xref: /linux/arch/arc/net/bpf_jit_core.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The back-end-agnostic part of Just-In-Time compiler for eBPF bytecode.
4  *
5  * Copyright (c) 2024 Synopsys Inc.
6  * Author: Shahab Vahedi <shahab@synopsys.com>
7  */
8 #include <linux/bug.h>
9 #include "bpf_jit.h"
10 
11 /*
12  * Check for the return value. A pattern used often in this file.
13  * There must be a "ret" variable of type "int" in the scope.
14  */
15 #define CHECK_RET(cmd)			\
16 	do {				\
17 		ret = (cmd);		\
18 		if (ret < 0)		\
19 			return ret;	\
20 	} while (0)
21 
22 #ifdef ARC_BPF_JIT_DEBUG
23 /* Dumps bytes in /var/log/messages at KERN_INFO level (4). */
24 static void dump_bytes(const u8 *buf, u32 len, const char *header)
25 {
26 	u8 line[64];
27 	size_t i, j;
28 
29 	pr_info("-----------------[ %s ]-----------------\n", header);
30 
31 	for (i = 0, j = 0; i < len; i++) {
32 		/* Last input byte? */
33 		if (i == len - 1) {
34 			j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
35 			pr_info("%s\n", line);
36 			break;
37 		}
38 		/* End of line? */
39 		else if (i % 8 == 7) {
40 			j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
41 			pr_info("%s\n", line);
42 			j = 0;
43 		} else {
44 			j += scnprintf(line + j, 64 - j, "0x%02x, ", buf[i]);
45 		}
46 	}
47 }
48 #endif /* ARC_BPF_JIT_DEBUG */
49 
50 /********************* JIT context ***********************/
51 
52 /*
53  * buf:		Translated instructions end up here.
54  * len:		The length of whole block in bytes.
55  * index:	The offset at which the _next_ instruction may be put.
56  */
57 struct jit_buffer {
58 	u8	*buf;
59 	u32	len;
60 	u32	index;
61 };
62 
63 /*
64  * This is a subset of "struct jit_context" that its information is deemed
65  * necessary for the next extra pass to come.
66  *
67  * bpf_header:	Needed to finally lock the region.
68  * bpf2insn:	Used to find the translation for instructions of interest.
69  *
70  * Things like "jit.buf" and "jit.len" can be retrieved respectively from
71  * "prog->bpf_func" and "prog->jited_len".
72  */
73 struct arc_jit_data {
74 	struct bpf_binary_header *bpf_header;
75 	u32                      *bpf2insn;
76 };
77 
78 /*
79  * The JIT pertinent context that is used by different functions.
80  *
81  * prog:		The current eBPF program being handled.
82  * orig_prog:		The original eBPF program before any possible change.
83  * jit:			The JIT buffer and its length.
84  * bpf_header:		The JITed program header. "jit.buf" points inside it.
85  * emit:		If set, opcodes are written to memory; else, a dry-run.
86  * do_zext:		If true, 32-bit sub-regs must be zero extended.
87  * bpf2insn:		Maps BPF insn indices to their counterparts in jit.buf.
88  * bpf2insn_valid:	Indicates if "bpf2ins" is populated with the mappings.
89  * jit_data:		A piece of memory to transfer data to the next pass.
90  * arc_regs_clobbered:	Each bit status determines if that arc reg is clobbered.
91  * save_blink:		Whether ARC's "blink" register needs to be saved.
92  * frame_size:		Derived from "prog->aux->stack_depth".
93  * epilogue_offset:	Used by early "return"s in the code to jump here.
94  * need_extra_pass:	A forecast if an "extra_pass" will occur.
95  * is_extra_pass:	Indicates if the current pass is an extra pass.
96  * user_bpf_prog:	True, if VM opcodes come from a real program.
97  * blinded:		True if "constant blinding" step returned a new "prog".
98  * success:		Indicates if the whole JIT went OK.
99  */
100 struct jit_context {
101 	struct bpf_prog			*prog;
102 	struct bpf_prog			*orig_prog;
103 	struct jit_buffer		jit;
104 	struct bpf_binary_header	*bpf_header;
105 	bool				emit;
106 	bool				do_zext;
107 	u32				*bpf2insn;
108 	bool				bpf2insn_valid;
109 	struct arc_jit_data		*jit_data;
110 	u32				arc_regs_clobbered;
111 	bool				save_blink;
112 	u16				frame_size;
113 	u32				epilogue_offset;
114 	bool				need_extra_pass;
115 	bool				is_extra_pass;
116 	bool				user_bpf_prog;
117 	bool				blinded;
118 	bool				success;
119 };
120 
121 /*
122  * If we're in ARC_BPF_JIT_DEBUG mode and the debug level is right, dump the
123  * input BPF stream. "bpf_jit_dump()" is not fully suited for this purpose.
124  */
125 static void vm_dump(const struct bpf_prog *prog)
126 {
127 #ifdef ARC_BPF_JIT_DEBUG
128 	if (bpf_jit_enable > 1)
129 		dump_bytes((u8 *)prog->insns, 8 * prog->len, " VM  ");
130 #endif
131 }
132 
133 /*
134  * If the right level of debug is set, dump the bytes. There are 2 variants
135  * of this function:
136  *
137  * 1. Use the standard bpf_jit_dump() which is meant only for JITed code.
138  * 2. Use the dump_bytes() to match its "vm_dump()" instance.
139  */
140 static void jit_dump(const struct jit_context *ctx)
141 {
142 #ifdef ARC_BPF_JIT_DEBUG
143 	u8 header[8];
144 #endif
145 	const int pass = ctx->is_extra_pass ? 2 : 1;
146 
147 	if (bpf_jit_enable <= 1 || !ctx->prog->jited)
148 		return;
149 
150 #ifdef ARC_BPF_JIT_DEBUG
151 	scnprintf(header, sizeof(header), "JIT:%d", pass);
152 	dump_bytes(ctx->jit.buf, ctx->jit.len, header);
153 	pr_info("\n");
154 #else
155 	bpf_jit_dump(ctx->prog->len, ctx->jit.len, pass, ctx->jit.buf);
156 #endif
157 }
158 
159 /* Initialise the context so there's no garbage. */
160 static int jit_ctx_init(struct jit_context *ctx, struct bpf_prog *prog)
161 {
162 	memset(ctx, 0, sizeof(*ctx));
163 
164 	ctx->orig_prog = prog;
165 
166 	/* If constant blinding was requested but failed, scram. */
167 	ctx->prog = bpf_jit_blind_constants(prog);
168 	if (IS_ERR(ctx->prog))
169 		return PTR_ERR(ctx->prog);
170 	ctx->blinded = (ctx->prog != ctx->orig_prog);
171 
172 	/* If the verifier doesn't zero-extend, then we have to do it. */
173 	ctx->do_zext = !ctx->prog->aux->verifier_zext;
174 
175 	ctx->is_extra_pass = ctx->prog->jited;
176 	ctx->user_bpf_prog = ctx->prog->is_func;
177 
178 	return 0;
179 }
180 
181 /*
182  * Only after the first iteration of normal pass (the dry-run),
183  * there are valid offsets in ctx->bpf2insn array.
