xref: /linux/arch/arm/common/bL_switcher.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
4  *
5  * Created by:	Nicolas Pitre, March 2012
6  * Copyright:	(C) 2012-2013  Linaro Limited
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched/signal.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/kthread.h>
20 #include <linux/wait.h>
21 #include <linux/time.h>
22 #include <linux/clockchips.h>
23 #include <linux/hrtimer.h>
24 #include <linux/tick.h>
25 #include <linux/notifier.h>
26 #include <linux/mm.h>
27 #include <linux/mutex.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/string.h>
31 #include <linux/sysfs.h>
32 #include <linux/irqchip/arm-gic.h>
33 #include <linux/moduleparam.h>
34 
35 #include <asm/smp_plat.h>
36 #include <asm/cputype.h>
37 #include <asm/suspend.h>
38 #include <asm/mcpm.h>
39 #include <asm/bL_switcher.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/power_cpu_migrate.h>
43 
44 
45 /*
46  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
47  * __attribute_const__ and we don't want the compiler to assume any
48  * constness here as the value _does_ change along some code paths.
49  */
50 
51 static int read_mpidr(void)
52 {
53 	unsigned int id;
54 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
55 	return id & MPIDR_HWID_BITMASK;
56 }
57 
58 /*
59  * bL switcher core code.
60  */
61 
62 static void bL_do_switch(void *_arg)
63 {
64 	unsigned ib_mpidr, ib_cpu, ib_cluster;
65 	long volatile handshake, **handshake_ptr = _arg;
66 
67 	pr_debug("%s\n", __func__);
68 
69 	ib_mpidr = cpu_logical_map(smp_processor_id());
70 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
71 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
72 
73 	/* Advertise our handshake location */
74 	if (handshake_ptr) {
75 		handshake = 0;
76 		*handshake_ptr = &handshake;
77 	} else
78 		handshake = -1;
79 
80 	/*
81 	 * Our state has been saved at this point.  Let's release our
82 	 * inbound CPU.
83 	 */
84 	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
85 	sev();
86 
87 	/*
88 	 * From this point, we must assume that our counterpart CPU might
89 	 * have taken over in its parallel world already, as if execution
90 	 * just returned from cpu_suspend().  It is therefore important to
91 	 * be very careful not to make any change the other guy is not
92 	 * expecting.  This is why we need stack isolation.
93 	 *
94 	 * Fancy under cover tasks could be performed here.  For now
95 	 * we have none.
96 	 */
97 
98 	/*
99 	 * Let's wait until our inbound is alive.
100 	 */
101 	while (!handshake) {
102 		wfe();
103 		smp_mb();
104 	}
105 
106 	/* Let's put ourself down. */
107 	mcpm_cpu_power_down();
108 
109 	/* should never get here */
110 	BUG();
111 }
112 
113 /*
114  * Stack isolation.  To ensure 'current' remains valid, we just use another
115  * piece of our thread's stack space which should be fairly lightly used.
116  * The selected area starts just above the thread_info structure located
117  * at the very bottom of the stack, aligned to a cache line, and indexed
118  * with the cluster number.
119  */
120 #define STACK_SIZE 512
121 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
122 static int bL_switchpoint(unsigned long _arg)
123 {
124 	unsigned int mpidr = read_mpidr();
125 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
126 	void *stack = current_thread_info() + 1;
127 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
128 	stack += clusterid * STACK_SIZE + STACK_SIZE;
129 	call_with_stack(bL_do_switch, (void *)_arg, stack);
130 	BUG();
131 }
132 
133 /*
134  * Generic switcher interface
135  */
136 
137 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
138 static int bL_switcher_cpu_pairing[NR_CPUS];
139 
140 /*
141  * bL_switch_to - Switch to a specific cluster for the current CPU
142  * @new_cluster_id: the ID of the cluster to switch to.
143  *
144  * This function must be called on the CPU to be switched.
