xref: /linux/arch/arc/net/bpf_jit_arcv2.c (revision 95444b9eeb8c5c0330563931d70c61ca3b101548)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
4  *
5  * Copyright (c) 2024 Synopsys Inc.
6  * Author: Shahab Vahedi <shahab@synopsys.com>
7  */
8 #include <linux/bug.h>
9 #include "bpf_jit.h"
10 
11 /* ARC core registers. */
12 enum {
13 	ARC_R_0,  ARC_R_1,  ARC_R_2,  ARC_R_3,  ARC_R_4,  ARC_R_5,
14 	ARC_R_6,  ARC_R_7,  ARC_R_8,  ARC_R_9,  ARC_R_10, ARC_R_11,
15 	ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
16 	ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
17 	ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
18 	ARC_R_30, ARC_R_BLINK,
19 	/*
20 	 * Having ARC_R_IMM encoded as source register means there is an
21 	 * immediate that must be interpreted from the next 4 bytes. If
22 	 * encoded as the destination register though, it implies that the
23 	 * output of the operation is not assigned to any register. The
24 	 * latter is helpful if we only care about updating the CPU status
25 	 * flags.
26 	 */
27 	ARC_R_IMM = 62
28 };
29 
30 /*
31  * Remarks about the rationale behind the chosen mapping:
32  *
33  * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
34  *   argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
35  *   argument register in the ABI. Therefore BPF_REG_5, as the fifth
36  *   argument, must be pushed onto the stack. This is a must for calling
37  *   in-kernel functions.
38  *
39  * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
40  *   for 64-bit results. However, because they're already used for BPF_REG_1,
41  *   the next available scratch registers, r8 and r9, are the best candidates
42  *   for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
43  *   is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
44  *   (r1,r0).
45  *   It is worth mentioning that scratch registers are the best choice for
46  *   BPF_REG_0, because it is very popular in BPF instruction encoding.
47  *
48  * - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
49  *   Its life span is one single BPF instruction. Since during the
50  *   analyze_reg_usage(), it is not known if temporary registers are used,
51  *   it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
52  *   don't matter in analysing phase and don't need saving. This temporary
53  *   register is added as yet another index in the bpf2arc array, so it will
54  *   unfold like the rest of registers during the code generation process.
55  *
56  * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
57  *   (r15,r14) register pair. The (r13,r12) is not a good choice, because
58  *   in ARCv2 ABI, r12 is not a callee-saved register and this can cause
59  *   problem when calling an in-kernel function. Theoretically, the mapping
60  *   could start from (r14,r13), but it is not a conventional ARCv2 register
61  *   pair. To have a future proof design, I opted for this arrangement.
62  *   If/when we decide to add ARCv2 instructions that do use register pairs,
63  *   the mapping, hopefully, doesn't need to be revisited.
64  */
65 const u8 bpf2arc[][2] = {
66 	/* Return value from in-kernel function, and exit value from eBPF */
67 	[BPF_REG_0] = {ARC_R_8, ARC_R_9},
68 	/* Arguments from eBPF program to in-kernel function */
69 	[BPF_REG_1] = {ARC_R_0, ARC_R_1},
70 	[BPF_REG_2] = {ARC_R_2, ARC_R_3},
71 	[BPF_REG_3] = {ARC_R_4, ARC_R_5},
72 	[BPF_REG_4] = {ARC_R_6, ARC_R_7},
73 	/* Remaining arguments, to be passed on the stack per 32-bit ABI */
74 	[BPF_REG_5] = {ARC_R_22, ARC_R_23},
75 	/* Callee-saved registers that in-kernel function will preserve */
76 	[BPF_REG_6] = {ARC_R_14, ARC_R_15},
77 	[BPF_REG_7] = {ARC_R_16, ARC_R_17},
78 	[BPF_REG_8] = {ARC_R_18, ARC_R_19},
79 	[BPF_REG_9] = {ARC_R_20, ARC_R_21},
80 	/* Read-only frame pointer to access the eBPF stack. 32-bit only. */
81 	[BPF_REG_FP] = {ARC_R_FP, },
82 	/* Register for blinding constants */
83 	[BPF_REG_AX] = {ARC_R_24, ARC_R_25},
84 	/* Temporary registers for internal use */
85 	[JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
86 };
87 
88 #define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
89 #define ARC_CALLEE_SAVED_REG_LAST  ARC_R_25
90 
91 #define REG_LO(r) (bpf2arc[(r)][0])
92 #define REG_HI(r) (bpf2arc[(r)][1])
93 
94 /*
95  * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
96  * the stack needs to be restored by ARG5_SIZE.
97  */
98 #define ARG5_SIZE 8
99 
100 /* Instruction lengths in bytes. */
101 enum {
102 	INSN_len_normal = 4,	/* Normal instructions length. */
103 	INSN_len_imm = 4	/* Length of an extra 32-bit immediate. */
104 };
105 
106 /* ZZ defines the size of operation in encodings that it is used. */
107 enum {
108 	ZZ_1_byte = 1,
109 	ZZ_2_byte = 2,
110 	ZZ_4_byte = 0,
111 	ZZ_8_byte = 3
112 };
113 
114 /*
115  * AA is mostly about address write back mode. It determines if the
116  * address in question should be updated before usage or after:
117  *   addr += offset; data = *addr;
118  *   data = *addr; addr += offset;
119  *
120  * In "scaling" mode, the effective address will become the sum
121  * of "address" + "index"*"size". The "size" is specified by the
122  * "ZZ" field. There is no write back when AA is set for scaling:
123  *   data = *(addr + offset<<zz)
124  */
125 enum {
126 	AA_none  = 0,
127 	AA_pre   = 1,	/* in assembly known as "a/aw". */
128 	AA_post  = 2,	/* in assembly known as "ab". */
129 	AA_scale = 3	/* in assembly known as "as". */
130 };
131 
132 /* X flag determines the mode of extension. */
133 enum {
134 	X_zero = 0,
135 	X_sign = 1
136 };
137 
138 /* Condition codes. */
139 enum {
140 	CC_always     = 0,	/* condition is true all the time */
141 	CC_equal      = 1,	/* if status32.z flag is set */
142 	CC_unequal    = 2,	/* if status32.z flag is clear */
143 	CC_positive   = 3,	/* if status32.n flag is clear */
144 	CC_negative   = 4,	/* if status32.n flag is set */
145 	CC_less_u     = 5,	/* less than (unsigned) */
146 	CC_less_eq_u  = 14,	/* less than or equal (unsigned) */
147 	CC_great_eq_u = 6,	/* greater than or equal (unsigned) */
148 	CC_great_u    = 13,	/* greater than (unsigned) */
149 	CC_less_s     = 11,	/* less than (signed) */
150 	CC_less_eq_s  = 12,	/* less than or equal (signed) */
151 	CC_great_eq_s = 10,	/* greater than or equal (signed) */
152 	CC_great_s    = 9	/* greater than (signed) */
153 };
154 
155 #define IN_U6_RANGE(x)	((x) <= (0x40      - 1) && (x) >= 0)
156 #define IN_S9_RANGE(x)	((x) <= (0x100     - 1) && (x) >= -0x100)
157 #define IN_S12_RANGE(x)	((x) <= (0x800     - 1) && (x) >= -0x800)
158 #define IN_S21_RANGE(x)	((x) <= (0x100000  - 1) && (x) >= -0x100000)
159 #define IN_S25_RANGE(x)	((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
160 
161 /* Operands in most of the encodings. */
162 #define OP_A(x)	((x) & 0x03f)
163 #define OP_B(x)	((((x) & 0x07) << 24) | (((x) & 0x38) <<  9))
164 #define OP_C(x)	(((x) & 0x03f) << 6)
165 #define OP_IMM	(OP_C(ARC_R_IMM))
166 #define COND(x)	(OP_A((x) & 31))
167 #define FLAG(x)	(((x) & 1) << 15)
168 
169 /*
170  * The 4-byte encoding of "mov b,c":
171  *
172  * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
173  *
174  * b:  BBBbbb		destination register
175  * c:  cccccc		source register
176  */
177 #define OPC_MOV		0x200a0000
178 
179 /*
180  * The 4-byte encoding of "mov b,s12" (used for moving small immediates):
181  *
182  * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
183  *
184  * b:  BBBbbb		destination register
185  * s:  SSSSSSssssss	source immediate (signed)
186  */
187 #define OPC_MOVI	0x208a0000
188 #define MOVI_S12(x)	((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
189 
190 /*
191  * The 4-byte encoding of "mov[.qq] b,u6", used for conditional
192  * moving of even smaller immediates:
193  *
194  * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
195  *
196  * qq: qqqqq		condition code
197  * i:			If set, c is considered a 6-bit immediate, else a reg.
198  *
199  * b:  BBBbbb		destination register
200  * c:  cccccc		source
201  */
202 #define OPC_MOV_CC	0x20ca0000
203 #define MOV_CC_I	BIT(5)
204 #define OPC_MOVU_CC	(OPC_MOV_CC | MOV_CC_I)
205 
206 /*
207  * The 4-byte encoding of "sexb b,c" (8-bit sign extension):
208  *
209  * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
210  *
211  * b:  BBBbbb		destination register
212  * c:  cccccc		source register
213  */
214 #define OPC_SEXB	0x202f0005
215 
216 /*
217  * The 4-byte encoding of "sexh b,c" (16-bit sign extension):
218  *
219  * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
220  *
221  * b:  BBBbbb		destination register
222  * c:  cccccc		source register
223  */
224 #define OPC_SEXH	0x202f0006
225 
226 /*
227  * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
228  *
229  * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
230  *
231  * zz:			size mode
232  * aa:			address write back mode
233  * x:			extension mode
234  *
235  * s9: S_ssss_ssss	9-bit signed number
236  * b:  BBBbbb		source reg for address
237  * c:  cccccc		destination register
238  */
239 #define OPC_LOAD	0x10000000
240 #define LOAD_X(x)	((x) << 6)
241 #define LOAD_ZZ(x)	((x) << 7)
242 #define LOAD_AA(x)	((x) << 9)
243 #define LOAD_S9(x)	((((x) & 0x0ff) << 16) | (((x) & 0x100) <<  7))
244 #define LOAD_C(x)	((x) & 0x03f)
245 /* Unsigned and signed loads. */
246 #define OPC_LDU		(OPC_LOAD | LOAD_X(X_zero))
247 #define OPC_LDS		(OPC_LOAD | LOAD_X(X_sign))
248 /* 32-bit load. */
249 #define OPC_LD32	(OPC_LDU | LOAD_ZZ(ZZ_4_byte))
250 /* "pop reg" is merely a "ld.ab reg,[sp,4]". */
251 #define OPC_POP		\
252 	(OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
253 
254 /*
255  * The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
256  *
257  * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
258  *
259  * zz: zz		size mode
260  * aa: aa		address write back mode
261  *
262  * s9: S_ssss_ssss	9-bit signed number
263  * b:  BBBbbb		source reg for address
264  * c:  cccccc		source reg to be stored
265  */
266 #define OPC_STORE	0x18000000
267 #define STORE_ZZ(x)	((x) << 1)
268 #define STORE_AA(x)	((x) << 3)
269 #define STORE_S9(x)	((((x) & 0x0ff) << 16) | (((x) & 0x100) <<  7))
270 /* 32-bit store. */
271 #define OPC_ST32	(OPC_STORE | STORE_ZZ(ZZ_4_byte))
272 /* "push reg" is merely a "st.aw reg,[sp,-4]". */
273 #define OPC_PUSH	\
274 	(OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
275 
276 /*
277  * The 4-byte encoding of "add a,b,c":
278  *
279  * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
280  *
281  * f:                   indicates if flags (carry, etc.) should be updated
282  * i:			If set, c is considered a 6-bit immediate, else a reg.