184  */
185 static inline bool offsets_available(const struct jit_context *ctx)
186 {
187 	return ctx->bpf2insn_valid;
188 }
189 
190 /*
191  * "*mem" should be freed when there is no "extra pass" to come,
192  * or the compilation terminated abruptly. A few of such memory
193  * allocations are: ctx->jit_data and ctx->bpf2insn.
194  */
195 static inline void maybe_free(struct jit_context *ctx, void **mem)
196 {
197 	if (*mem) {
198 		if (!ctx->success || !ctx->need_extra_pass) {
199 			kfree(*mem);
200 			*mem = NULL;
201 		}
202 	}
203 }
204 
205 /*
206  * Free memories based on the status of the context.
207  *
208  * A note about "bpf_header": On successful runs, "bpf_header" is
209  * not freed, because "jit.buf", a sub-array of it, is returned as
210  * the "bpf_func". However, "bpf_header" is lost and nothing points
211  * to it. This should not cause a leakage, because apparently
212  * "bpf_header" can be revived by "bpf_jit_binary_hdr()". This is
213  * how "bpf_jit_free()" in "kernel/bpf/core.c" releases the memory.
214  */
215 static void jit_ctx_cleanup(struct jit_context *ctx)
216 {
217 	if (ctx->blinded) {
218 		/* if all went well, release the orig_prog. */
219 		if (ctx->success)
220 			bpf_jit_prog_release_other(ctx->prog, ctx->orig_prog);
221 		else
222 			bpf_jit_prog_release_other(ctx->orig_prog, ctx->prog);
223 	}
224 
225 	maybe_free(ctx, (void **)&ctx->bpf2insn);
226 	maybe_free(ctx, (void **)&ctx->jit_data);
227 
228 	if (!ctx->bpf2insn)
229 		ctx->bpf2insn_valid = false;
230 
231 	/* Freeing "bpf_header" is enough. "jit.buf" is a sub-array of it. */
232 	if (!ctx->success && ctx->bpf_header) {
233 		bpf_jit_binary_free(ctx->bpf_header);
234 		ctx->bpf_header = NULL;
235 		ctx->jit.buf    = NULL;
236 		ctx->jit.index  = 0;
237 		ctx->jit.len    = 0;
238 	}
239 
240 	ctx->emit = false;
241 	ctx->do_zext = false;
242 }
243 
244 /*
245  * Analyse the register usage and record the frame size.
246  * The register usage is determined by consulting the back-end.
247  */
248 static void analyze_reg_usage(struct jit_context *ctx)
249 {
250 	size_t i;
251 	u32 usage = 0;
252 	const struct bpf_insn *insn = ctx->prog->insnsi;
253 
254 	for (i = 0; i < ctx->prog->len; i++) {
255 		u8 bpf_reg;
256 		bool call;
257 
258 		bpf_reg = insn[i].dst_reg;
259 		call = (insn[i].code == (BPF_JMP | BPF_CALL)) ? true : false;
260 		usage |= mask_for_used_regs(bpf_reg, call);
261 	}
262 
263 	ctx->arc_regs_clobbered = usage;
264 	ctx->frame_size = ctx->prog->aux->stack_depth;
265 }
266 
267 /* Verify that no instruction will be emitted when there is no buffer. */
268 static inline int jit_buffer_check(const struct jit_context *ctx)
269 {
270 	if (ctx->emit) {
271 		if (!ctx->jit.buf) {
272 			pr_err("bpf-jit: inconsistence state; no "
273 			       "buffer to emit instructions.\n");
274 			return -EINVAL;
275 		} else if (ctx->jit.index > ctx->jit.len) {
276 			pr_err("bpf-jit: estimated JIT length is less "
277 			       "than the emitted instructions.\n");
278 			return -EFAULT;
279 		}
280 	}
281 	return 0;
282 }
283 
284 /* On a dry-run (emit=false), "jit.len" is growing gradually. */
285 static inline void jit_buffer_update(struct jit_context *ctx, u32 n)
286 {
287 	if (!ctx->emit)
288 		ctx->jit.len += n;
289 	else
290 		ctx->jit.index += n;
291 }
292 
293 /* Based on "emit", determine the address where instructions are emitted. */
294 static inline u8 *effective_jit_buf(const struct jit_context *ctx)
295 {
296 	return ctx->emit ? (ctx->jit.buf + ctx->jit.index) : NULL;
297 }
298 
299 /* Prologue based on context variables set by "analyze_reg_usage()". */
300 static int handle_prologue(struct jit_context *ctx)
301 {
302 	int ret;
303 	u8 *buf = effective_jit_buf(ctx);
304 	u32 len = 0;
305 
306 	CHECK_RET(jit_buffer_check(ctx));
307 
308 	len = arc_prologue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
309 	jit_buffer_update(ctx, len);
310 
311 	return 0;
312 }
313 
314 /* The counter part for "handle_prologue()". */
315 static int handle_epilogue(struct jit_context *ctx)
316 {
317 	int ret;
318 	u8 *buf = effective_jit_buf(ctx);
319 	u32 len = 0;
320 
321 	CHECK_RET(jit_buffer_check(ctx));
322 
323 	len = arc_epilogue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
324 	jit_buffer_update(ctx, len);
325 
326 	return 0;
327 }
328 
329 /* Tell which number of the BPF instruction we are dealing with. */
330 static inline s32 get_index_for_insn(const struct jit_context *ctx,
331 				     const struct bpf_insn *insn)
332 {
333 	return (insn - ctx->prog->insnsi);
334 }
335 
336 /*
337  * In most of the cases, the "offset" is read from "insn->off". However,
338  * if it is an unconditional BPF_JMP32, then it comes from "insn->imm".
339  *
340  * (Courtesy of "cpu=v4" support)
341  */
342 static inline s32 get_offset(const struct bpf_insn *insn)
343 {
344 	if ((BPF_CLASS(insn->code) == BPF_JMP32) &&
345 	    (BPF_OP(insn->code) == BPF_JA))
346 		return insn->imm;
347 	else
348 		return insn->off;
349 }
350 
351 /*
352  * Determine to which number of the BPF instruction we're jumping to.
353  *
354  * The "offset" is interpreted as the "number" of BPF instructions
355  * from the _next_ BPF instruction. e.g.:
356  *
357  *  4 means 4 instructions after  the next insn
358  *  0 means 0 instructions after  the next insn -> fallthrough.
359  * -1 means 1 instruction  before the next insn -> jmp to current insn.
360  *
361  *  Another way to look at this, "offset" is the number of instructions
362  *  that exist between the current instruction and the target instruction.
363  *
364  *  It is worth noting that a "mov r,i64", which is 16-byte long, is
365  *  treated as two instructions long, therefore "offset" needn't be
366  *  treated specially for those. Everything is uniform.
