcher_active) { 725 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu]; 726 switch (action & 0xf) { 727 case CPU_UP_PREPARE: 728 case CPU_DOWN_PREPARE: 729 if (pairing == -1) 730 return NOTIFY_BAD; 731 } 732 } 733 return NOTIFY_DONE; 734 } 735 736 static bool no_bL_switcher; 737 core_param(no_bL_switcher, no_bL_switcher, bool, 0644); 738 739 static int __init bL_switcher_init(void) 740 { 741 int ret; 742 743 if (MAX_NR_CLUSTERS != 2) { 744 pr_err("%s: only dual cluster systems are supported\n", __func__); 745 return -EINVAL; 746 } 747 748 cpu_notifier(bL_switcher_hotplug_callback, 0); 749 750 if (!no_bL_switcher) { 751 ret = bL_switcher_enable(); 752 if (ret) 753 return ret; 754 } 755 756 #ifdef CONFIG_SYSFS 757 ret = bL_switcher_sysfs_init(); 758 if (ret) 759 pr_err("%s: unable to create sysfs entry\n", __func__); 760 #endif 761 762 return 0; 763 } 764 765 late_initcall(bL_switcher_init); 766