283  *
284  * a:  aaaaaa		result
285  * b:  BBBbbb		the 1st input operand
286  * c:  cccccc		the 2nd input operand
287  */
288 #define OPC_ADD		0x20000000
289 /* Addition with updating the pertinent flags in "status32" register. */
290 #define OPC_ADDF	(OPC_ADD | FLAG(1))
291 #define ADDI		BIT(22)
292 #define ADDI_U6(x)	OP_C(x)
293 #define OPC_ADDI	(OPC_ADD | ADDI)
294 #define OPC_ADDIF	(OPC_ADDI | FLAG(1))
295 #define OPC_ADD_I	(OPC_ADD | OP_IMM)
296 
297 /*
298  * The 4-byte encoding of "adc a,b,c" (addition with carry):
299  *
300  * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
301  *
302  * i:			if set, c is considered a 6-bit immediate, else a reg.
303  *
304  * a:  aaaaaa		result
305  * b:  BBBbbb		the 1st input operand
306  * c:  cccccc		the 2nd input operand
307  */
308 #define OPC_ADC		0x20010000
309 #define ADCI		BIT(22)
310 #define ADCI_U6(x)	OP_C(x)
311 #define OPC_ADCI	(OPC_ADC | ADCI)
312 
313 /*
314  * The 4-byte encoding of "sub a,b,c":
315  *
316  * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
317  *
318  * f:                   indicates if flags (carry, etc.) should be updated
319  * i:			if set, c is considered a 6-bit immediate, else a reg.
320  *
321  * a:  aaaaaa		result
322  * b:  BBBbbb		the 1st input operand
323  * c:  cccccc		the 2nd input operand
324  */
325 #define OPC_SUB		0x20020000
326 /* Subtraction with updating the pertinent flags in "status32" register. */
327 #define OPC_SUBF	(OPC_SUB | FLAG(1))
328 #define SUBI		BIT(22)
329 #define SUBI_U6(x)	OP_C(x)
330 #define OPC_SUBI	(OPC_SUB | SUBI)
331 #define OPC_SUB_I	(OPC_SUB | OP_IMM)
332 
333 /*
334  * The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
335  *
336  * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
337  *
338  * f:                   indicates if flags (carry, etc.) should be updated
339  *
340  * a:  aaaaaa		result
341  * b:  BBBbbb		the 1st input operand
342  * c:  cccccc		the 2nd input operand
343  */
344 #define OPC_SBC		0x20030000
345 
346 /*
347  * The 4-byte encoding of "cmp[.qq] b,c":
348  *
349  * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
350  *
351  * qq:	qqqqq		condition code
352  *
353  * b:  BBBbbb		the 1st operand
354  * c:  cccccc		the 2nd operand
355  */
356 #define OPC_CMP		0x20cc8000
357 
358 /*
359  * The 4-byte encoding of "neg a,b":
360  *
361  * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
362  *
363  * a:  aaaaaa		result
364  * b:  BBBbbb		input
365  */
366 #define OPC_NEG		0x204e0000
367 
368 /*
369  * The 4-byte encoding of "mpy a,b,c".
370  * mpy is the signed 32-bit multiplication with the lower 32-bit
371  * of the product as the result.
372  *
373  * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
374  *
375  * a:  aaaaaa		result
376  * b:  BBBbbb		the 1st input operand
377  * c:  cccccc		the 2nd input operand
378  */
379 #define OPC_MPY		0x201a0000
380 #define OPC_MPYI	(OPC_MPY | OP_IMM)
381 
382 /*
383  * The 4-byte encoding of "mpydu a,b,c".
384  * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
385  * the product in register "a" and the higher 32-bit in register "a+1".
386  *
387  * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
388  *
389  * a:  aaaaaa		64-bit result in registers (R_a+1,R_a)
390  * b:  BBBbbb		the 1st input operand
391  * c:  cccccc		the 2nd input operand
392  */
393 #define OPC_MPYDU	0x28190000
394 #define OPC_MPYDUI	(OPC_MPYDU | OP_IMM)
395 
396 /*
397  * The 4-byte encoding of "divu a,b,c" (unsigned division):
398  *
399  * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
400  *
401  * a:  aaaaaa		result (quotient)
402  * b:  BBBbbb		the 1st input operand
403  * c:  cccccc		the 2nd input operand (divisor)
404  */
405 #define OPC_DIVU	0x28050000
406 #define OPC_DIVUI	(OPC_DIVU | OP_IMM)
407 
408 /*
409  * The 4-byte encoding of "div a,b,c" (signed division):
410  *
411  * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
412  *
413  * a:  aaaaaa		result (quotient)
414  * b:  BBBbbb		the 1st input operand
415  * c:  cccccc		the 2nd input operand (divisor)
416  */
417 #define OPC_DIVS	0x28040000
418 #define OPC_DIVSI	(OPC_DIVS | OP_IMM)
419 
420 /*
421  * The 4-byte encoding of "remu a,b,c" (unsigned remainder):
422  *
423  * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
424  *
425  * a:  aaaaaa		result (remainder)
426  * b:  BBBbbb		the 1st input operand
427  * c:  cccccc		the 2nd input operand (divisor)
428  */
429 #define OPC_REMU	0x28090000
430 #define OPC_REMUI	(OPC_REMU | OP_IMM)
431 
432 /*
433  * The 4-byte encoding of "rem a,b,c" (signed remainder):
434  *
435  * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
436  *
437  * a:  aaaaaa		result (remainder)
438  * b:  BBBbbb		the 1st input operand
439  * c:  cccccc		the 2nd input operand (divisor)
440  */
441 #define OPC_REMS	0x28080000
442 #define OPC_REMSI	(OPC_REMS | OP_IMM)
443 
444 /*
445  * The 4-byte encoding of "and a,b,c":
446  *
447  * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
448  *
449  * f:                   indicates if zero and negative flags should be updated
450  *
451  * a:  aaaaaa		result
452  * b:  BBBbbb		the 1st input operand
453  * c:  cccccc		the 2nd input operand
454  */
455 #define OPC_AND		0x20040000
456 #define OPC_ANDI	(OPC_AND | OP_IMM)
457 
458 /*
459  * The 4-byte encoding of "tst[.qq] b,c".
460  * Checks if the two input operands have any bit set at the same
461  * position.
462  *
463  * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
464  *
465  * qq:	qqqqq		condition code
466  *
467  * b:  BBBbbb		the 1st input operand
468  * c:  cccccc		the 2nd input operand
469  */
470 #define OPC_TST		0x20cb8000
471 
472 /*
473  * The 4-byte encoding of "or a,b,c":
474  *
475  * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
476  *
477  * a:  aaaaaa		result
478  * b:  BBBbbb		the 1st input operand
479  * c:  cccccc		the 2nd input operand
480  */
481 #define OPC_OR		0x20050000
482 #define OPC_ORI		(OPC_OR | OP_IMM)
483 
484 /*
485  * The 4-byte encoding of "xor a,b,c":
486  *
487  * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
488  *
489  * a:  aaaaaa		result
490  * b:  BBBbbb		the 1st input operand
491  * c:  cccccc		the 2nd input operand
492  */
493 #define OPC_XOR		0x20070000
494 #define OPC_XORI	(OPC_XOR | OP_IMM)
495 
496 /*
497  * The 4-byte encoding of "not b,c":
498  *
499  * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
500  *
501  * b:  BBBbbb		result
502  * c:  cccccc		input
503  */
504 #define OPC_NOT		0x202f000a
505 
506 /*
507  * The 4-byte encoding of "btst b,u6":
508  *
509  * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
510  *
511  * b:  BBBbbb		input number to check
512  * u6: uuuuuu		6-bit unsigned number specifying bit position to check
513  */
514 #define OPC_BTSTU6	0x20518000
515 #define BTST_U6(x)	(OP_C((x) & 63))
516 
517 /*
518  * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
519  *
520  * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
521  *
522  * i:			if set, c is considered a 5-bit immediate, else a reg.
523  *
524  * b:  BBBbbb		result and the first operand (number to be shifted)
525  * c:  cccccc		amount to be shifted
526  */
527 #define OPC_ASL		0x28000000
528 #define ASL_I		BIT(22)
529 #define ASLI_U6(x)	OP_C((x) & 31)
530 #define OPC_ASLI	(OPC_ASL | ASL_I)
531 
532 /*
533  * The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
534  *
535  * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
536  *
537  * i:			if set, c is considered a 6-bit immediate, else a reg.
538  *
539  * a:  aaaaaa		result
540  * b:  BBBbbb		first input:  number to be shifted
541  * c:  cccccc		second input: amount to be shifted
542  */
543 #define OPC_ASR		0x28020000
544 #define ASR_I		ASL_I
545 #define ASRI_U6(x)	ASLI_U6(x)
546 #define OPC_ASRI	(OPC_ASR | ASR_I)
547 
548 /*
549  * The 4-byte encoding of "lsr a,b,c" (logical shift right):
550  *
551  * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
552  *
553  * i:			if set, c is considered a 6-bit immediate, else a reg.