145  * Returns 0 on success, else a negative status code.
146  */
147 static int bL_switch_to(unsigned int new_cluster_id)
148 {
149 	unsigned int mpidr, this_cpu, that_cpu;
150 	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
151 	struct completion inbound_alive;
152 	long volatile *handshake_ptr;
153 	int ipi_nr, ret;
154 
155 	this_cpu = smp_processor_id();
156 	ob_mpidr = read_mpidr();
157 	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
158 	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
159 	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
160 
161 	if (new_cluster_id == ob_cluster)
162 		return 0;
163 
164 	that_cpu = bL_switcher_cpu_pairing[this_cpu];
165 	ib_mpidr = cpu_logical_map(that_cpu);
166 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
167 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
168 
169 	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
170 		 this_cpu, ob_mpidr, ib_mpidr);
171 
172 	this_cpu = smp_processor_id();
173 
174 	/* Close the gate for our entry vectors */
175 	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
176 	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
177 
178 	/* Install our "inbound alive" notifier. */
179 	init_completion(&inbound_alive);
180 	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
181 	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
182 	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
183 
184 	/*
185 	 * Let's wake up the inbound CPU now in case it requires some delay
186 	 * to come online, but leave it gated in our entry vector code.
187 	 */
188 	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
189 	if (ret) {
190 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
191 		return ret;
192 	}
193 
194 	/*
195 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
196 	 * in a possible WFI, such as in bL_power_down().
197 	 */
198 	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
199 
200 	/*
201 	 * Wait for the inbound to come up.  This allows for other
202 	 * tasks to be scheduled in the mean time.
203 	 */
204 	wait_for_completion(&inbound_alive);
205 	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
206 
207 	/*
208 	 * From this point we are entering the switch critical zone
209 	 * and can't take any interrupts anymore.
210 	 */
211 	local_irq_disable();
212 	local_fiq_disable();
213 	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
214 
215 	/* redirect GIC's SGIs to our counterpart */
216 	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
217 
218 	tick_suspend_local();
219 
220 	ret = cpu_pm_enter();
221 
222 	/* we can not tolerate errors at this point */
223 	if (ret)
224 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
225 
226 	/* Swap the physical CPUs in the logical map for this logical CPU. */
227 	cpu_logical_map(this_cpu) = ib_mpidr;
228 	cpu_logical_map(that_cpu) = ob_mpidr;
229 
230 	/* Let's do the actual CPU switch. */
231 	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
232 	if (ret > 0)
233 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
234 
235 	/* We are executing on the inbound CPU at this point */
236 	mpidr = read_mpidr();
237 	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
238 	BUG_ON(mpidr != ib_mpidr);
239 
240 	mcpm_cpu_powered_up();
241 
242 	ret = cpu_pm_exit();
243 
244 	tick_resume_local();
245 
246 	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
247 	local_fiq_enable();
248 	local_irq_enable();
249 
250 	*handshake_ptr = 1;
251 	dsb_sev();
252 
253 	if (ret)
254 		pr_err("%s exiting with error %d\n", __func__, ret);