367  */
368 static inline s32 get_target_index_for_insn(const struct jit_context *ctx,
369 					    const struct bpf_insn *insn)
370 {
371 	return (get_index_for_insn(ctx, insn) + 1) + get_offset(insn);
372 }
373 
374 /* Is there an immediate operand encoded in the "insn"? */
375 static inline bool has_imm(const struct bpf_insn *insn)
376 {
377 	return BPF_SRC(insn->code) == BPF_K;
378 }
379 
380 /* Is the last BPF instruction? */
381 static inline bool is_last_insn(const struct bpf_prog *prog, u32 idx)
382 {
383 	return idx == (prog->len - 1);
384 }
385 
386 /*
387  * Invocation of this function, conditionally signals the need for
388  * an extra pass. The conditions that must be met are:
389  *
390  * 1. The current pass itself shouldn't be an extra pass.
391  * 2. The stream of bytes being JITed must come from a user program.
392  */
393 static inline void set_need_for_extra_pass(struct jit_context *ctx)
394 {
395 	if (!ctx->is_extra_pass)
396 		ctx->need_extra_pass = ctx->user_bpf_prog;
397 }
398 
399 /*
400  * Check if the "size" is valid and then transfer the control to
401  * the back-end for the swap.
402  */
403 static int handle_swap(u8 *buf, u8 rd, u8 size, u8 endian,
404 		       bool force, bool do_zext, u8 *len)
405 {
406 	/* Sanity check on the size. */
407 	switch (size) {
408 	case 16:
409 	case 32:
410 	case 64:
411 		break;
412 	default:
413 		pr_err("bpf-jit: invalid size for swap.\n");
414 		return -EINVAL;
415 	}
416 
417 	*len = gen_swap(buf, rd, size, endian, force, do_zext);
418 
419 	return 0;
420 }
421 
422 /* Checks if the (instruction) index is in valid range. */
423 static inline bool check_insn_idx_valid(const struct jit_context *ctx,
424 					const s32 idx)
425 {
426 	return (idx >= 0 && idx < ctx->prog->len);
427 }
428 
429 /*
430  * Decouple the back-end from BPF by converting BPF conditions
431  * to internal enum. ARC_CC_* start from 0 and are used as index
432  * to an array. BPF_J* usage must end after this conversion.
433  */
434 static int bpf_cond_to_arc(const u8 op, u8 *arc_cc)
435 {
436 	switch (op) {
437 	case BPF_JA:
438 		*arc_cc = ARC_CC_AL;
439 		break;
440 	case BPF_JEQ:
441 		*arc_cc = ARC_CC_EQ;
442 		break;
443 	case BPF_JGT:
444 		*arc_cc = ARC_CC_UGT;
445 		break;
446 	case BPF_JGE:
447 		*arc_cc = ARC_CC_UGE;
448 		break;
449 	case BPF_JSET:
450 		*arc_cc = ARC_CC_SET;
451 		break;
452 	case BPF_JNE:
453 		*arc_cc = ARC_CC_NE;
454 		break;
455 	case BPF_JSGT:
456 		*arc_cc = ARC_CC_SGT;
457 		break;
458 	case BPF_JSGE:
459 		*arc_cc = ARC_CC_SGE;
460 		break;
461 	case BPF_JLT:
462 		*arc_cc = ARC_CC_ULT;
463 		break;
464 	case BPF_JLE:
465 		*arc_cc = ARC_CC_ULE;
466 		break;
467 	case BPF_JSLT:
468 		*arc_cc = ARC_CC_SLT;
469 		break;
470 	case BPF_JSLE:
471 		*arc_cc = ARC_CC_SLE;
472 		break;
473 	default:
474 		pr_err("bpf-jit: can't handle condition 0x%02X\n", op);
475 		return -EINVAL;
476 	}
477 	return 0;
478 }
479 
480 /*
481  * Check a few things for a supposedly "jump" instruction:
482  *
483  * 0. "insn" is a "jump" instruction, but not the "call/exit" variant.
484  * 1. The current "insn" index is in valid range.
485  * 2. The index of target instruction is in valid range.
486  */
487 static int check_bpf_jump(const struct jit_context *ctx,
488 			  const struct bpf_insn *insn)
489 {
490 	const u8 class = BPF_CLASS(insn->code);
491 	const u8 op = BPF_OP(insn->code);
492 
493 	/* Must be a jmp(32) instruction that is not a "call/exit". */
494 	if ((class != BPF_JMP && class != BPF_JMP32) ||
495 	    (op == BPF_CALL || op == BPF_EXIT)) {
496 		pr_err("bpf-jit: not a jump instruction.\n");
497 		return -EINVAL;
498 	}
499 
500 	if (!check_insn_idx_valid(ctx, get_index_for_insn(ctx, insn))) {
501 		pr_err("bpf-jit: the bpf jump insn is not in prog.\n");
502 		return -EINVAL;
503 	}
504 
505 	if (!check_insn_idx_valid(ctx, get_target_index_for_insn(ctx, insn))) {
506 		pr_err("bpf-jit: bpf jump label is out of range.\n");
507 		return -EINVAL;
508 	}
509 
510 	return 0;
511 }
512 
513 /*
514  * Based on input "insn", consult "ctx->bpf2insn" to get the
515  * related index (offset) of the translation in JIT stream.
516  */
517 static u32 get_curr_jit_off(const struct jit_context *ctx,
518 			    const struct bpf_insn *insn)
519 {
520 	const s32 idx = get_index_for_insn(ctx, insn);
521 #ifdef ARC_BPF_JIT_DEBUG
522 	BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, idx));
523 #endif
524 	return ctx->bpf2insn[idx];
525 }
526 
527 /*
528  * The input "insn" must be a jump instruction.
529  *
530  * Based on input "insn", consult "ctx->bpf2insn" to get the
531  * related JIT index (offset) of "target instruction" that
532  * "insn" would jump to.
533  */
534 static u32 get_targ_jit_off(const struct jit_context *ctx,
535 			    const struct bpf_insn *insn)
536 {
537 	const s32 tidx = get_target_index_for_insn(ctx, insn);
538 #ifdef ARC_BPF_JIT_DEBUG
539 	BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, tidx));
540 #endif
541 	return ctx->bpf2insn[tidx];
542 }
543 
544 /*
545  * This function will return 0 for a feasible jump.
546  *
547  * Consult the back-end to check if it finds it feasible to emit
548  * the necessary instructions based on "cond" and the displacement
549  * between the "from_off" and the "to_off".
550  */
551 static int feasible_jit_jump(u32 from_off, u32 to_off, u8 cond, bool j32)
552 {
553 	int ret = 0;
554 
555 	if (j32) {
556 		if (!check_jmp_32(from_off, to_off, cond))
557 			ret = -EFAULT;
558 	} else {
559 		if (!check_jmp_64(from_off, to_off, cond))
560 			ret = -EFAULT;
561 	}
562 
563 	if (ret != 0)
564 		pr_err("bpf-jit: the JIT displacement is not OK.\n");
565 
566 	return ret;
567 }
568 
569 /*
570  * This jump handler performs the following steps:
571  *
572  * 1. Compute ARC's internal condition code from BPF's
573  * 2. Determine the bitness of the operation (32 vs. 64)
574  * 3. Sanity check on BPF stream
575  * 4. Sanity check on what is supposed to be JIT's displacement
576  * 5. And finally, emit the necessary instructions
577  *
578  * The last two steps are performed through the back-end.