554  *
555  * a:  aaaaaa		result
556  * b:  BBBbbb		first input:  number to be shifted
557  * c:  cccccc		second input: amount to be shifted
558  */
559 #define OPC_LSR		0x28010000
560 #define LSR_I		ASL_I
561 #define LSRI_U6(x)	ASLI_U6(x)
562 #define OPC_LSRI	(OPC_LSR | LSR_I)
563 
564 /*
565  * The 4-byte encoding of "swape b,c":
566  *
567  * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
568  *
569  * b:  BBBbbb		destination register
570  * c:  cccccc		source register
571  */
572 #define OPC_SWAPE	0x282f0009
573 
574 /*
575  * Encoding for jump to an address in register:
576  * j reg_c
577  *
578  * 0010_0000 1110_0000 0000_cccc cc00_0000
579  *
580  * c:  cccccc		register holding the destination address
581  */
582 #define OPC_JMP		0x20e00000
583 /* Jump to "branch-and-link" register, which effectively is a "return". */
584 #define OPC_J_BLINK	(OPC_JMP | OP_C(ARC_R_BLINK))
585 
586 /*
587  * Encoding for jump-and-link to an address in register:
588  * jl reg_c
589  *
590  * 0010_0000 0010_0010 0000_cccc cc00_0000
591  *
592  * c:  cccccc		register holding the destination address
593  */
594 #define OPC_JL		0x20220000
595 
596 /*
597  * Encoding for (conditional) branch to an offset from the current location
598  * that is word aligned: (PC & 0xffff_fffc) + s21
599  * B[qq] s21
600  *
601  * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
602  *
603  * qq:	qqqqq				condition code
604  * s21:	SSSS SSSS_SSss ssss_ssss	The displacement (21-bit signed)
605  *
606  * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
607  * it should be a multiple of 2. Hence, there is an implied '0' bit at its
608  * LSB: S_SSSS SSSS_Ssss ssss_sss0
609  */
610 #define OPC_BCC		0x00000000
611 #define BCC_S21(d)	((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
612 
613 /*
614  * Encoding for unconditional branch to an offset from the current location
615  * that is word aligned: (PC & 0xffff_fffc) + s25
616  * B s25
617  *
618  * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
619  *
620  * s25:	TTTT SSSS SSSS_SSss ssss_ssss	The displacement (25-bit signed)
621  *
622  * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
623  * it should be a multiple of 2. Hence, there is an implied '0' bit at its
624  * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
625  */
626 #define OPC_B		0x00010000
627 #define B_S25(d)	((((d) & 0x1e00000) >> 21) | BCC_S21(d))
628 
629 static inline void emit_2_bytes(u8 *buf, u16 bytes)
630 {
631 	*((u16 *)buf) = bytes;
632 }
633 
634 static inline void emit_4_bytes(u8 *buf, u32 bytes)
635 {
636 	emit_2_bytes(buf, bytes >> 16);
637 	emit_2_bytes(buf + 2, bytes & 0xffff);
638 }
639 
640 static inline u8 bpf_to_arc_size(u8 size)
641 {
642 	switch (size) {
643 	case BPF_B:
644 		return ZZ_1_byte;
645 	case BPF_H:
646 		return ZZ_2_byte;
647 	case BPF_W:
648 		return ZZ_4_byte;
649 	case BPF_DW:
650 		return ZZ_8_byte;
651 	default:
652 		return ZZ_4_byte;
653 	}
654 }
655 
656 /************** Encoders (Deal with ARC regs) ************/
657 
658 /* Move an immediate to register with a 4-byte instruction. */
659 static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
660 {
661 	const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
662 
663 	if (buf)
664 		emit_4_bytes(buf, insn);
665 	return INSN_len_normal;
666 }
667 
668 /* rd <- rs */
669 static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
670 {
671 	const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
672 
673 	if (buf)
674 		emit_4_bytes(buf, insn);
675 	return INSN_len_normal;
676 }
677 
678 /* The emitted code may have different sizes based on "imm". */
679 static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
680 {
681 	const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
682 
683 	if (IN_S12_RANGE(imm))
684 		return arc_movi_r(buf, rd, imm);
685 
686 	if (buf) {
687 		emit_4_bytes(buf, insn);
688 		emit_4_bytes(buf + INSN_len_normal, imm);
689 	}
690 	return INSN_len_normal + INSN_len_imm;
691 }
692 
693 /* The emitted code will always have the same size (8). */
694 static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
695 {
696 	const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
697 
698 	if (buf) {
699 		emit_4_bytes(buf, insn);
700 		emit_4_bytes(buf + INSN_len_normal, imm);
701 	}
702 	return INSN_len_normal + INSN_len_imm;
703 }
704 
705 /* Conditional move. */
706 static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
707 {
708 	const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
709 
710 	if (buf)
711 		emit_4_bytes(buf, insn);
712 	return INSN_len_normal;
713 }
714 
715 /* Conditional move of a small immediate to rd. */
716 static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
717 {
718 	const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
719 
720 	if (buf)
721 		emit_4_bytes(buf, insn);
722 	return INSN_len_normal;
723 }
724 
725 /* Sign extension from a byte. */
726 static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
727 {
728 	const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
729 
730 	if (buf)
731 		emit_4_bytes(buf, insn);
732 	return INSN_len_normal;
733 }
734 
735 /* Sign extension from two bytes. */
736 static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
737 {
738 	const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
739 
740 	if (buf)
741 		emit_4_bytes(buf, insn);
742 	return INSN_len_normal;
743 }
744 
745 /* st reg, [reg_mem, off] */
746 static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
747 {
748 	const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
749 		OP_B(reg_mem) | STORE_S9(off);
750 
751 	if (buf)
752 		emit_4_bytes(buf, insn);
753 	return INSN_len_normal;
754 }
755 
756 /* st.aw reg, [sp, -4] */
757 static u8 arc_push_r(u8 *buf, u8 reg)
758 {
759 	const u32 insn = OPC_PUSH | OP_C(reg);
760 
761 	if (buf)
762 		emit_4_bytes(buf, insn);
763 	return INSN_len_normal;
764 }
765 
766 /* ld reg, [reg_mem, off] (unsigned) */
767 static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
768 {
769 	const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
770 		OP_B(reg_mem) | LOAD_S9(off);
771 
772 	if (buf)
773 		emit_4_bytes(buf, insn);
774 	return INSN_len_normal;
775 }
776 
777 /* ld.x reg, [reg_mem, off] (sign extend) */
778 static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
779 {
780 	const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
781 		OP_B(reg_mem) | LOAD_S9(off);
782 
783 	if (buf)
784 		emit_4_bytes(buf, insn);
785 	return INSN_len_normal;
786 }
787 
788 /* ld.ab reg,[sp,4] */
789 static u8 arc_pop_r(u8 *buf, u8 reg)
790 {
791 	const u32 insn = OPC_POP | LOAD_C(reg);
792 
793 	if (buf)
794 		emit_4_bytes(buf, insn);
795 	return INSN_len_normal;
796 }
797 
798 /* add Ra,Ra,Rc */
799 static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
800 {
801 	const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
802 
803 	if (buf)
804 		emit_4_bytes(buf, insn);
805 	return INSN_len_normal;
806 }
807 
808 /* add.f Ra,Ra,Rc */
809 static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
810 {
811 	const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
812 
813 	if (buf)
814 		emit_4_bytes(buf, insn);
815 	return INSN_len_normal;
816 }
817 
818 /* add.f Ra,Ra,u6 */
819 static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
820 {
821 	const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
822 
823 	if (buf)
824 		emit_4_bytes(buf, insn);
825 	return INSN_len_normal;
826 }
827 
828 /* add Ra,Ra,u6 */
829 static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
830 {
831 	const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
832 
833 	if (buf)
834 		emit_4_bytes(buf, insn);
835 	return INSN_len_normal;
836 }
837 
838 /* add Ra,Rb,imm */
839 static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
840 {
841 	const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
842 
843 	if (buf) {
844 		emit_4_bytes(buf, insn);
845 		emit_4_bytes(buf + INSN_len_normal, imm);
846 	}
847 	return INSN_len_normal + INSN_len_imm;
848 }
849 
850 /* adc Ra,Ra,Rc */
851 static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
852 {
853 	const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
854 
855 	if (buf)
856 		emit_4_bytes(buf, insn);
857 	return INSN_len_normal;
858 }
859 
860 /* adc Ra,Ra,u6 */
861 static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
862 {
863 	const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
864 
865 	if (buf)
866 		emit_4_bytes(buf, insn);
867 	return INSN_len_normal;
868 }
869 
870 /* sub Ra,Ra,Rc */
871 static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
872 {
873 	const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
874 
875 	if (buf)
876 		emit_4_bytes(buf, insn);
877 	return INSN_len_normal;
878 }
879 
880 /* sub.f Ra,Ra,Rc */
881 static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
882 {
883 	const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
884 
885 	if (buf)
886 		emit_4_bytes(buf, insn);
887 	return INSN_len_normal;
888 }
889 
890 /* sub Ra,Ra,u6 */
891 static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
892 {
893 	const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
894 
895 	if (buf)
896 		emit_4_bytes(buf, insn);
897 	return INSN_len_normal;
898 }
899 
900 /* sub Ra,Ra,imm */
901 static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
902 {
903 	const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
904 
905 	if (buf) {
906 		emit_4_bytes(buf, insn);
907 		emit_4_bytes(buf + INSN_len_normal, imm);
908 	}
909 	return INSN_len_normal + INSN_len_imm;
910 }
911 
912 /* sbc Ra,Ra,Rc */
913 static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
914 {
915 	const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
916 
917 	if (buf)
918 		emit_4_bytes(buf, insn);
919 	return INSN_len_normal;
920 }
921 
922 /* cmp Rb,Rc */
923 static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
924 {
925 	const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
926 
927 	if (buf)
928 		emit_4_bytes(buf, insn);
929 	return INSN_len_normal;
930 }
931 
932 /*
933  * cmp.z Rb,Rc
934  *
935  * This "cmp.z" variant of compare instruction is used on lower
936  * 32-bits of register pairs after "cmp"ing their upper parts. If the
937  * upper parts are equal (z), then this one will proceed to check the
938  * rest.
939  */
940 static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
941 {
942 	const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
943 
944 	if (buf)
945 		emit_4_bytes(buf, insn);
946 	return INSN_len_normal;
947 }
948 
949 /* neg Ra,Rb */
950 static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
951 {
952 	const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
953 
954 	if (buf)
955 		emit_4_bytes(buf, insn);
956 	return INSN_len_normal;
957 }
958 
959 /* mpy Ra,Rb,Rc */
960 static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
961 {
962 	const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
963 
964 	if (buf)
965 		emit_4_bytes(buf, insn);
966 	return INSN_len_normal;
967 }
968 
969 /* mpy Ra,Rb,imm */
970 static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
971 {
972 	const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
973 
974 	if (buf) {
975 		emit_4_bytes(buf, insn);
976 		emit_4_bytes(buf + INSN_len_normal, imm);
977 	}
978 	return INSN_len_normal + INSN_len_imm;
979 }
980 
981 /* mpydu Ra,Ra,Rc */
982 static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
983 {
984 	const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
985 
986 	if (buf)
987 		emit_4_bytes(buf, insn);
988 	return INSN_len_normal;
989 }
990 
991 /* mpydu Ra,Ra,imm */
992 static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
993 {
994 	const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
995 
996 	if (buf) {
997 		emit_4_bytes(buf, insn);
998 		emit_4_bytes(buf + INSN_len_normal, imm);
999 	}
1000 	return INSN_len_normal + INSN_len_imm;
1001 }
1002 
1003 /* divu Rd,Rd,Rs */
1004 static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
1005 {
1006 	const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1007 
1008 	if (buf)
1009 		emit_4_bytes(buf, insn);
1010 	return INSN_len_normal;
1011 }
1012 
1013 /* divu Rd,Rd,imm */
1014 static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
1015 {
1016 	const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
1017 
1018 	if (buf) {
1019 		emit_4_bytes(buf, insn);
1020 		emit_4_bytes(buf + INSN_len_normal, imm);
1021 	}
1022 	return INSN_len_normal + INSN_len_imm;
1023 }
1024 
1025 /* div Rd,Rd,Rs */
1026 static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
1027 {
1028 	const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1029 
1030 	if (buf)
1031 		emit_4_bytes(buf, insn);
1032 	return INSN_len_normal;
1033 }
1034 
1035 /* div Rd,Rd,imm */
1036 static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
1037 {
1038 	const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
1039 
1040 	if (buf) {
1041 		emit_4_bytes(buf, insn);
1042 		emit_4_bytes(buf + INSN_len_normal, imm);
1043 	}
1044 	return INSN_len_normal + INSN_len_imm;
1045 }
1046 
1047 /* remu Rd,Rd,Rs */
1048 static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
1049 {
1050 	const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1051 
1052 	if (buf)
1053 		emit_4_bytes(buf, insn);
1054 	return INSN_len_normal;
1055 }
1056 
1057 /* remu Rd,Rd,imm */
1058 static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
1059 {
1060 	const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
1061 
1062 	if (buf) {
1063 		emit_4_bytes(buf, insn);
1064 		emit_4_bytes(buf + INSN_len_normal, imm);
1065 	}
1066 	return INSN_len_normal + INSN_len_imm;
1067 }
1068 
1069 /* rem Rd,Rd,Rs */
1070 static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
1071 {
1072 	const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1073 
1074 	if (buf)
1075 		emit_4_bytes(buf, insn);
1076 	return INSN_len_normal;
1077 }
1078 
1079 /* rem Rd,Rd,imm */
1080 static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
1081 {
1082 	const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
1083 
1084 	if (buf) {
1085 		emit_4_bytes(buf, insn);
1086 		emit_4_bytes(buf + INSN_len_normal, imm);
1087 	}
1088 	return INSN_len_normal + INSN_len_imm;
1089 }
1090 
1091 /* and Rd,Rd,Rs */
1092 static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
1093 {
1094 	const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
1095 
1096 	if (buf)
1097 		emit_4_bytes(buf, insn);
1098 	return INSN_len_normal;
1099 }
1100 
1101 /* and Rd,Rd,limm */
1102 static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
1103 {
1104 	const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
1105 
1106 	if (buf) {
1107 		emit_4_bytes(buf, insn);
1108 		emit_4_bytes(buf + INSN_len_normal, imm);
1109 	}
1110 	return INSN_len_normal + INSN_len_imm;
1111 }
1112 
1113 /* tst Rd,Rs */
1114 static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
1115 {
1116 	const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
1117 
1118 	if (buf)
1119 		emit_4_bytes(buf, insn);
1120 	return INSN_len_normal;
1121 }
1122 
1123 /*
1124  * This particular version, "tst.z ...", is meant to be used after a
1125  * "tst" on the low 32-bit of register pairs. If that "tst" is not
1126  * zero, then we don't need to test the upper 32-bits lest it sets
1127  * the zero flag.