255 	return ret;
256 }
257 
258 struct bL_thread {
259 	spinlock_t lock;
260 	struct task_struct *task;
261 	wait_queue_head_t wq;
262 	int wanted_cluster;
263 	struct completion started;
264 	bL_switch_completion_handler completer;
265 	void *completer_cookie;
266 };
267 
268 static struct bL_thread bL_threads[NR_CPUS];
269 
270 static int bL_switcher_thread(void *arg)
271 {
272 	struct bL_thread *t = arg;
273 	struct sched_param param = { .sched_priority = 1 };
274 	int cluster;
275 	bL_switch_completion_handler completer;
276 	void *completer_cookie;
277 
278 	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
279 	complete(&t->started);
280 
281 	do {
282 		if (signal_pending(current))
283 			flush_signals(current);
284 		wait_event_interruptible(t->wq,
285 				t->wanted_cluster != -1 ||
286 				kthread_should_stop());
287 
288 		spin_lock(&t->lock);
289 		cluster = t->wanted_cluster;
290 		completer = t->completer;
291 		completer_cookie = t->completer_cookie;
292 		t->wanted_cluster = -1;
293 		t->completer = NULL;
294 		spin_unlock(&t->lock);
295 
296 		if (cluster != -1) {
297 			bL_switch_to(cluster);
298 
299 			if (completer)
300 				completer(completer_cookie);
301 		}
302 	} while (!kthread_should_stop());
303 
304 	return 0;
305 }
306 
307 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
308 {
309 	struct task_struct *task;
310 
311 	task = kthread_create_on_node(bL_switcher_thread, arg,
312 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
313 	if (!IS_ERR(task)) {
314 		kthread_bind(task, cpu);
315 		wake_up_process(task);
316 	} else
317 		pr_err("%s failed for CPU %d\n", __func__, cpu);
318 	return task;
319 }
320 
321 /*
322  * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
323  *      with completion notification via a callback
324  *
325  * @cpu: the CPU to switch
326  * @new_cluster_id: the ID of the cluster to switch to.
327  * @completer: switch completion callback.  if non-NULL,
328  *	@completer(@completer_cookie) will be called on completion of
329  *	the switch, in non-atomic context.
330  * @completer_cookie: opaque context argument for @completer.
331  *
332  * This function causes a cluster switch on the given CPU by waking up
333  * the appropriate switcher thread.  This function may or may not return
334  * before the switch has occurred.
335  *
336  * If a @completer callback function is supplied, it will be called when
337  * the switch is complete.  This can be used to determine asynchronously
338  * when the switch is complete, regardless of when bL_switch_request()
339  * returns.  When @completer is supplied, no new switch request is permitted
340  * for the affected CPU until after the switch is complete, and @completer
341  * has returned.
342  */
343 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
344 			 bL_switch_completion_handler completer,
345 			 void *completer_cookie)
346 {
347 	struct bL_thread *t;
348 
349 	if (cpu >= ARRAY_SIZE(bL_threads)) {
350 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
351 		return -EINVAL;
352 	}
353 
354 	t = &bL_threads[cpu];
355 
356 	if (IS_ERR(t->task))
357 		return PTR_ERR(t->task);
358 	if (!t->task)
359 		return -ESRCH;
360 
361 	spin_lock(&t->lock);
362 	if (t->completer) {
363 		spin_unlock(&t->lock);
364 		return -EBUSY;
365 	}
366 	t->completer = completer;
367 	t->completer_cookie = completer_cookie;
368 	t->wanted_cluster = new_cluster_id;
369 	spin_unlock(&t->lock);
370 	wake_up(&t->wq);
371 	return 0;
372 }
373 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
374 
375 /*
376  * Activation and configuration code.