579  * The value of steps 1 and 2 are necessary inputs for the back-end.
580  */
581 static int handle_jumps(const struct jit_context *ctx,
582 			const struct bpf_insn *insn,
583 			u8 *len)
584 {
585 	u8 cond;
586 	int ret = 0;
587 	u8 *buf = effective_jit_buf(ctx);
588 	const bool j32 = (BPF_CLASS(insn->code) == BPF_JMP32) ? true : false;
589 	const u8 rd = insn->dst_reg;
590 	u8 rs = insn->src_reg;
591 	u32 curr_off = 0, targ_off = 0;
592 
593 	*len = 0;
594 
595 	/* Map the BPF condition to internal enum. */
596 	CHECK_RET(bpf_cond_to_arc(BPF_OP(insn->code), &cond));
597 
598 	/* Sanity check on the BPF byte stream. */
599 	CHECK_RET(check_bpf_jump(ctx, insn));
600 
601 	/*
602 	 * Move the immediate into a temporary register _now_ for 2 reasons:
603 	 *
604 	 * 1. "gen_jmp_{32,64}()" deal with operands in registers.
605 	 *
606 	 * 2. The "len" parameter will grow so that the current jit offset
607 	 *    (curr_off) will have increased to a point where the necessary
608 	 *    instructions can be inserted by "gen_jmp_{32,64}()".
609 	 */
610 	if (has_imm(insn) && cond != ARC_CC_AL) {
611 		if (j32) {
612 			*len += mov_r32_i32(BUF(buf, *len), JIT_REG_TMP,
613 					    insn->imm);
614 		} else {
615 			*len += mov_r64_i32(BUF(buf, *len), JIT_REG_TMP,
616 					    insn->imm);
617 		}
618 		rs = JIT_REG_TMP;
619 	}
620 
621 	/* If the offsets are known, check if the branch can occur. */
622 	if (offsets_available(ctx)) {
623 		curr_off = get_curr_jit_off(ctx, insn) + *len;
624 		targ_off = get_targ_jit_off(ctx, insn);
625 
626 		/* Sanity check on the back-end side. */
627 		CHECK_RET(feasible_jit_jump(curr_off, targ_off, cond, j32));
628 	}
629 
630 	if (j32) {
631 		*len += gen_jmp_32(BUF(buf, *len), rd, rs, cond,
632 				   curr_off, targ_off);
633 	} else {
634 		*len += gen_jmp_64(BUF(buf, *len), rd, rs, cond,
635 				   curr_off, targ_off);
636 	}
637 
638 	return ret;
639 }
640 
641 /* Jump to translated epilogue address. */
642 static int handle_jmp_epilogue(struct jit_context *ctx,
643 			       const struct bpf_insn *insn, u8 *len)
644 {
645 	u8 *buf = effective_jit_buf(ctx);
646 	u32 curr_off = 0, epi_off = 0;
647 
648 	/* Check the offset only if the data is available. */
649 	if (offsets_available(ctx)) {
650 		curr_off = get_curr_jit_off(ctx, insn);
651 		epi_off = ctx->epilogue_offset;
652 
653 		if (!check_jmp_64(curr_off, epi_off, ARC_CC_AL)) {
654 			pr_err("bpf-jit: epilogue offset is not valid.\n");
655 			return -EINVAL;
656 		}
657 	}
658 
659 	/* Jump to "epilogue offset" (rd and rs don't matter). */
660 	*len = gen_jmp_64(buf, 0, 0, ARC_CC_AL, curr_off, epi_off);
661 
662 	return 0;
663 }
664 
665 /* Try to get the resolved address and generate the instructions. */
666 static int handle_call(struct jit_context *ctx,
667 		       const struct bpf_insn *insn,
668 		       u8 *len)
669 {
670 	int  ret;
671 	bool in_kernel_func, fixed = false;
672 	u64  addr = 0;
673 	u8  *buf = effective_jit_buf(ctx);
674 
675 	ret = bpf_jit_get_func_addr(ctx->prog, insn, ctx->is_extra_pass,
676 				    &addr, &fixed);
677 	if (ret < 0) {
678 		pr_err("bpf-jit: can't get the address for call.\n");
679 		return ret;
680 	}
681 	in_kernel_func = (fixed ? true : false);
682 
683 	/* No valuable address retrieved (yet). */
684 	if (!fixed && !addr)
685 		set_need_for_extra_pass(ctx);
686 
687 	*len = gen_func_call(buf, (ARC_ADDR)addr, in_kernel_func);
688 
689 	if (insn->src_reg != BPF_PSEUDO_CALL) {
690 		/* Assigning ABI's return reg to JIT's return reg. */
691 		*len += arc_to_bpf_return(BUF(buf, *len));
692 	}
693 
694 	return 0;
695 }
696 
697 /*
698  * Try to generate instructions for loading a 64-bit immediate.
699  * These sort of instructions are usually associated with the 64-bit
700  * relocations: R_BPF_64_64. Therefore, signal the need for an extra
701  * pass if the circumstances are right.
702  */
703 static int handle_ld_imm64(struct jit_context *ctx,
704 			   const struct bpf_insn *insn,
705 			   u8 *len)
706 {
707 	const s32 idx = get_index_for_insn(ctx, insn);
708 	u8 *buf = effective_jit_buf(ctx);
709 
710 	/* We're about to consume 2 VM instructions. */
711 	if (is_last_insn(ctx->prog, idx)) {
712 		pr_err("bpf-jit: need more data for 64-bit immediate.\n");
713 		return -EINVAL;
714 	}
715 
716 	*len = mov_r64_i64(buf, insn->dst_reg, insn->imm, (insn + 1)->imm);
717 
718 	if (bpf_pseudo_func(insn))
719 		set_need_for_extra_pass(ctx);
720 
721 	return 0;
722 }
723 
724 /*
725  * Handles one eBPF instruction at a time. To make this function faster,
726  * it does not call "jit_buffer_check()". Else, it would call it for every
727  * instruction. As a result, it should not be invoked directly. Only
728  * "handle_body()", that has already executed the "check", may call this
729  * function.
730  *
731  * If the "ret" value is negative, something has went wrong. Else,
732  * it mostly holds the value 0 and rarely 1. Number 1 signals
733  * the loop in "handle_body()" to skip the next instruction, because
734  * it has been consumed as part of a 64-bit immediate value.