1128  */
1129 static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
1130 {
1131 	const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
1132 
1133 	if (buf)
1134 		emit_4_bytes(buf, insn);
1135 	return INSN_len_normal;
1136 }
1137 
1138 static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1139 {
1140 	const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1141 
1142 	if (buf)
1143 		emit_4_bytes(buf, insn);
1144 	return INSN_len_normal;
1145 }
1146 
1147 static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
1148 {
1149 	const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
1150 
1151 	if (buf) {
1152 		emit_4_bytes(buf, insn);
1153 		emit_4_bytes(buf + INSN_len_normal, imm);
1154 	}
1155 	return INSN_len_normal + INSN_len_imm;
1156 }
1157 
1158 static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
1159 {
1160 	const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
1161 
1162 	if (buf)
1163 		emit_4_bytes(buf, insn);
1164 	return INSN_len_normal;
1165 }
1166 
1167 static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
1168 {
1169 	const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
1170 
1171 	if (buf) {
1172 		emit_4_bytes(buf, insn);
1173 		emit_4_bytes(buf + INSN_len_normal, imm);
1174 	}
1175 	return INSN_len_normal + INSN_len_imm;
1176 }
1177 
1178 static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
1179 {
1180 	const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
1181 
1182 	if (buf)
1183 		emit_4_bytes(buf, insn);
1184 	return INSN_len_normal;
1185 }
1186 
1187 static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
1188 {
1189 	const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
1190 
1191 	if (buf)
1192 		emit_4_bytes(buf, insn);
1193 	return INSN_len_normal;
1194 }
1195 
1196 static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1197 {
1198 	const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1199 
1200 	if (buf)
1201 		emit_4_bytes(buf, insn);
1202 	return INSN_len_normal;
1203 }
1204 
1205 static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1206 {
1207 	const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
1208 
1209 	if (buf)
1210 		emit_4_bytes(buf, insn);
1211 	return INSN_len_normal;
1212 }
1213 
1214 static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1215 {
1216 	const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1217 
1218 	if (buf)
1219 		emit_4_bytes(buf, insn);
1220 	return INSN_len_normal;
1221 }
1222 
1223 static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1224 {
1225 	const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
1226 
1227 	if (buf)
1228 		emit_4_bytes(buf, insn);
1229 	return INSN_len_normal;
1230 }
1231 
1232 static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1233 {
1234 	const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1235 
1236 	if (buf)
1237 		emit_4_bytes(buf, insn);
1238 	return INSN_len_normal;
1239 }
1240 
1241 static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1242 {
1243 	const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
1244 
1245 	if (buf)
1246 		emit_4_bytes(buf, insn);
1247 	return INSN_len_normal;
1248 }
1249 
1250 static u8 arc_swape_r(u8 *buf, u8 r)
1251 {
1252 	const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
1253 
1254 	if (buf)
1255 		emit_4_bytes(buf, insn);
1256 	return INSN_len_normal;
1257 }
1258 
1259 static u8 arc_jmp_return(u8 *buf)
1260 {
1261 	if (buf)
1262 		emit_4_bytes(buf, OPC_J_BLINK);
1263 	return INSN_len_normal;
1264 }
1265 
1266 static u8 arc_jl(u8 *buf, u8 reg)
1267 {
1268 	const u32 insn = OPC_JL | OP_C(reg);
1269 
1270 	if (buf)
1271 		emit_4_bytes(buf, insn);
1272 	return INSN_len_normal;
1273 }
1274 
1275 /*
1276  * Conditional jump to an address that is max 21 bits away (signed).
1277  *
1278  * b<cc> s21
1279  */
1280 static u8 arc_bcc(u8 *buf, u8 cc, int offset)
1281 {
1282 	const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
1283 
1284 	if (buf)
1285 		emit_4_bytes(buf, insn);
1286 	return INSN_len_normal;
1287 }
1288 
1289 /*
1290  * Unconditional jump to an address that is max 25 bits away (signed).
1291  *
1292  * b     s25
1293  */
1294 static u8 arc_b(u8 *buf, s32 offset)
1295 {
1296 	const u32 insn = OPC_B | B_S25(offset);
1297 
1298 	if (buf)
1299 		emit_4_bytes(buf, insn);
1300 	return INSN_len_normal;
1301 }
1302 
1303 /************* Packers (Deal with BPF_REGs) **************/
1304 
1305 inline u8 zext(u8 *buf, u8 rd)
1306 {
1307 	if (rd != BPF_REG_FP)
1308 		return arc_movi_r(buf, REG_HI(rd), 0);
1309 	else
1310 		return 0;
1311 }
1312 
1313 u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1314 {
1315 	u8 len = 0;
1316 
1317 	if (sign_ext) {
1318 		if (sign_ext == 8)
1319 			len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
1320 		else if (sign_ext == 16)
1321 			len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
1322 		else if (sign_ext == 32 && rd != rs)
1323 			len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1324 
1325 		return len;
1326 	}
1327 
1328 	/* Unsigned move. */
1329 
1330 	if (rd != rs)
1331 		len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1332 
1333 	return len;
1334 }
1335 
1336 u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
1337 {
1338 	return arc_mov_i(buf, REG_LO(reg), imm);
1339 }
1340 
1341 u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1342 {
1343 	u8 len = 0;
1344 
1345 	if (sign_ext) {
1346 		/* First handle the low 32-bit part. */
1347 		len = mov_r32(buf, rd, rs, sign_ext);
1348 
1349 		/* Now propagate the sign bit of LO to HI. */
1350 		if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
1351 			len += arc_asri_r(BUF(buf, len),
1352 					  REG_HI(rd), REG_LO(rd), 31);
1353 		}
1354 
1355 		return len;
1356 	}
1357 
1358 	/* Unsigned move. */
1359 
1360 	if (rd == rs)
1361 		return 0;
1362 
1363 	len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1364 
1365 	if (rs != BPF_REG_FP)
1366 		len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1367 	/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1368 	else
1369 		len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1370 
1371 	return len;
1372 }
1373 
1374 /* Sign extend the 32-bit immediate into 64-bit register pair. */
1375 u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
1376 {
1377 	u8 len = 0;
1378 
1379 	len = arc_mov_i(buf, REG_LO(reg), imm);
1380 
1381 	/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1382 	if (reg != BPF_REG_FP) {
1383 		if (imm >= 0)
1384 			len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
1385 		else
1386 			len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
1387 	}
1388 
1389 	return len;
1390 }
1391 
1392 /*
1393  * This is merely used for translation of "LD R, IMM64" instructions
1394  * of the BPF. These sort of instructions are sometimes used for
1395  * relocations. If during the normal pass, the relocation value is
1396  * not known, the BPF instruction may look something like:
1397  *
1398  * LD R <- 0x0000_0001_0000_0001
1399  *
1400  * Which will nicely translate to two 4-byte ARC instructions:
1401  *
1402  * mov R_lo, 1               # imm is small enough to be s12
1403  * mov R_hi, 1               # same
1404  *
1405  * However, during the extra pass, the IMM64 will have changed
1406  * to the resolved address and looks something like:
1407  *
1408  * LD R <- 0x0000_0000_1234_5678
1409  *
1410  * Now, the translated code will require 12 bytes:
1411  *
1412  * mov R_lo, 0x12345678      # this is an 8-byte instruction
1413  * mov R_hi, 0               # still 4 bytes
1414  *
1415  * Which in practice will result in overwriting the following
1416  * instruction. To avoid such cases, we will always emit codes
1417  * with fixed sizes.
1418  */
1419 u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
1420 {
1421 	u8 len;
1422 
1423 	len  = arc_mov_i_fixed(buf, REG_LO(reg), lo);
1424 	len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
1425 
1426 	return len;
1427 }
1428 
1429 /*
1430  * If the "off"set is too big (doesn't encode as S9) for:
1431  *
1432  *   {ld,st}  r, [rm, off]
1433  *
1434  * Then emit:
1435  *
1436  *   add r10, REG_LO(rm), off
1437  *
1438  * and make sure that r10 becomes the effective address:
1439  *
1440  *   {ld,st}  r, [r10, 0]
1441  */
1442 static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
1443 			    u8 rm, u8 *arc_reg_mem)
1444 {
1445 	u8 len = 0;
1446 	*arc_reg_mem = REG_LO(rm);
1447 
1448 	if (!IN_S9_RANGE(*off) ||
1449 	    (size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
1450 		len += arc_add_i(BUF(buf, len),
1451 				 REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
1452 		*arc_reg_mem = REG_LO(JIT_REG_TMP);
1453 		*off = 0;
1454 	}
1455 
1456 	return len;
1457 }
1458 
1459 /* store rs, [rd, off] */
1460 u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
1461 {
1462 	u8 len, arc_reg_mem;
1463 
1464 	len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1465 
1466 	if (size == BPF_DW) {
1467 		len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1468 				off, ZZ_4_byte);
1469 		len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
1470 				off + 4, ZZ_4_byte);
1471 	} else {
1472 		u8 zz = bpf_to_arc_size(size);
1473 
1474 		len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1475 				off, zz);
1476 	}
1477 
1478 	return len;
1479 }
1480 
1481 /*
1482  * For {8,16,32}-bit stores:
1483  *   mov r21, imm
1484  *   st  r21, [...]
1485  * For 64-bit stores:
1486  *   mov r21, imm
1487  *   st  r21, [...]
1488  *   mov r21, {0,-1}
1489  *   st  r21, [...+4]
1490  */
1491 u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
1492 {
1493 	u8 len, arc_reg_mem;
1494 	/* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
1495 	const u8 arc_rs = REG_HI(JIT_REG_TMP);
1496 
1497 	len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1498 
1499 	if (size == BPF_DW) {
1500 		len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1501 		len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1502 				off, ZZ_4_byte);
1503 		imm = (imm >= 0 ? 0 : -1);
1504 		len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1505 		len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1506 				off + 4, ZZ_4_byte);
1507 	} else {
1508 		u8 zz = bpf_to_arc_size(size);
1509 
1510 		len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1511 		len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
1512 	}
1513 
1514 	return len;
1515 }
1516 
1517 /*
1518  * For the calling convention of a little endian machine, the LO part
1519  * must be on top of the stack.