377  */
378 
379 static DEFINE_MUTEX(bL_switcher_activation_lock);
380 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
381 static unsigned int bL_switcher_active;
382 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
383 static cpumask_t bL_switcher_removed_logical_cpus;
384 
385 int bL_switcher_register_notifier(struct notifier_block *nb)
386 {
387 	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
388 }
389 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
390 
391 int bL_switcher_unregister_notifier(struct notifier_block *nb)
392 {
393 	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
394 }
395 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
396 
397 static int bL_activation_notify(unsigned long val)
398 {
399 	int ret;
400 
401 	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
402 	if (ret & NOTIFY_STOP_MASK)
403 		pr_err("%s: notifier chain failed with status 0x%x\n",
404 			__func__, ret);
405 	return notifier_to_errno(ret);
406 }
407 
408 static void bL_switcher_restore_cpus(void)
409 {
410 	int i;
411 
412 	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
413 		struct device *cpu_dev = get_cpu_device(i);
414 		int ret = device_online(cpu_dev);
415 		if (ret)
416 			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
417 	}
418 }
419 
420 static int bL_switcher_halve_cpus(void)
421 {
422 	int i, j, cluster_0, gic_id, ret;
423 	unsigned int cpu, cluster, mask;
424 	cpumask_t available_cpus;
425 
426 	/* First pass to validate what we have */
427 	mask = 0;
428 	for_each_online_cpu(i) {
429 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
430 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
431 		if (cluster >= 2) {
432 			pr_err("%s: only dual cluster systems are supported\n", __func__);
433 			return -EINVAL;
434 		}
435 		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
436 			return -EINVAL;
437 		mask |= (1 << cluster);
438 	}
439 	if (mask != 3) {
440 		pr_err("%s: no CPU pairing possible\n", __func__);
441 		return -EINVAL;
442 	}
443 
444 	/*
445 	 * Now let's do the pairing.  We match each CPU with another CPU
446 	 * from a different cluster.  To get a uniform scheduling behavior
447 	 * without fiddling with CPU topology and compute capacity data,
448 	 * we'll use logical CPUs initially belonging to the same cluster.
449 	 */
450 	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
451 	cpumask_copy(&available_cpus, cpu_online_mask);
452 	cluster_0 = -1;
453 	for_each_cpu(i, &available_cpus) {
454 		int match = -1;
455 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
456 		if (cluster_0 == -1)
457 			cluster_0 = cluster;
458 		if (cluster != cluster_0)
459 			continue;
460 		cpumask_clear_cpu(i, &available_cpus);
461 		for_each_cpu(j, &available_cpus) {
462 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
463 			/*
464 			 * Let's remember the last match to create "odd"
465 			 * pairings on purpose in order for other code not
466 			 * to assume any relation between physical and
467 			 * logical CPU numbers.
468 			 */
469 			if (cluster != cluster_0)
470 				match = j;
471 		}
472 		if (match != -1) {
473 			bL_switcher_cpu_pairing[i] = match;
474 			cpumask_clear_cpu(match, &available_cpus);
475 			pr_info("CPU%d paired with CPU%d\n", i, match);
476 		}
477 	}
478 
479 	/*
480 	 * Now we disable the unwanted CPUs i.e. everything that has no
481 	 * pairing information (that includes the pairing counterparts).
482 	 */
483 	cpumask_clear(&bL_switcher_removed_logical_cpus);
484 	for_each_online_cpu(i) {
485 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
486 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
487 
488 		/* Let's take note of the GIC ID for this CPU */