735  */
736 static int handle_insn(struct jit_context *ctx, u32 idx)
737 {
738 	const struct bpf_insn *insn = &ctx->prog->insnsi[idx];
739 	const u8  code = insn->code;
740 	const u8  dst  = insn->dst_reg;
741 	const u8  src  = insn->src_reg;
742 	const s16 off  = insn->off;
743 	const s32 imm  = insn->imm;
744 	u8 *buf = effective_jit_buf(ctx);
745 	u8  len = 0;
746 	int ret = 0;
747 
748 	switch (code) {
749 	/* dst += src (32-bit) */
750 	case BPF_ALU | BPF_ADD | BPF_X:
751 		len = add_r32(buf, dst, src);
752 		break;
753 	/* dst += imm (32-bit) */
754 	case BPF_ALU | BPF_ADD | BPF_K:
755 		len = add_r32_i32(buf, dst, imm);
756 		break;
757 	/* dst -= src (32-bit) */
758 	case BPF_ALU | BPF_SUB | BPF_X:
759 		len = sub_r32(buf, dst, src);
760 		break;
761 	/* dst -= imm (32-bit) */
762 	case BPF_ALU | BPF_SUB | BPF_K:
763 		len = sub_r32_i32(buf, dst, imm);
764 		break;
765 	/* dst = -dst (32-bit) */
766 	case BPF_ALU | BPF_NEG:
767 		len = neg_r32(buf, dst);
768 		break;
769 	/* dst *= src (32-bit) */
770 	case BPF_ALU | BPF_MUL | BPF_X:
771 		len = mul_r32(buf, dst, src);
772 		break;
773 	/* dst *= imm (32-bit) */
774 	case BPF_ALU | BPF_MUL | BPF_K:
775 		len = mul_r32_i32(buf, dst, imm);
776 		break;
777 	/* dst /= src (32-bit) */
778 	case BPF_ALU | BPF_DIV | BPF_X:
779 		len = div_r32(buf, dst, src, off == 1);
780 		break;
781 	/* dst /= imm (32-bit) */
782 	case BPF_ALU | BPF_DIV | BPF_K:
783 		len = div_r32_i32(buf, dst, imm, off == 1);
784 		break;
785 	/* dst %= src (32-bit) */
786 	case BPF_ALU | BPF_MOD | BPF_X:
787 		len = mod_r32(buf, dst, src, off == 1);
788 		break;
789 	/* dst %= imm (32-bit) */
790 	case BPF_ALU | BPF_MOD | BPF_K:
791 		len = mod_r32_i32(buf, dst, imm, off == 1);
792 		break;
793 	/* dst &= src (32-bit) */
794 	case BPF_ALU | BPF_AND | BPF_X:
795 		len = and_r32(buf, dst, src);
796 		break;
797 	/* dst &= imm (32-bit) */
798 	case BPF_ALU | BPF_AND | BPF_K:
799 		len = and_r32_i32(buf, dst, imm);
800 		break;
801 	/* dst |= src (32-bit) */
802 	case BPF_ALU | BPF_OR | BPF_X:
803 		len = or_r32(buf, dst, src);
804 		break;
805 	/* dst |= imm (32-bit) */
806 	case BPF_ALU | BPF_OR | BPF_K:
807 		len = or_r32_i32(buf, dst, imm);
808 		break;
809 	/* dst ^= src (32-bit) */
810 	case BPF_ALU | BPF_XOR | BPF_X:
811 		len = xor_r32(buf, dst, src);
812 		break;
813 	/* dst ^= imm (32-bit) */
814 	case BPF_ALU | BPF_XOR | BPF_K:
815 		len = xor_r32_i32(buf, dst, imm);
816 		break;
817 	/* dst <<= src (32-bit) */
818 	case BPF_ALU | BPF_LSH | BPF_X:
819 		len = lsh_r32(buf, dst, src);
820 		break;
821 	/* dst <<= imm (32-bit) */
822 	case BPF_ALU | BPF_LSH | BPF_K:
823 		len = lsh_r32_i32(buf, dst, imm);
824 		break;
825 	/* dst >>= src (32-bit) [unsigned] */
826 	case BPF_ALU | BPF_RSH | BPF_X:
827 		len = rsh_r32(buf, dst, src);
828 		break;
829 	/* dst >>= imm (32-bit) [unsigned] */
830 	case BPF_ALU | BPF_RSH | BPF_K:
831 		len = rsh_r32_i32(buf, dst, imm);
832 		break;
833 	/* dst >>= src (32-bit) [signed] */
834 	case BPF_ALU | BPF_ARSH | BPF_X:
835 		len = arsh_r32(buf, dst, src);
836 		break;
837 	/* dst >>= imm (32-bit) [signed] */
838 	case BPF_ALU | BPF_ARSH | BPF_K:
839 		len = arsh_r32_i32(buf, dst, imm);
840 		break;
841 	/* dst = src (32-bit) */
842 	case BPF_ALU | BPF_MOV | BPF_X:
843 		len = mov_r32(buf, dst, src, (u8)off);
844 		break;
845 	/* dst = imm32 (32-bit) */
846 	case BPF_ALU | BPF_MOV | BPF_K:
847 		len = mov_r32_i32(buf, dst, imm);
848 		break;
849 	/* dst = swap(dst) */
850 	case BPF_ALU   | BPF_END | BPF_FROM_LE:
851 	case BPF_ALU   | BPF_END | BPF_FROM_BE:
852 	case BPF_ALU64 | BPF_END | BPF_FROM_LE: {
853 		CHECK_RET(handle_swap(buf, dst, imm, BPF_SRC(code),
854 				      BPF_CLASS(code) == BPF_ALU64,
855 				      ctx->do_zext, &len));
856 		break;
857 	}
858 	/* dst += src (64-bit) */
859 	case BPF_ALU64 | BPF_ADD | BPF_X:
860 		len = add_r64(buf, dst, src);
861 		break;
862 	/* dst += imm32 (64-bit) */
863 	case BPF_ALU64 | BPF_ADD | BPF_K:
864 		len = add_r64_i32(buf, dst, imm);
865 		break;
866 	/* dst -= src (64-bit) */
867 	case BPF_ALU64 | BPF_SUB | BPF_X:
868 		len = sub_r64(buf, dst, src);
869 		break;
870 	/* dst -= imm32 (64-bit) */
871 	case BPF_ALU64 | BPF_SUB | BPF_K:
872 		len = sub_r64_i32(buf, dst, imm);
873 		break;
874 	/* dst = -dst (64-bit) */
875 	case BPF_ALU64 | BPF_NEG:
876 		len = neg_r64(buf, dst);
877 		break;
878 	/* dst *= src (64-bit) */
879 	case BPF_ALU64 | BPF_MUL | BPF_X:
880 		len = mul_r64(buf, dst, src);
881 		break;
882 	/* dst *= imm32 (64-bit) */
883 	case BPF_ALU64 | BPF_MUL | BPF_K:
884 		len = mul_r64_i32(buf, dst, imm);
885 		break;
886 	/* dst &= src (64-bit) */
887 	case BPF_ALU64 | BPF_AND | BPF_X:
888 		len = and_r64(buf, dst, src);
889 		break;
890 	/* dst &= imm32 (64-bit) */
891 	case BPF_ALU64 | BPF_AND | BPF_K:
892 		len = and_r64_i32(buf, dst, imm);
893 		break;
894 	/* dst |= src (64-bit) */
895 	case BPF_ALU64 | BPF_OR | BPF_X:
896 		len = or_r64(buf, dst, src);
897 		break;
898 	/* dst |= imm32 (64-bit) */
899 	case BPF_ALU64 | BPF_OR | BPF_K:
900 		len = or_r64_i32(buf, dst, imm);
901 		break;
902 	/* dst ^= src (64-bit) */
903 	case BPF_ALU64 | BPF_XOR | BPF_X:
904 		len = xor_r64(buf, dst, src);