1520  */
1521 static u8 push_r64(u8 *buf, u8 reg)
1522 {
1523 	u8 len = 0;
1524 
1525 #ifdef __LITTLE_ENDIAN
1526 	/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1527 	if (reg != BPF_REG_FP)
1528 		len += arc_push_r(BUF(buf, len), REG_HI(reg));
1529 	len += arc_push_r(BUF(buf, len), REG_LO(reg));
1530 #else
1531 	len += arc_push_r(BUF(buf, len), REG_LO(reg));
1532 	if (reg != BPF_REG_FP)
1533 		len += arc_push_r(BUF(buf, len), REG_HI(reg));
1534 #endif
1535 
1536 	return len;
1537 }
1538 
1539 /* load rd, [rs, off] */
1540 u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
1541 {
1542 	u8 len, arc_reg_mem;
1543 
1544 	len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
1545 
1546 	if (size == BPF_B || size == BPF_H || size == BPF_W) {
1547 		const u8 zz = bpf_to_arc_size(size);
1548 
1549 		/* Use LD.X only if the data size is less than 32-bit. */
1550 		if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
1551 			len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
1552 					 arc_reg_mem, off, zz);
1553 		} else {
1554 			len += arc_ld_r(BUF(buf, len), REG_LO(rd),
1555 					arc_reg_mem, off, zz);
1556 		}
1557 
1558 		if (sign_ext) {
1559 			/* Propagate the sign bit to the higher reg. */
1560 			len += arc_asri_r(BUF(buf, len),
1561 					  REG_HI(rd), REG_LO(rd), 31);
1562 		} else {
1563 			len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1564 		}
1565 	} else if (size == BPF_DW) {
1566 		/*
1567 		 * We are about to issue 2 consecutive loads:
1568 		 *
1569 		 *   ld rx, [rb, off+0]
1570 		 *   ld ry, [rb, off+4]
1571 		 *
1572 		 * If "rx" and "rb" are the same registers, then the order
1573 		 * should change to guarantee that "rb" remains intact
1574 		 * during these 2 operations:
1575 		 *
1576 		 *   ld ry, [rb, off+4]
1577 		 *   ld rx, [rb, off+0]
1578 		 */
1579 		if (REG_LO(rd) != arc_reg_mem) {
1580 			len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1581 					off, ZZ_4_byte);
1582 			len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1583 					off + 4, ZZ_4_byte);
1584 		} else {
1585 			len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1586 					off + 4, ZZ_4_byte);
1587 			len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1588 					off, ZZ_4_byte);
1589 		}
1590 	}
1591 
1592 	return len;
1593 }
1594 
1595 u8 add_r32(u8 *buf, u8 rd, u8 rs)
1596 {
1597 	return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
1598 }
1599 
1600 u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
1601 {
1602 	if (IN_U6_RANGE(imm))
1603 		return arc_addi_r(buf, REG_LO(rd), imm);
1604 	else
1605 		return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
1606 }
1607 
1608 u8 add_r64(u8 *buf, u8 rd, u8 rs)
1609 {
1610 	u8 len;
1611 
1612 	len  = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
1613 	len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1614 	return len;
1615 }
1616 
1617 u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
1618 {
1619 	u8 len;
1620 
1621 	if (IN_U6_RANGE(imm)) {
1622 		len  = arc_addif_r(buf, REG_LO(rd), imm);
1623 		len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
1624 	} else {
1625 		len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1626 		len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
1627 	}
1628 	return len;
1629 }
1630 
1631 u8 sub_r32(u8 *buf, u8 rd, u8 rs)
1632 {
1633 	return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
1634 }
1635 
1636 u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
1637 {
1638 	if (IN_U6_RANGE(imm))
1639 		return arc_subi_r(buf, REG_LO(rd), imm);
1640 	else
1641 		return arc_sub_i(buf, REG_LO(rd), imm);
1642 }
1643 
1644 u8 sub_r64(u8 *buf, u8 rd, u8 rs)
1645 {
1646 	u8 len;
1647 
1648 	len  = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
1649 	len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1650 	return len;
1651 }
1652 
1653 u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
1654 {
1655 	u8 len;
1656 
1657 	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1658 	len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
1659 	return len;
1660 }
1661 
1662 static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
1663 {
1664 	return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
1665 }
1666 
1667 u8 neg_r32(u8 *buf, u8 r)
1668 {
1669 	return arc_neg_r(buf, REG_LO(r), REG_LO(r));
1670 }
1671 
1672 /* In a two's complement system, -r is (~r + 1). */
1673 u8 neg_r64(u8 *buf, u8 r)
1674 {
1675 	u8 len;
1676 
1677 	len  = arc_not_r(buf, REG_LO(r), REG_LO(r));
1678 	len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
1679 	len += add_r64_i32(BUF(buf, len), r, 1);
1680 	return len;
1681 }
1682 
1683 u8 mul_r32(u8 *buf, u8 rd, u8 rs)
1684 {
1685 	return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1686 }
1687 
1688 u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
1689 {
1690 	return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
1691 }
1692 
1693 /*
1694  * MUL B, C
1695  * --------
1696  * mpy       t0, B_hi, C_lo
1697  * mpy       t1, B_lo, C_hi
1698  * mpydu   B_lo, B_lo, C_lo
1699  * add     B_hi, B_hi,   t0
1700  * add     B_hi, B_hi,   t1
1701  */
1702 u8 mul_r64(u8 *buf, u8 rd, u8 rs)
1703 {
1704 	const u8 t0   = REG_LO(JIT_REG_TMP);
1705 	const u8 t1   = REG_HI(JIT_REG_TMP);
1706 	const u8 C_lo = REG_LO(rs);
1707 	const u8 C_hi = REG_HI(rs);
1708 	const u8 B_lo = REG_LO(rd);
1709 	const u8 B_hi = REG_HI(rd);
1710 	u8 len;
1711 
1712 	len  = arc_mpy_r(buf, t0, B_hi, C_lo);
1713 	len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
1714 	len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
1715 	len += arc_add_r(BUF(buf, len), B_hi, t0);
1716 	len += arc_add_r(BUF(buf, len), B_hi, t1);
1717 
1718 	return len;
1719 }
1720 
1721 /*
1722  * MUL B, imm
1723  * ----------
1724  *
1725  *  To get a 64-bit result from a signed 64x32 multiplication:
1726  *
1727  *         B_hi             B_lo   *
1728  *         sign             imm
1729  *  -----------------------------
1730  *  HI(B_lo*imm)     LO(B_lo*imm)  +
1731  *     B_hi*imm                    +
1732  *     B_lo*sign
1733  *  -----------------------------
1734  *        res_hi           res_lo
1735  *
1736  * mpy     t1, B_lo, sign(imm)
1737  * mpy     t0, B_hi, imm
1738  * mpydu B_lo, B_lo, imm
1739  * add   B_hi, B_hi,  t0
1740  * add   B_hi, B_hi,  t1
1741  *
1742  * Note: We can't use signed double multiplication, "mpyd", instead of an
1743  * unsigned version, "mpydu", and then get rid of the sign adjustments
1744  * calculated in "t1". The signed multiplication, "mpyd", will consider
1745  * both operands, "B_lo" and "imm", as signed inputs. However, for this
1746  * 64x32 multiplication, "B_lo" must be treated as an unsigned number.
1747  */
1748 u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
1749 {
1750 	const u8 t0   = REG_LO(JIT_REG_TMP);
1751 	const u8 t1   = REG_HI(JIT_REG_TMP);
1752 	const u8 B_lo = REG_LO(rd);
1753 	const u8 B_hi = REG_HI(rd);
1754 	u8 len = 0;
1755 
1756 	if (imm == 1)
1757 		return 0;
1758 
1759 	/* Is the sign-extension of the immediate "-1"? */
1760 	if (imm < 0)
1761 		len += arc_neg_r(BUF(buf, len), t1, B_lo);
1762 
1763 	len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
1764 	len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
1765 	len += arc_add_r(BUF(buf, len), B_hi, t0);
1766 
1767 	/* Add the "sign*B_lo" part, if necessary. */
1768 	if (imm < 0)
1769 		len += arc_add_r(BUF(buf, len), B_hi, t1);
1770 
1771 	return len;
1772 }
1773 
1774 u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1775 {
1776 	if (sign_ext)
1777 		return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
1778 	else
1779 		return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
1780 }
1781 
1782 u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1783 {
1784 	if (imm == 0)
1785 		return 0;
1786 
1787 	if (sign_ext)
1788 		return arc_divs_i(buf, REG_LO(rd), imm);
1789 	else
1790 		return arc_divu_i(buf, REG_LO(rd), imm);
1791 }
1792 
1793 u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1794 {
1795 	if (sign_ext)
1796 		return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
1797 	else
1798 		return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
1799 }
1800 
1801 u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1802 {
1803 	if (imm == 0)
1804 		return 0;
1805 
1806 	if (sign_ext)
1807 		return arc_rems_i(buf, REG_LO(rd), imm);
1808 	else
1809 		return arc_remu_i(buf, REG_LO(rd), imm);
1810 }
1811 
1812 u8 and_r32(u8 *buf, u8 rd, u8 rs)
1813 {
1814 	return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1815 }
1816 
1817 u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
1818 {
1819 	return arc_and_i(buf, REG_LO(rd), imm);
1820 }
1821 
1822 u8 and_r64(u8 *buf, u8 rd, u8 rs)
1823 {
1824 	u8 len;
1825 
1826 	len  = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1827 	len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1828 	return len;
1829 }
1830 
1831 u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
1832 {
1833 	u8 len;
1834 
1835 	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1836 	len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
1837 	return len;
1838 }
1839 
1840 static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
1841 {
1842 	return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
1843 }
1844 
1845 u8 or_r32(u8 *buf, u8 rd, u8 rs)
1846 {
1847 	return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1848 }
1849 
1850 u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
1851 {
1852 	return arc_or_i(buf, REG_LO(rd), imm);
1853 }
1854 
1855 u8 or_r64(u8 *buf, u8 rd, u8 rs)
1856 {
1857 	u8 len;
1858 
1859 	len  = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1860 	len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
1861 	return len;
1862 }
1863 
1864 u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
1865 {
1866 	u8 len;
1867 
1868 	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1869 	len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
1870 	return len;
1871 }
1872 
1873 u8 xor_r32(u8 *buf, u8 rd, u8 rs)
1874 {
1875 	return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1876 }
1877 
1878 u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
1879 {
1880 	return arc_xor_i(buf, REG_LO(rd), imm);
1881 }
1882 
1883 u8 xor_r64(u8 *buf, u8 rd, u8 rs)
1884 {
1885 	u8 len;
1886 
1887 	len  = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1888 	len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1889 	return len;
1890 }
1891 
1892 u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
1893 {
1894 	u8 len;
1895 
1896 	len  = mov_r64_i32(buf, JIT_REG_TMP, imm);
1897 	len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
1898 	return len;
1899 }
1900 
1901 /* "asl a,b,c" --> "a = (b << (c & 31))". */
1902 u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
1903 {
1904 	return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1905 }
1906 
1907 u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
1908 {
1909 	return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
1910 }
1911 
1912 /*
1913  * algorithm
1914  * ---------
1915  * if (n <= 32)
1916  *   to_hi = lo >> (32-n)   # (32-n) is the negate of "n" in a 5-bit width.
1917  *   lo <<= n
1918  *   hi <<= n
1919  *   hi |= to_hi
1920  * else
1921  *   hi = lo << (n-32)
1922  *   lo = 0
1923  *
1924  * assembly translation for "LSH B, C"
1925  * (heavily influenced by ARC gcc)
1926  * -----------------------------------
1927  * not    t0, C_lo            # The first 3 lines are almost the same as:
1928  * lsr    t1, B_lo, 1         #   neg   t0, C_lo
1929  * lsr    t1, t1, t0          #   lsr   t1, B_lo, t0   --> t1 is "to_hi"
1930  * mov    t0, C_lo*           # with one important difference. In "neg"
1931  * asl    B_lo, B_lo, t0      # version, when C_lo=0, t1 becomes B_lo while
1932  * asl    B_hi, B_hi, t0      # it should be 0. The "not" approach instead,
1933  * or     B_hi, B_hi, t1      # "shift"s t1 once and 31 times, practically
1934  * btst   t0, 5               # setting it to 0 when C_lo=0.