489 		gic_id = gic_get_cpu_id(i);
490 		if (gic_id < 0) {
491 			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
492 			bL_switcher_restore_cpus();
493 			return -EINVAL;
494 		}
495 		bL_gic_id[cpu][cluster] = gic_id;
496 		pr_info("GIC ID for CPU %u cluster %u is %u\n",
497 			cpu, cluster, gic_id);
498 
499 		if (bL_switcher_cpu_pairing[i] != -1) {
500 			bL_switcher_cpu_original_cluster[i] = cluster;
501 			continue;
502 		}
503 
504 		ret = device_offline(get_cpu_device(i));
505 		if (ret) {
506 			bL_switcher_restore_cpus();
507 			return ret;
508 		}
509 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
510 	}
511 
512 	return 0;
513 }
514 
515 /* Determine the logical CPU a given physical CPU is grouped on. */
516 int bL_switcher_get_logical_index(u32 mpidr)
517 {
518 	int cpu;
519 
520 	if (!bL_switcher_active)
521 		return -EUNATCH;
522 
523 	mpidr &= MPIDR_HWID_BITMASK;
524 	for_each_online_cpu(cpu) {
525 		int pairing = bL_switcher_cpu_pairing[cpu];
526 		if (pairing == -1)
527 			continue;
528 		if ((mpidr == cpu_logical_map(cpu)) ||
529 		    (mpidr == cpu_logical_map(pairing)))
530 			return cpu;
531 	}
532 	return -EINVAL;
533 }
534 
535 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
536 {
537 	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
538 }
539 
540 int bL_switcher_trace_trigger(void)
541 {
542 	preempt_disable();
543 
544 	bL_switcher_trace_trigger_cpu(NULL);
545 	smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
546 
547 	preempt_enable();
548 
549 	return 0;
550 }
551 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
552 
553 static int bL_switcher_enable(void)
554 {
555 	int cpu, ret;
556 
557 	mutex_lock(&bL_switcher_activation_lock);
558 	lock_device_hotplug();
559 	if (bL_switcher_active) {
560 		unlock_device_hotplug();
561 		mutex_unlock(&bL_switcher_activation_lock);
562 		return 0;
563 	}
564 
565 	pr_info("big.LITTLE switcher initializing\n");
566 
567 	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
568 	if (ret)
569 		goto error;
570 
571 	ret = bL_switcher_halve_cpus();
572 	if (ret)
573 		goto error;
574 
575 	bL_switcher_trace_trigger();
576 
577 	for_each_online_cpu(cpu) {
578 		struct bL_thread *t = &bL_threads[cpu];
579 		spin_lock_init(&t->lock);
580 		init_waitqueue_head(&t->wq);
581 		init_completion(&t->started);
582 		t->wanted_cluster = -1;
583 		t->task = bL_switcher_thread_create(cpu, t);
584 	}
585 
586 	bL_switcher_active = 1;
587 	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
588 	pr_info("big.LITTLE switcher initialized\n");
589 	goto out;
590 
591 error:
592 	pr_warn("big.LITTLE switcher initialization failed\n");
593 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
594 
595 out:
596 	unlock_device_hotplug();
597 	mutex_unlock(&bL_switcher_activation_lock);
598 	return ret;
599 }
600 
601 #ifdef CONFIG_SYSFS
602 
603 static void bL_switcher_disable(void)
604 {
605 	unsigned int cpu, cluster;
606 	struct bL_thread *t;
607 	struct task_struct *task;
608 
609 	mutex_lock(&bL_switcher_activation_lock);
610 	lock_device_hotplug();
611 
612 	if (!bL_switcher_active)
613 		goto out;
614 
615 	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
616 		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
617 		goto out;
618 	}
619 
620 	bL_switcher_active = 0;
621 
622 	/*
623 	 * To deactivate the switcher, we must shut down the switcher
624 	 * threads to prevent any other requests from being accepted.
625 	 * Then, if the final cluster for given logical CPU is not the
626 	 * same as the original one, we'll recreate a switcher thread
627 	 * just for the purpose of switching the CPU back without any
628 	 * possibility for interference from external requests.