905 		break;
906 	/* dst ^= imm32 (64-bit) */
907 	case BPF_ALU64 | BPF_XOR | BPF_K:
908 		len = xor_r64_i32(buf, dst, imm);
909 		break;
910 	/* dst <<= src (64-bit) */
911 	case BPF_ALU64 | BPF_LSH | BPF_X:
912 		len = lsh_r64(buf, dst, src);
913 		break;
914 	/* dst <<= imm32 (64-bit) */
915 	case BPF_ALU64 | BPF_LSH | BPF_K:
916 		len = lsh_r64_i32(buf, dst, imm);
917 		break;
918 	/* dst >>= src (64-bit) [unsigned] */
919 	case BPF_ALU64 | BPF_RSH | BPF_X:
920 		len = rsh_r64(buf, dst, src);
921 		break;
922 	/* dst >>= imm32 (64-bit) [unsigned] */
923 	case BPF_ALU64 | BPF_RSH | BPF_K:
924 		len = rsh_r64_i32(buf, dst, imm);
925 		break;
926 	/* dst >>= src (64-bit) [signed] */
927 	case BPF_ALU64 | BPF_ARSH | BPF_X:
928 		len = arsh_r64(buf, dst, src);
929 		break;
930 	/* dst >>= imm32 (64-bit) [signed] */
931 	case BPF_ALU64 | BPF_ARSH | BPF_K:
932 		len = arsh_r64_i32(buf, dst, imm);
933 		break;
934 	/* dst = src (64-bit) */
935 	case BPF_ALU64 | BPF_MOV | BPF_X:
936 		len = mov_r64(buf, dst, src, (u8)off);
937 		break;
938 	/* dst = imm32 (sign extend to 64-bit) */
939 	case BPF_ALU64 | BPF_MOV | BPF_K:
940 		len = mov_r64_i32(buf, dst, imm);
941 		break;
942 	/* dst = imm64 */
943 	case BPF_LD | BPF_DW | BPF_IMM:
944 		CHECK_RET(handle_ld_imm64(ctx, insn, &len));
945 		/* Tell the loop to skip the next instruction. */
946 		ret = 1;
947 		break;
948 	/* dst = *(size *)(src + off) */
949 	case BPF_LDX | BPF_MEM | BPF_W:
950 	case BPF_LDX | BPF_MEM | BPF_H:
951 	case BPF_LDX | BPF_MEM | BPF_B:
952 	case BPF_LDX | BPF_MEM | BPF_DW:
953 		len = load_r(buf, dst, src, off, BPF_SIZE(code), false);
954 		break;
955 	case BPF_LDX | BPF_MEMSX | BPF_W:
956 	case BPF_LDX | BPF_MEMSX | BPF_H:
957 	case BPF_LDX | BPF_MEMSX | BPF_B:
958 		len = load_r(buf, dst, src, off, BPF_SIZE(code), true);
959 		break;
960 	/* *(size *)(dst + off) = src */
961 	case BPF_STX | BPF_MEM | BPF_W:
962 	case BPF_STX | BPF_MEM | BPF_H:
963 	case BPF_STX | BPF_MEM | BPF_B:
964 	case BPF_STX | BPF_MEM | BPF_DW:
965 		len = store_r(buf, src, dst, off, BPF_SIZE(code));
966 		break;
967 	case BPF_ST | BPF_MEM | BPF_W:
968 	case BPF_ST | BPF_MEM | BPF_H:
969 	case BPF_ST | BPF_MEM | BPF_B:
970 	case BPF_ST | BPF_MEM | BPF_DW:
971 		len = store_i(buf, imm, dst, off, BPF_SIZE(code));
972 		break;
973 	case BPF_JMP   | BPF_JA:
974 	case BPF_JMP   | BPF_JEQ  | BPF_X:
975 	case BPF_JMP   | BPF_JEQ  | BPF_K:
976 	case BPF_JMP   | BPF_JNE  | BPF_X:
977 	case BPF_JMP   | BPF_JNE  | BPF_K:
978 	case BPF_JMP   | BPF_JSET | BPF_X:
979 	case BPF_JMP   | BPF_JSET | BPF_K:
980 	case BPF_JMP   | BPF_JGT  | BPF_X:
981 	case BPF_JMP   | BPF_JGT  | BPF_K:
982 	case BPF_JMP   | BPF_JGE  | BPF_X:
983 	case BPF_JMP   | BPF_JGE  | BPF_K:
984 	case BPF_JMP   | BPF_JSGT | BPF_X:
985 	case BPF_JMP   | BPF_JSGT | BPF_K:
986 	case BPF_JMP   | BPF_JSGE | BPF_X:
987 	case BPF_JMP   | BPF_JSGE | BPF_K:
988 	case BPF_JMP   | BPF_JLT  | BPF_X:
989 	case BPF_JMP   | BPF_JLT  | BPF_K:
990 	case BPF_JMP   | BPF_JLE  | BPF_X:
991 	case BPF_JMP   | BPF_JLE  | BPF_K:
992 	case BPF_JMP   | BPF_JSLT | BPF_X:
993 	case BPF_JMP   | BPF_JSLT | BPF_K:
994 	case BPF_JMP   | BPF_JSLE | BPF_X:
995 	case BPF_JMP   | BPF_JSLE | BPF_K:
996 	case BPF_JMP32 | BPF_JA:
997 	case BPF_JMP32 | BPF_JEQ  | BPF_X:
998 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
999 	case BPF_JMP32 | BPF_JNE  | BPF_X:
1000 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1001 	case BPF_JMP32 | BPF_JSET | BPF_X:
1002 	case BPF_JMP32 | BPF_JSET | BPF_K:
1003 	case BPF_JMP32 | BPF_JGT  | BPF_X:
1004 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1005 	case BPF_JMP32 | BPF_JGE  | BPF_X:
1006 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1007 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1008 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1009 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1010 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1011 	case BPF_JMP32 | BPF_JLT  | BPF_X:
1012 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1013 	case BPF_JMP32 | BPF_JLE  | BPF_X:
1014 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1015 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1016 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1017 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1018 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1019 		CHECK_RET(handle_jumps(ctx, insn, &len));
1020 		break;
1021 	case BPF_JMP | BPF_CALL:
1022 		CHECK_RET(handle_call(ctx, insn, &len));
1023 		break;
1024 
1025 	case BPF_JMP | BPF_EXIT:
1026 		/* If this is the last instruction, epilogue will follow. */
1027 		if (is_last_insn(ctx->prog, idx))
1028 			break;
1029 		CHECK_RET(handle_jmp_epilogue(ctx, insn, &len));
1030 		break;
1031 	default:
1032 		pr_err("bpf-jit: can't handle instruction code 0x%02X\n", code);
1033 		return -EOPNOTSUPP;
1034 	}
1035 
1036 	if (BPF_CLASS(code) == BPF_ALU) {
1037 		/*
1038 		 * Skip the "swap" instructions. Even 64-bit swaps are of type
1039 		 * BPF_ALU (and not BPF_ALU64). Therefore, for the swaps, one
1040 		 * has to look at the "size" of the operations rather than the
1041 		 * ALU type. "gen_swap()" specifically takes care of that.