1935  * mov.ne B_hi, B_lo**
1936  * mov.ne B_lo, 0
1937  *
1938  * *The "mov t0, C_lo" is necessary to cover the cases that C is the same
1939  * register as B.
1940  *
1941  * **ARC performs a shift in this manner: B <<= (C & 31)
1942  * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
1943  * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
1944  * "B << 3" are the same.
1945  *
1946  * The behaviour is undefined for n >= 64.
1947  */
1948 u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
1949 {
1950 	const u8 t0   = REG_LO(JIT_REG_TMP);
1951 	const u8 t1   = REG_HI(JIT_REG_TMP);
1952 	const u8 C_lo = REG_LO(rs);
1953 	const u8 B_lo = REG_LO(rd);
1954 	const u8 B_hi = REG_HI(rd);
1955 	u8 len;
1956 
1957 	len  = arc_not_r(buf, t0, C_lo);
1958 	len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
1959 	len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
1960 	len += arc_mov_r(BUF(buf, len), t0, C_lo);
1961 	len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
1962 	len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
1963 	len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
1964 	len += arc_btst_i(BUF(buf, len), t0, 5);
1965 	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
1966 	len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
1967 
1968 	return len;
1969 }
1970 
1971 /*
1972  * if (n < 32)
1973  *   to_hi = B_lo >> 32-n          # extract upper n bits
1974  *   lo <<= n
1975  *   hi <<=n
1976  *   hi |= to_hi
1977  * else if (n < 64)
1978  *   hi = lo << n-32
1979  *   lo = 0
1980  */
1981 u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
1982 {
1983 	const u8 t0   = REG_LO(JIT_REG_TMP);
1984 	const u8 B_lo = REG_LO(rd);
1985 	const u8 B_hi = REG_HI(rd);
1986 	const u8 n    = (u8)imm;
1987 	u8 len = 0;
1988 
1989 	if (n == 0) {
1990 		return 0;
1991 	} else if (n <= 31) {
1992 		len  = arc_lsri_r(buf, t0, B_lo, 32 - n);
1993 		len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
1994 		len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
1995 		len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
1996 	} else if (n <= 63) {
1997 		len  = arc_asli_r(buf, B_hi, B_lo, n - 32);
1998 		len += arc_movi_r(BUF(buf, len), B_lo, 0);
1999 	}
2000 	/* n >= 64 is undefined behaviour. */
2001 
2002 	return len;
2003 }
2004 
2005 /* "lsr a,b,c" --> "a = (b >> (c & 31))". */
2006 u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
2007 {
2008 	return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2009 }
2010 
2011 u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2012 {
2013 	return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2014 }
2015 
2016 /*
2017  * For better commentary, see lsh_r64().
2018  *
2019  * algorithm
2020  * ---------
2021  * if (n <= 32)
2022  *   to_lo = hi << (32-n)
2023  *   hi >>= n
2024  *   lo >>= n
2025  *   lo |= to_lo
2026  * else
2027  *   lo = hi >> (n-32)
2028  *   hi = 0
2029  *
2030  * RSH    B,C
2031  * ----------
2032  * not    t0, C_lo
2033  * asl    t1, B_hi, 1
2034  * asl    t1, t1, t0
2035  * mov    t0, C_lo
2036  * lsr    B_hi, B_hi, t0
2037  * lsr    B_lo, B_lo, t0
2038  * or     B_lo, B_lo, t1
2039  * btst   t0, 5
2040  * mov.ne B_lo, B_hi
2041  * mov.ne B_hi, 0
2042  */
2043 u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
2044 {
2045 	const u8 t0   = REG_LO(JIT_REG_TMP);
2046 	const u8 t1   = REG_HI(JIT_REG_TMP);
2047 	const u8 C_lo = REG_LO(rs);
2048 	const u8 B_lo = REG_LO(rd);
2049 	const u8 B_hi = REG_HI(rd);
2050 	u8 len;
2051 
2052 	len  = arc_not_r(buf, t0, C_lo);
2053 	len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2054 	len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2055 	len += arc_mov_r(BUF(buf, len), t0, C_lo);
2056 	len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
2057 	len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2058 	len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2059 	len += arc_btst_i(BUF(buf, len), t0, 5);
2060 	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2061 	len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
2062 
2063 	return len;
2064 }
2065 
2066 /*
2067  * if (n < 32)
2068  *   to_lo = B_lo << 32-n     # extract lower n bits, right-padded with 32-n 0s
2069  *   lo >>=n
2070  *   hi >>=n
2071  *   hi |= to_lo
2072  * else if (n < 64)
2073  *   lo = hi >> n-32
2074  *   hi = 0
2075  */
2076 u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2077 {
2078 	const u8 t0   = REG_LO(JIT_REG_TMP);
2079 	const u8 B_lo = REG_LO(rd);
2080 	const u8 B_hi = REG_HI(rd);
2081 	const u8 n    = (u8)imm;
2082 	u8 len = 0;
2083 
2084 	if (n == 0) {
2085 		return 0;
2086 	} else if (n <= 31) {
2087 		len  = arc_asli_r(buf, t0, B_hi, 32 - n);
2088 		len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2089 		len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
2090 		len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2091 	} else if (n <= 63) {
2092 		len  = arc_lsri_r(buf, B_lo, B_hi, n - 32);
2093 		len += arc_movi_r(BUF(buf, len), B_hi, 0);
2094 	}
2095 	/* n >= 64 is undefined behaviour. */
2096 
2097 	return len;
2098 }
2099 
2100 /* "asr a,b,c" --> "a = (b s>> (c & 31))". */
2101 u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
2102 {
2103 	return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2104 }
2105 
2106 u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2107 {
2108 	return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2109 }
2110 
2111 /*
2112  * For comparison, see rsh_r64().
2113  *
2114  * algorithm
2115  * ---------
2116  * if (n <= 32)
2117  *   to_lo = hi << (32-n)
2118  *   hi s>>= n
2119  *   lo  >>= n
2120  *   lo |= to_lo
2121  * else
2122  *   hi_sign = hi s>>31
2123  *   lo = hi s>> (n-32)
2124  *   hi = hi_sign
2125  *
2126  * ARSH   B,C
2127  * ----------
2128  * not    t0, C_lo
2129  * asl    t1, B_hi, 1
2130  * asl    t1, t1, t0
2131  * mov    t0, C_lo
2132  * asr    B_hi, B_hi, t0
2133  * lsr    B_lo, B_lo, t0
2134  * or     B_lo, B_lo, t1
2135  * btst   t0, 5
2136  * asr    t0, B_hi, 31        # now, t0 = 0 or -1 based on B_hi's sign
2137  * mov.ne B_lo, B_hi
2138  * mov.ne B_hi, t0
2139  */
2140 u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
2141 {
2142 	const u8 t0   = REG_LO(JIT_REG_TMP);
2143 	const u8 t1   = REG_HI(JIT_REG_TMP);
2144 	const u8 C_lo = REG_LO(rs);
2145 	const u8 B_lo = REG_LO(rd);
2146 	const u8 B_hi = REG_HI(rd);
2147 	u8 len;
2148 
2149 	len  = arc_not_r(buf, t0, C_lo);
2150 	len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2151 	len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2152 	len += arc_mov_r(BUF(buf, len), t0, C_lo);
2153 	len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
2154 	len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2155 	len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2156 	len += arc_btst_i(BUF(buf, len), t0, 5);
2157 	len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
2158 	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2159 	len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
2160 
2161 	return len;
2162 }
2163 
2164 /*
2165  * if (n < 32)
2166  *   to_lo = lo << 32-n     # extract lower n bits, right-padded with 32-n 0s
2167  *   lo >>=n
2168  *   hi s>>=n
2169  *   hi |= to_lo
2170  * else if (n < 64)
2171  *   lo = hi s>> n-32
2172  *   hi = (lo[msb] ? -1 : 0)
2173  */
2174 u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2175 {
2176 	const u8 t0   = REG_LO(JIT_REG_TMP);
2177 	const u8 B_lo = REG_LO(rd);
2178 	const u8 B_hi = REG_HI(rd);
2179 	const u8 n    = (u8)imm;
2180 	u8 len = 0;
2181 
2182 	if (n == 0) {
2183 		return 0;
2184 	} else if (n <= 31) {
2185 		len  = arc_asli_r(buf, t0, B_hi, 32 - n);
2186 		len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2187 		len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
2188 		len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2189 	} else if (n <= 63) {
2190 		len  = arc_asri_r(buf, B_lo, B_hi, n - 32);
2191 		len += arc_movi_r(BUF(buf, len), B_hi, -1);
2192 		len += arc_btst_i(BUF(buf, len), B_lo, 31);
2193 		len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
2194 	}
2195 	/* n >= 64 is undefined behaviour. */
2196 
2197 	return len;
2198 }
2199 
2200 u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
2201 {
2202 	u8 len = 0;
2203 #ifdef __BIG_ENDIAN
2204 	const u8 host_endian = BPF_FROM_BE;
2205 #else
2206 	const u8 host_endian = BPF_FROM_LE;
2207 #endif
2208 	if (host_endian != endian || force) {
2209 		switch (size) {
2210 		case 16:
2211 			/*
2212 			 * r = B4B3_B2B1 << 16 --> r = B2B1_0000
2213 			 * then, swape(r) would become the desired 0000_B1B2
2214 			 */
2215 			len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
2216 			fallthrough;
2217 		case 32:
2218 			len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2219 			if (do_zext)
2220 				len += zext(BUF(buf, len), rd);
2221 			break;
2222 		case 64:
2223 			/*
2224 			 * swap "hi" and "lo":
2225 			 *   hi ^= lo;
2226 			 *   lo ^= hi;
2227 			 *   hi ^= lo;
2228 			 * and then swap the bytes in "hi" and "lo".
2229 			 */
2230 			len  = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
2231 			len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
2232 			len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
2233 			len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2234 			len += arc_swape_r(BUF(buf, len), REG_HI(rd));
2235 			break;
2236 		default:
2237 			/* The caller must have handled this. */
2238 		}
2239 	} else {
2240 		/*
2241 		 * If the same endianness, there's not much to do other
2242 		 * than zeroing out the upper bytes based on the "size".
2243 		 */
2244 		switch (size) {
2245 		case 16:
2246 			len = arc_and_i(buf, REG_LO(rd), 0xffff);
2247 			fallthrough;
2248 		case 32:
2249 			if (do_zext)
2250 				len += zext(BUF(buf, len), rd);
2251 			break;
2252 		case 64:
2253 			break;
2254 		default:
2255 			/* The caller must have handled this. */
2256 		}
2257 	}
2258 
2259 	return len;
2260 }
2261 
2262 /*
2263  * To create a frame, all that is needed is:
2264  *
2265  *  push fp
2266  *  mov  fp, sp
2267  *  sub  sp, <frame_size>
2268  *
2269  * "push fp" is taken care of separately while saving the clobbered registers.
2270  * All that remains is copying SP value to FP and shrinking SP's address space
2271  * for any possible function call to come.
2272  */
2273 static inline u8 frame_create(u8 *buf, u16 size)
2274 {
2275 	u8 len;
2276 
2277 	len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
2278 	if (IN_U6_RANGE(size))
2279 		len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
2280 	else
2281 		len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
2282 	return len;
2283 }
2284 
2285 /*
2286  * mov sp, fp
2287  *
2288  * The value of SP upon entering was copied to FP.