629 	 */
630 	for_each_online_cpu(cpu) {
631 		t = &bL_threads[cpu];
632 		task = t->task;
633 		t->task = NULL;
634 		if (!task || IS_ERR(task))
635 			continue;
636 		kthread_stop(task);
637 		/* no more switch may happen on this CPU at this point */
638 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
639 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
640 			continue;
641 		init_completion(&t->started);
642 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
643 		task = bL_switcher_thread_create(cpu, t);
644 		if (!IS_ERR(task)) {
645 			wait_for_completion(&t->started);
646 			kthread_stop(task);
647 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
648 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
649 				continue;
650 		}
651 		/* If execution gets here, we're in trouble. */
652 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
653 			__func__, cpu);
654 		pr_crit("%s: CPU %d can't be restored\n",
655 			__func__, bL_switcher_cpu_pairing[cpu]);
656 		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
657 				  &bL_switcher_removed_logical_cpus);
658 	}
659 
660 	bL_switcher_restore_cpus();
661 	bL_switcher_trace_trigger();
662 
663 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
664 
665 out:
666 	unlock_device_hotplug();
667 	mutex_unlock(&bL_switcher_activation_lock);
668 }
669 
670 static ssize_t bL_switcher_active_show(struct kobject *kobj,
671 		struct kobj_attribute *attr, char *buf)
672 {
673 	return sprintf(buf, "%u\n", bL_switcher_active);
674 }
675 
676 static ssize_t bL_switcher_active_store(struct kobject *kobj,
677 		struct kobj_attribute *attr, const char *buf, size_t count)
678 {
679 	int ret;
680 
681 	switch (buf[0]) {
682 	case '0':
683 		bL_switcher_disable();
684 		ret = 0;
685 		break;
686 	case '1':
687 		ret = bL_switcher_enable();
688 		break;
689 	default:
690 		ret = -EINVAL;
691 	}
692 
693 	return (ret >= 0) ? count : ret;
694 }
695 
696 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
697 		struct kobj_attribute *attr, const char *buf, size_t count)
698 {
699 	int ret = bL_switcher_trace_trigger();
700 
701 	return ret ? ret : count;
702 }
703 
704 static struct kobj_attribute bL_switcher_active_attr =
705 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
706 
707 static struct kobj_attribute bL_switcher_trace_trigger_attr =
708 	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
709 
710 static struct attribute *bL_switcher_attrs[] = {
711 	&bL_switcher_active_attr.attr,
712 	&bL_switcher_trace_trigger_attr.attr,
713 	NULL,
714 };
715 
716 static struct attribute_group bL_switcher_attr_group = {
717 	.attrs = bL_switcher_attrs,
718 };
719 
720 static struct kobject *bL_switcher_kobj;
721 
722 static int __init bL_switcher_sysfs_init(void)
723 {
724 	int ret;
725 
726 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
727 	if (!bL_switcher_kobj)
728 		return -ENOMEM;
729 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
730 	if (ret)
731 		kobject_put(bL_switcher_kobj);
732 	return ret;
733 }
734 
735 #endif  /* CONFIG_SYSFS */
736 
737 bool bL_switcher_get_enabled(void)
738 {
739 	mutex_lock(&bL_switcher_activation_lock);
740 
741 	return bL_switcher_active;
742 }
743 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
744 
745 void bL_switcher_put_enabled(void)
746 {
747 	mutex_unlock(&bL_switcher_activation_lock);
748 }
749 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
750 
751 /*
752  * Veto any CPU hotplug operation on those CPUs we've removed
753  * while the switcher is active.
754  * We're just not ready to deal with that given the trickery involved.
755  */
756 static int bL_switcher_cpu_pre(unsigned int cpu)
757 {
758 	int pairing;
759 
760 	if (!bL_switcher_active)
761 		return 0;
762 
763 	pairing = bL_switcher_cpu_pairing[cpu];
764 
765 	if (pairing == -1)
766 		return -EINVAL;
767 	return 0;
768 }
769 
770 static bool no_bL_switcher;
771 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
772 
773 static int __init bL_switcher_init(void)
774 {
775 	int ret;
776 
777 	if (!mcpm_is_available())
778 		return -ENODEV;
779 
780 	cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
781 				  bL_switcher_cpu_pre, NULL);
782 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
783 					NULL, bL_switcher_cpu_pre);
784 	if (ret < 0) {
785 		cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
786 		pr_err("bL_switcher: Failed to allocate a hotplug state\n");
787 		return ret;
788 	}
789 	if (!no_bL_switcher) {
790 		ret = bL_switcher_enable();
791 		if (ret)
792 			return ret;
793 	}
794 
795 #ifdef CONFIG_SYSFS
796 	ret = bL_switcher_sysfs_init();
797 	if (ret)
798 		pr_err("%s: unable to create sysfs entry\n", __func__);
799 #endif
800 
801 	return 0;
802 }
803 
804 late_initcall(bL_switcher_init);
805