1042 		 */
1043 		if (BPF_OP(code) != BPF_END && ctx->do_zext)
1044 			len += zext(BUF(buf, len), dst);
1045 	}
1046 
1047 	jit_buffer_update(ctx, len);
1048 
1049 	return ret;
1050 }
1051 
1052 static int handle_body(struct jit_context *ctx)
1053 {
1054 	int ret;
1055 	bool populate_bpf2insn = false;
1056 	const struct bpf_prog *prog = ctx->prog;
1057 
1058 	CHECK_RET(jit_buffer_check(ctx));
1059 
1060 	/*
1061 	 * Record the mapping for the instructions during the dry-run.
1062 	 * Doing it this way allows us to have the mapping ready for
1063 	 * the jump instructions during the real compilation phase.
1064 	 */
1065 	if (!ctx->emit)
1066 		populate_bpf2insn = true;
1067 
1068 	for (u32 i = 0; i < prog->len; i++) {
1069 		/* During the dry-run, jit.len grows gradually per BPF insn. */
1070 		if (populate_bpf2insn)
1071 			ctx->bpf2insn[i] = ctx->jit.len;
1072 
1073 		CHECK_RET(handle_insn(ctx, i));
1074 		if (ret > 0) {
1075 			/* "ret" is 1 if two (64-bit) chunks were consumed. */
1076 			ctx->bpf2insn[i + 1] = ctx->bpf2insn[i];
1077 			i++;
1078 		}
1079 	}
1080 
1081 	/* If bpf2insn had to be populated, then it is done at this point. */
1082 	if (populate_bpf2insn)
1083 		ctx->bpf2insn_valid = true;
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Initialize the memory with "unimp_s" which is the mnemonic for
1090  * "unimplemented" instruction and always raises an exception.
1091  *
1092  * The instruction is 2 bytes. If "size" is odd, there is not much
1093  * that can be done about the last byte in "area". Because, the
1094  * CPU always fetches instructions in two bytes. Therefore, the
1095  * byte beyond the last one is going to accompany it during a
1096  * possible fetch. In the most likely case of a little endian
1097  * system, that beyond-byte will become the major opcode and
1098  * we have no control over its initialisation.
1099  */
1100 static void fill_ill_insn(void *area, unsigned int size)
1101 {
1102 	const u16 unimp_s = 0x79e0;
1103 
1104 	if (size & 1) {
1105 		*((u8 *)area + (size - 1)) = 0xff;
1106 		size -= 1;
1107 	}
1108 
1109 	memset16(area, unimp_s, size >> 1);
1110 }
1111 
1112 /* Piece of memory that can be allocated at the beginning of jit_prepare(). */
1113 static int jit_prepare_early_mem_alloc(struct jit_context *ctx)
1114 {
1115 	ctx->bpf2insn = kcalloc(ctx->prog->len, sizeof(ctx->jit.len),
1116 				GFP_KERNEL);
1117 
1118 	if (!ctx->bpf2insn) {
1119 		pr_err("bpf-jit: could not allocate memory for "
1120 		       "mapping of the instructions.\n");
1121 		return -ENOMEM;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 /*
1128  * Memory allocations that rely on parameters known at the end of
1129  * jit_prepare().
1130  */
1131 static int jit_prepare_final_mem_alloc(struct jit_context *ctx)
1132 {
1133 	const size_t alignment = sizeof(u32);
1134 
1135 	ctx->bpf_header = bpf_jit_binary_alloc(ctx->jit.len, &ctx->jit.buf,
1136 					       alignment, fill_ill_insn);
1137 	if (!ctx->bpf_header) {
1138 		pr_err("bpf-jit: could not allocate memory for translation.\n");
1139 		return -ENOMEM;
1140 	}
1141 
1142 	if (ctx->need_extra_pass) {
1143 		ctx->jit_data = kzalloc(sizeof(*ctx->jit_data), GFP_KERNEL);
1144 		if (!ctx->jit_data)
1145 			return -ENOMEM;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * The first phase of the translation without actually emitting any
1153  * instruction. It helps in getting a forecast on some aspects, such
1154  * as the length of the whole program or where the epilogue starts.
1155  *
1156  * Whenever the necessary parameters are known, memories are allocated.
1157  */
1158 static int jit_prepare(struct jit_context *ctx)
1159 {
1160 	int ret;
1161 
1162 	/* Dry run. */
1163 	ctx->emit = false;
1164 
1165 	CHECK_RET(jit_prepare_early_mem_alloc(ctx));
1166 
1167 	/* Get the length of prologue section after some register analysis. */
1168 	analyze_reg_usage(ctx);
1169 	CHECK_RET(handle_prologue(ctx));
1170 
1171 	CHECK_RET(handle_body(ctx));
1172 
1173 	/* Record at which offset epilogue begins. */
1174 	ctx->epilogue_offset = ctx->jit.len;
1175 
1176 	/* Process the epilogue section now. */
1177 	CHECK_RET(handle_epilogue(ctx));
1178 
1179 	CHECK_RET(jit_prepare_final_mem_alloc(ctx));
1180 
1181 	return 0;
1182 }
1183 
1184 /*
1185  * jit_compile() is the real compilation phase. jit_prepare() is
1186  * invoked before jit_compile() as a dry-run to make sure everything
1187  * will go OK and allocate the necessary memory.
1188  *
1189  * In the end, jit_compile() checks if it has produced the same number
1190  * of instructions as jit_prepare() would.
1191  */
1192 static int jit_compile(struct jit_context *ctx)
1193 {
1194 	int ret;
1195 
1196 	/* Let there be code. */
1197 	ctx->emit = true;
1198 
1199 	CHECK_RET(handle_prologue(ctx));
1200 
1201 	CHECK_RET(handle_body(ctx));
1202 
1203 	CHECK_RET(handle_epilogue(ctx));
1204 
1205 	if (ctx->jit.index != ctx->jit.len) {
1206 		pr_err("bpf-jit: divergence between the phases; "
1207 		       "%u vs. %u (bytes).\n",
1208 		       ctx->jit.len, ctx->jit.index);
1209 		return -EFAULT;
1210 	}
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Calling this function implies a successful JIT. A successful
1217  * translation is signaled by setting the right parameters:
1218  *
1219  * prog->jited=1, prog->jited_len=..., prog->bpf_func=...
1220  */
1221 static int jit_finalize(struct jit_context *ctx)
1222 {
1223 	struct bpf_prog *prog = ctx->prog;
1224 
1225 	/* We're going to need this information for the "do_extra_pass()". */
1226 	if (ctx->need_extra_pass) {
1227 		ctx->jit_data->bpf_header = ctx->bpf_header;
1228 		ctx->jit_data->bpf2insn = ctx->bpf2insn;
1229 		prog->aux->jit_data = (void *)ctx->jit_data;
1230 	} else {
1231 		/*
1232 		 * If things seem finalised, then mark the JITed memory
1233 		 * as R-X and flush it.