2289  */
2290 static inline u8 frame_restore(u8 *buf)
2291 {
2292 	return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
2293 }
2294 
2295 /*
2296  * Going from a JITed code to the native caller:
2297  *
2298  * mov ARC_ABI_RET_lo, BPF_REG_0_lo     # r0 <- r8
2299  * mov ARC_ABI_RET_hi, BPF_REG_0_hi     # r1 <- r9
2300  */
2301 static u8 bpf_to_arc_return(u8 *buf)
2302 {
2303 	u8 len;
2304 
2305 	len  = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
2306 	len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
2307 	return len;
2308 }
2309 
2310 /*
2311  * Coming back from an external (in-kernel) function to the JITed code:
2312  *
2313  * mov ARC_ABI_RET_lo, BPF_REG_0_lo     # r8 <- r0
2314  * mov ARC_ABI_RET_hi, BPF_REG_0_hi     # r9 <- r1
2315  */
2316 u8 arc_to_bpf_return(u8 *buf)
2317 {
2318 	u8 len;
2319 
2320 	len  = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
2321 	len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
2322 	return len;
2323 }
2324 
2325 /*
2326  * This translation leads to:
2327  *
2328  *   mov r10, addr                # always an 8-byte instruction
2329  *   jl  [r10]
2330  *
2331  * The length of the "mov" must be fixed (8), otherwise it may diverge
2332  * during the normal and extra passes:
2333  *
2334  *          normal pass                  extra pass
2335  *
2336  *   180:  mov     r10,0        |   180:  mov     r10,0x700578d8
2337  *   184:  jl      [r10]        |   188:  jl      [r10]
2338  *   188:  add.f   r16,r16,0x1  |   18c:  adc     r17,r17,0
2339  *   18c:  adc     r17,r17,0    |
2340  *
2341  * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
2342  * has led to an increase in the length of the "mov" instruction.
2343  * Inadvertently, that caused the loss of the "add.f" instruction.
2344  */
2345 static u8 jump_and_link(u8 *buf, u32 addr)
2346 {
2347 	u8 len;
2348 
2349 	len  = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
2350 	len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
2351 	return len;
2352 }
2353 
2354 /*
2355  * This function determines which ARC registers must be saved and restored.
2356  * It does so by looking into:
2357  *
2358  * "bpf_reg": The clobbered (destination) BPF register
2359  * "is_call": Indicator if the current instruction is a call
2360  *
2361  * When a register of interest is clobbered, its corresponding bit position
2362  * in return value, "usage", is set to true.
2363  */
2364 u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
2365 {
2366 	u32 usage = 0;
2367 
2368 	/* BPF registers that must be saved. */
2369 	if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
2370 		usage |= BIT(REG_LO(bpf_reg));
2371 		usage |= BIT(REG_HI(bpf_reg));
2372 	/*
2373 	 * Using the frame pointer register implies that it should
2374 	 * be saved and reinitialised with the current frame data.
2375 	 */
2376 	} else if (bpf_reg == BPF_REG_FP) {
2377 		usage |= BIT(REG_LO(BPF_REG_FP));
2378 	/* Could there be some ARC registers that must to be saved? */
2379 	} else {
2380 		if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2381 		    REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2382 			usage |= BIT(REG_LO(bpf_reg));
2383 
2384 		if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2385 		    REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2386 			usage |= BIT(REG_HI(bpf_reg));
2387 	}
2388 
2389 	/* A "call" indicates that ARC's "blink" reg must be saved. */
2390 	usage |= is_call ? BIT(ARC_R_BLINK) : 0;
2391 
2392 	return usage;
2393 }
2394 
2395 /*
2396  * push blink             # if blink is marked as clobbered
2397  * push r[0-n]            # if r[i] is marked as clobbered
2398  * push fp                # if fp is marked as clobbered
2399  * mov  fp, sp            # if frame_size > 0 (clobbers fp)
2400  * sub  sp, <frame_size>  # same as above
2401  */
2402 u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
2403 {
2404 	u8 len = 0;
2405 	u32 gp_regs = 0;
2406 
2407 	/* Deal with blink first. */
2408 	if (usage & BIT(ARC_R_BLINK))
2409 		len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
2410 
2411 	gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2412 	while (gp_regs) {
2413 		u8 reg = __builtin_ffs(gp_regs) - 1;
2414 
2415 		len += arc_push_r(BUF(buf, len), reg);
2416 		gp_regs &= ~BIT(reg);
2417 	}
2418 
2419 	/* Deal with fp last. */
2420 	if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2421 		len += arc_push_r(BUF(buf, len), ARC_R_FP);
2422 
2423 	if (frame_size > 0)
2424 		len += frame_create(BUF(buf, len), frame_size);
2425 
2426 #ifdef ARC_BPF_JIT_DEBUG
2427 	if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2428 		pr_err("FP is being saved while there is no frame.");
2429 		BUG();
2430 	}
2431 #endif
2432 
2433 	return len;
2434 }
2435 
2436 /*
2437  * mov  sp, fp            # if frame_size > 0
2438  * pop  fp                # if fp is marked as clobbered
2439  * pop  r[n-0]            # if r[i] is marked as clobbered
2440  * pop  blink             # if blink is marked as clobbered
2441  * mov  r0, r8            # always: ABI_return <- BPF_return
2442  * mov  r1, r9            # continuation of above
2443  * j    [blink]           # always
2444  *
2445  * "fp being marked as clobbered" and "frame_size > 0" are the two sides of
2446  * the same coin.
2447  */
2448 u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
2449 {
2450 	u32 len = 0;
2451 	u32 gp_regs = 0;
2452 
2453 #ifdef ARC_BPF_JIT_DEBUG
2454 	if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2455 		pr_err("FP is being saved while there is no frame.");
2456 		BUG();
2457 	}
2458 #endif
2459 
2460 	if (frame_size > 0)
2461 		len += frame_restore(BUF(buf, len));
2462 
2463 	/* Deal with fp first. */
2464 	if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2465 		len += arc_pop_r(BUF(buf, len), ARC_R_FP);
2466 
2467 	gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2468 	while (gp_regs) {
2469 		/* "usage" is 32-bit, each bit indicating an ARC register. */
2470 		u8 reg = 31 - __builtin_clz(gp_regs);
2471 
2472 		len += arc_pop_r(BUF(buf, len), reg);
2473 		gp_regs &= ~BIT(reg);
2474 	}
2475 
2476 	/* Deal with blink last. */
2477 	if (usage & BIT(ARC_R_BLINK))
2478 		len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
2479 
2480 	/* Wrap up the return value and jump back to the caller. */
2481 	len += bpf_to_arc_return(BUF(buf, len));
2482 	len += arc_jmp_return(BUF(buf, len));
2483 
2484 	return len;
2485 }
2486 
2487 /*
2488  * For details on the algorithm, see the comments of "gen_jcc_64()".
2489  *
2490  * This data structure is holding information for jump translations.
2491  *
2492  * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
2493  * cond: The condition that the ARC branch instruction must use
2494  *
2495  * e.g.:
2496  *
2497  * BPF_JGE  R1, R0, @target
2498  * ------------------------
2499  *            |
2500  *            v
2501  * 0x1000: cmp  r3, r1     # 0x1000 is the JIT address for "BPF_JGE ..." insn
2502  * 0x1004: bhi  @target    # first jump (branch higher)
2503  * 0x1008: blo  @end       # second jump acting as a skip (end is 0x1014)
2504  * 0x100C: cmp  r2, r0     # the lower 32 bits are evaluated
2505  * 0x1010: bhs  @target    # third jump (branch higher or same)
2506  * 0x1014: ...
2507  *
2508  * The jit_off(set) of the "bhi" is 4 bytes.
2509  * The cond(ition) for the "bhi" is "CC_great_u".
2510  *
2511  * The jit_off(set) is necessary for calculating the exact displacement
2512  * to the "target" address:
2513  *
2514  * jit_address + jit_off(set) - @target
2515  * 0x1000      + 4            - @target
2516  */
2517 #define JCC64_NR_OF_JMPS 3	/* Number of jumps in jcc64 template. */
2518 #define JCC64_INSNS_TO_END 3	/* Number of insn. inclusive the 2nd jmp to end. */
2519 #define JCC64_SKIP_JMP 1	/* Index of the "skip" jump to "end". */
2520 const struct {
2521 	/*
2522 	 * "jit_off" is common between all "jmp[]" and is coupled with
2523 	 * "cond" of each "jmp[]" instance. e.g.:
2524 	 *
2525 	 * arcv2_64_jccs.jit_off[1]
2526 	 * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
2527 	 *
2528 	 * Are indicating that the second jump in JITed code of "UGT"
2529 	 * is at offset "jit_off[1]" while its condition is "cond[1]".
2530 	 */
2531 	u8 jit_off[JCC64_NR_OF_JMPS];
2532 
2533 	struct {
2534 		u8 cond[JCC64_NR_OF_JMPS];
2535 	} jmp[ARC_CC_SLE + 1];
2536 } arcv2_64_jccs = {
2537 	.jit_off = {
2538 		INSN_len_normal * 1,
2539 		INSN_len_normal * 2,
2540 		INSN_len_normal * 4
2541 	},
2542 	/*
2543 	 *   cmp  rd_hi, rs_hi
2544 	 *   bhi  @target         # 1: u>
2545 	 *   blo  @end            # 2: u<
2546 	 *   cmp  rd_lo, rs_lo
2547 	 *   bhi  @target         # 3: u>
2548 	 * end:
2549 	 */
2550 	.jmp[ARC_CC_UGT] = {
2551 		.cond = {CC_great_u, CC_less_u, CC_great_u}
2552 	},
2553 	/*
2554 	 *   cmp  rd_hi, rs_hi
2555 	 *   bhi  @target         # 1: u>
2556 	 *   blo  @end            # 2: u<
2557 	 *   cmp  rd_lo, rs_lo
2558 	 *   bhs  @target         # 3: u>=
2559 	 * end:
2560 	 */
2561 	.jmp[ARC_CC_UGE] = {
2562 		.cond = {CC_great_u, CC_less_u, CC_great_eq_u}
2563 	},
2564 	/*
2565 	 *   cmp  rd_hi, rs_hi
2566 	 *   blo  @target         # 1: u<
2567 	 *   bhi  @end            # 2: u>
2568 	 *   cmp  rd_lo, rs_lo
2569 	 *   blo  @target         # 3: u<
2570 	 * end:
2571 	 */
2572 	.jmp[ARC_CC_ULT] = {
2573 		.cond = {CC_less_u, CC_great_u, CC_less_u}
2574 	},
2575 	/*
2576 	 *   cmp  rd_hi, rs_hi
2577 	 *   blo  @target         # 1: u<
2578 	 *   bhi  @end            # 2: u>
2579 	 *   cmp  rd_lo, rs_lo
2580 	 *   bls  @target         # 3: u<=
2581 	 * end:
2582 	 */
2583 	.jmp[ARC_CC_ULE] = {
2584 		.cond = {CC_less_u, CC_great_u, CC_less_eq_u}
2585 	},
2586 	/*
2587 	 *   cmp  rd_hi, rs_hi
2588 	 *   bgt  @target         # 1: s>
2589 	 *   blt  @end            # 2: s<
2590 	 *   cmp  rd_lo, rs_lo
2591 	 *   bhi  @target         # 3: u>
2592 	 * end:
2593 	 */
2594 	.jmp[ARC_CC_SGT] = {
2595 		.cond = {CC_great_s, CC_less_s, CC_great_u}
2596 	},
2597 	/*
2598 	 *   cmp  rd_hi, rs_hi
2599 	 *   bgt  @target         # 1: s>
2600 	 *   blt  @end            # 2: s<
2601 	 *   cmp  rd_lo, rs_lo
2602 	 *   bhs  @target         # 3: u>=
2603 	 * end:
2604 	 */
2605 	.jmp[ARC_CC_SGE] = {
2606 		.cond = {CC_great_s, CC_less_s, CC_great_eq_u}
2607 	},
2608 	/*
2609 	 *   cmp  rd_hi, rs_hi
2610 	 *   blt  @target         # 1: s<
2611 	 *   bgt  @end            # 2: s>
2612 	 *   cmp  rd_lo, rs_lo
2613 	 *   blo  @target         # 3: u<
2614 	 * end:
2615 	 */
2616 	.jmp[ARC_CC_SLT] = {
2617 		.cond = {CC_less_s, CC_great_s, CC_less_u}
2618 	},
2619 	/*
2620 	 *   cmp  rd_hi, rs_hi
2621 	 *   blt  @target         # 1: s<
2622 	 *   bgt  @end            # 2: s>
2623 	 *   cmp  rd_lo, rs_lo
2624 	 *   bls  @target         # 3: u<=
2625 	 * end:
2626 	 */
2627 	.jmp[ARC_CC_SLE] = {
2628 		.cond = {CC_less_s, CC_great_s, CC_less_eq_u}
2629 	}
2630 };
2631 
2632 /*
2633  * The displacement (offset) for ARC's "b"ranch instruction is the distance
2634  * from the aligned version of _current_ instruction (PCL) to the target
2635  * instruction:
2636  *
2637  * DISP = TARGET - PCL          # PCL is the word aligned PC
2638  */
2639 static inline s32 get_displacement(u32 curr_off, u32 targ_off)
2640 {
2641 	return (s32)(targ_off - (curr_off & ~3L));
2642 }
2643 
2644 /*
2645  * "disp"lacement should be:
2646  *
2647  * 1. 16-bit aligned.