1234 		 */
1235 		if (bpf_jit_binary_lock_ro(ctx->bpf_header)) {
1236 			pr_err("bpf-jit: Could not lock the JIT memory.\n");
1237 			return -EFAULT;
1238 		}
1239 		flush_icache_range((unsigned long)ctx->bpf_header,
1240 				   (unsigned long)
1241 				   BUF(ctx->jit.buf, ctx->jit.len));
1242 		prog->aux->jit_data = NULL;
1243 		bpf_prog_fill_jited_linfo(prog, ctx->bpf2insn);
1244 	}
1245 
1246 	ctx->success = true;
1247 	prog->bpf_func = (void *)ctx->jit.buf;
1248 	prog->jited_len = ctx->jit.len;
1249 	prog->jited = 1;
1250 
1251 	jit_ctx_cleanup(ctx);
1252 	jit_dump(ctx);
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  * A lenient verification for the existence of JIT context in "prog".
1259  * Apparently the JIT internals, namely jit_subprogs() in bpf/verifier.c,
1260  * may request for a second compilation although nothing needs to be done.
1261  */
1262 static inline int check_jit_context(const struct bpf_prog *prog)
1263 {
1264 	if (!prog->aux->jit_data) {
1265 		pr_notice("bpf-jit: no jit data for the extra pass.\n");
1266 		return 1;
1267 	} else {
1268 		return 0;
1269 	}
1270 }
1271 
1272 /* Reuse the previous pass's data. */
1273 static int jit_resume_context(struct jit_context *ctx)
1274 {
1275 	struct arc_jit_data *jdata =
1276 		(struct arc_jit_data *)ctx->prog->aux->jit_data;
1277 
1278 	if (!jdata) {
1279 		pr_err("bpf-jit: no jit data for the extra pass.\n");
1280 		return -EINVAL;
1281 	}
1282 
1283 	ctx->jit.buf = (u8 *)ctx->prog->bpf_func;
1284 	ctx->jit.len = ctx->prog->jited_len;
1285 	ctx->bpf_header = jdata->bpf_header;
1286 	ctx->bpf2insn = (u32 *)jdata->bpf2insn;
1287 	ctx->bpf2insn_valid = ctx->bpf2insn ? true : false;
1288 	ctx->jit_data = jdata;
1289 
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Patch in the new addresses. The instructions of interest are:
1295  *
1296  * - call
1297  * - ld r64, imm64
1298  *
1299  * For "call"s, it resolves the addresses one more time through the
1300  * handle_call().
1301  *
1302  * For 64-bit immediate loads, it just retranslates them, because the BPF
1303  * core in kernel might have changed the value since the normal pass.
1304  */
1305 static int jit_patch_relocations(struct jit_context *ctx)
1306 {
1307 	const u8 bpf_opc_call = BPF_JMP | BPF_CALL;
1308 	const u8 bpf_opc_ldi64 = BPF_LD | BPF_DW | BPF_IMM;
1309 	const struct bpf_prog *prog = ctx->prog;
1310 	int ret;
1311 
1312 	ctx->emit = true;
1313 	for (u32 i = 0; i < prog->len; i++) {
1314 		const struct bpf_insn *insn = &prog->insnsi[i];
1315 		u8 dummy;
1316 		/*
1317 		 * Adjust "ctx.jit.index", so "gen_*()" functions below
1318 		 * can use it for their output addresses.
1319 		 */
1320 		ctx->jit.index = ctx->bpf2insn[i];
1321 
1322 		if (insn->code == bpf_opc_call) {
1323 			CHECK_RET(handle_call(ctx, insn, &dummy));
1324 		} else if (insn->code == bpf_opc_ldi64) {
1325 			CHECK_RET(handle_ld_imm64(ctx, insn, &dummy));
1326 			/* Skip the next instruction. */
1327 			++i;
1328 		}
1329 	}
1330 	return 0;
1331 }
1332 
1333 /*
1334  * A normal pass that involves a "dry-run" phase, jit_prepare(),
1335  * to get the necessary data for the real compilation phase,
1336  * jit_compile().
1337  */
1338 static struct bpf_prog *do_normal_pass(struct bpf_prog *prog)
1339 {
1340 	struct jit_context ctx;
1341 
1342 	/* Bail out if JIT is disabled. */
1343 	if (!prog->jit_requested)
1344 		return prog;
1345 
1346 	if (jit_ctx_init(&ctx, prog)) {
1347 		jit_ctx_cleanup(&ctx);
1348 		return prog;
1349 	}
1350 
1351 	/* Get the lengths and allocate buffer. */
1352 	if (jit_prepare(&ctx)) {
1353 		jit_ctx_cleanup(&ctx);
1354 		return prog;
1355 	}
1356 
1357 	if (jit_compile(&ctx)) {
1358 		jit_ctx_cleanup(&ctx);
1359 		return prog;
1360 	}
1361 
1362 	if (jit_finalize(&ctx)) {
1363 		jit_ctx_cleanup(&ctx);
1364 		return prog;
1365 	}
1366 
1367 	return ctx.prog;
1368 }
1369 
1370 /*
1371  * If there are multi-function BPF programs that call each other,
1372  * their translated addresses are not known all at once. Therefore,
1373  * an extra pass is needed to consult the bpf_jit_get_func_addr()
1374  * again to get the newly translated addresses in order to resolve
1375  * the "call"s.
1376  */
1377 static struct bpf_prog *do_extra_pass(struct bpf_prog *prog)
1378 {
1379 	struct jit_context ctx;
1380 
1381 	/* Skip if there's no context to resume from. */
1382 	if (check_jit_context(prog))
1383 		return prog;
1384 
1385 	if (jit_ctx_init(&ctx, prog)) {
1386 		jit_ctx_cleanup(&ctx);
1387 		return prog;
1388 	}
1389 
1390 	if (jit_resume_context(&ctx)) {
1391 		jit_ctx_cleanup(&ctx);
1392 		return prog;
1393 	}
1394 
1395 	if (jit_patch_relocations(&ctx)) {
1396 		jit_ctx_cleanup(&ctx);
1397 		return prog;
1398 	}
1399 
1400 	if (jit_finalize(&ctx)) {
1401 		jit_ctx_cleanup(&ctx);
1402 		return prog;
1403 	}
1404 
1405 	return ctx.prog;
1406 }
1407 
1408 /*
1409  * This function may be invoked twice for the same stream of BPF
1410  * instructions. The "extra pass" happens, when there are
1411  * (re)locations involved that their addresses are not known
1412  * during the first run.
1413  */
1414 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1415 {
1416 	vm_dump(prog);
1417 
1418 	/* Was this program already translated? */
1419 	if (!prog->jited)
1420 		return do_normal_pass(prog);
1421 	else
1422 		return do_extra_pass(prog);
1423 
1424 	return prog;
1425 }
1426