2648  * 2. fit in S25, because no "condition code" is supposed to be encoded.
2649  */
2650 static inline bool is_valid_far_disp(s32 disp)
2651 {
2652 	return (!(disp & 1) && IN_S25_RANGE(disp));
2653 }
2654 
2655 /*
2656  * "disp"lacement should be:
2657  *
2658  * 1. 16-bit aligned.
2659  * 2. fit in S21, because "condition code" is supposed to be encoded too.
2660  */
2661 static inline bool is_valid_near_disp(s32 disp)
2662 {
2663 	return (!(disp & 1) && IN_S21_RANGE(disp));
2664 }
2665 
2666 /*
2667  * cmp        rd_hi, rs_hi
2668  * cmp.z      rd_lo, rs_lo
2669  * b{eq,ne}   @target
2670  *   |  |
2671  *   |  `-->  "eq" param is false (JNE)
2672  *   `----->  "eq" param is true  (JEQ)
2673  */
2674 static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
2675 		       u32 curr_off, u32 targ_off)
2676 {
2677 	s32 disp;
2678 	u8 len = 0;
2679 
2680 	len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2681 	len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2682 	disp = get_displacement(curr_off + len, targ_off);
2683 	len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
2684 
2685 	return len;
2686 }
2687 
2688 /*
2689  * tst   rd_hi, rs_hi
2690  * tst.z rd_lo, rs_lo
2691  * bne   @target
2692  */
2693 static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
2694 {
2695 	u8 len = 0;
2696 	s32 disp;
2697 
2698 	len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2699 	len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2700 	disp = get_displacement(curr_off + len, targ_off);
2701 	len += arc_bcc(BUF(buf, len), CC_unequal, disp);
2702 
2703 	return len;
2704 }
2705 
2706 /*
2707  * Verify if all the jumps for a JITed jcc64 operation are valid,
2708  * by consulting the data stored at "arcv2_64_jccs".
2709  */
2710 static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
2711 {
2712 	size_t i;
2713 
2714 	if (cond >= ARC_CC_LAST)
2715 		return false;
2716 
2717 	for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
2718 		u32 from, to;
2719 
2720 		from = curr_off + arcv2_64_jccs.jit_off[i];
2721 		/* for the 2nd jump, we jump to the end of block. */
2722 		if (i != JCC64_SKIP_JMP)
2723 			to = targ_off;
2724 		else
2725 			to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
2726 		/* There is a "cc" in the instruction, so a "near" jump. */
2727 		if (!is_valid_near_disp(get_displacement(from, to)))
2728 			return false;
2729 	}
2730 
2731 	return true;
2732 }
2733 
2734 /* Can the jump from "curr_off" to "targ_off" actually happen? */
2735 bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
2736 {
2737 	s32 disp;
2738 
2739 	switch (cond) {
2740 	case ARC_CC_UGT:
2741 	case ARC_CC_UGE:
2742 	case ARC_CC_ULT:
2743 	case ARC_CC_ULE:
2744 	case ARC_CC_SGT:
2745 	case ARC_CC_SGE:
2746 	case ARC_CC_SLT:
2747 	case ARC_CC_SLE:
2748 		return check_jcc_64(curr_off, targ_off, cond);
2749 	case ARC_CC_EQ:
2750 	case ARC_CC_NE:
2751 	case ARC_CC_SET:
2752 		/*
2753 		 * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
2754 		 * 3rd instruction. See comments of "gen_j{set,_eq}_64()".
2755 		 */
2756 		curr_off += 2 * INSN_len_normal;
2757 		disp = get_displacement(curr_off, targ_off);
2758 		/* There is a "cc" field in the issued instruction. */
2759 		return is_valid_near_disp(disp);
2760 	case ARC_CC_AL:
2761 		disp = get_displacement(curr_off, targ_off);
2762 		return is_valid_far_disp(disp);
2763 	default:
2764 		return false;
2765 	}
2766 }
2767 
2768 /*
2769  * The template for the 64-bit jumps with the following BPF conditions
2770  *
2771  * u< u<= u> u>= s< s<= s> s>=
2772  *
2773  * Looks like below:
2774  *
2775  *   cmp   rd_hi, rs_hi
2776  *   b<c1> @target
2777  *   b<c2> @end
2778  *   cmp   rd_lo, rs_lo   # if execution reaches here, r{d,s}_hi are equal
2779  *   b<c3> @target
2780  * end:
2781  *
2782  * "c1" is the condition that JIT is handling minus the equality part.
2783  * For instance if we have to translate an "unsigned greater or equal",
2784  * then "c1" will be "unsigned greater". We won't know about equality
2785  * until all 64-bits of data (higeher and lower registers) are processed.
2786  *
2787  * "c2" is the counter logic of "c1". For instance, if "c1" is originated
2788  * from "s>", then "c2" would be "s<". Notice that equality doesn't play
2789  * a role here either, because the lower 32 bits are not processed yet.
2790  *
2791  * "c3" is the unsigned version of "c1", no matter if the BPF condition
2792  * was signed or unsigned. An unsigned version is necessary, because the
2793  * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
2794  * scheme. Otherwise, 64-bit comparisons like
2795  * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
2796  * would yield an incorrect result. Finally, if there is an equality
2797  * check in the BPF condition, it will be reflected in "c3".
2798  *
2799  * You can find all the instances of this template where the
2800  * "arcv2_64_jccs" is getting initialised.
2801  */
2802 static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
2803 		     u32 curr_off, u32 targ_off)
2804 {
2805 	s32 disp;
2806 	u32 end_off;
2807 	const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
2808 	u8 len = 0;
2809 
2810 	/* cmp rd_hi, rs_hi */
2811 	len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
2812 
2813 	/* b<c1> @target */
2814 	disp = get_displacement(curr_off + len, targ_off);
2815 	len += arc_bcc(BUF(buf, len), cc[0], disp);
2816 
2817 	/* b<c2> @end */
2818 	end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
2819 	disp = get_displacement(curr_off + len, end_off);
2820 	len += arc_bcc(BUF(buf, len), cc[1], disp);
2821 
2822 	/* cmp rd_lo, rs_lo */
2823 	len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2824 
2825 	/* b<c3> @target */
2826 	disp = get_displacement(curr_off + len, targ_off);
2827 	len += arc_bcc(BUF(buf, len), cc[2], disp);
2828 
2829 	return len;
2830 }
2831 
2832 /*
2833  * This function only applies the necessary logic to make the proper
2834  * translations. All the sanity checks must have already been done
2835  * by calling the check_jmp_64().
2836  */
2837 u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2838 {
2839 	u8 len = 0;
2840 	bool eq = false;
2841 	s32 disp;
2842 
2843 	switch (cond) {
2844 	case ARC_CC_AL:
2845 		disp = get_displacement(curr_off, targ_off);
2846 		len = arc_b(buf, disp);
2847 		break;
2848 	case ARC_CC_UGT:
2849 	case ARC_CC_UGE:
2850 	case ARC_CC_ULT:
2851 	case ARC_CC_ULE:
2852 	case ARC_CC_SGT:
2853 	case ARC_CC_SGE:
2854 	case ARC_CC_SLT:
2855 	case ARC_CC_SLE:
2856 		len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
2857 		break;
2858 	case ARC_CC_EQ:
2859 		eq = true;
2860 		fallthrough;
2861 	case ARC_CC_NE:
2862 		len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
2863 		break;
2864 	case ARC_CC_SET:
2865 		len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
2866 		break;
2867 	default:
2868 #ifdef ARC_BPF_JIT_DEBUG
2869 		pr_err("64-bit jump condition is not known.");
2870 		BUG();
2871 #endif
2872 	}
2873 	return len;
2874 }
2875 
2876 /*
2877  * The condition codes to use when generating JIT instructions
2878  * for 32-bit jumps.
2879  *
2880  * The "ARC_CC_AL" index is not really used by the code, but it
2881  * is here for the sake of completeness.
2882  *
2883  * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
2884  * instruction that precedes the conditional branch.
2885  */
2886 const u8 arcv2_32_jmps[ARC_CC_LAST] = {
2887 	[ARC_CC_UGT] = CC_great_u,
2888 	[ARC_CC_UGE] = CC_great_eq_u,
2889 	[ARC_CC_ULT] = CC_less_u,
2890 	[ARC_CC_ULE] = CC_less_eq_u,
2891 	[ARC_CC_SGT] = CC_great_s,
2892 	[ARC_CC_SGE] = CC_great_eq_s,
2893 	[ARC_CC_SLT] = CC_less_s,
2894 	[ARC_CC_SLE] = CC_less_eq_s,
2895 	[ARC_CC_AL]  = CC_always,
2896 	[ARC_CC_EQ]  = CC_equal,
2897 	[ARC_CC_NE]  = CC_unequal,
2898 	[ARC_CC_SET] = CC_unequal
2899 };
2900 
2901 /* Can the jump from "curr_off" to "targ_off" actually happen? */
2902 bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
2903 {
2904 	u8 addendum;
2905 	s32 disp;
2906 
2907 	if (cond >= ARC_CC_LAST)
2908 		return false;
2909 
2910 	/*
2911 	 * The unconditional jump happens immediately, while the rest
2912 	 * are either preceded by a "cmp" or "tst" instruction.
2913 	 */
2914 	addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
2915 	disp = get_displacement(curr_off + addendum, targ_off);
2916 
2917 	if (ARC_CC_AL)
2918 		return is_valid_far_disp(disp);
2919 	else
2920 		return is_valid_near_disp(disp);
2921 }
2922 
2923 /*
2924  * The JITed code for 32-bit (conditional) branches:
2925  *
2926  * ARC_CC_AL  @target
2927  *   b @jit_targ_addr
2928  *
2929  * ARC_CC_SET rd, rs, @target
2930  *   tst rd, rs
2931  *   bnz @jit_targ_addr
2932  *
2933  * ARC_CC_xx  rd, rs, @target
2934  *   cmp rd, rs
2935  *   b<cc> @jit_targ_addr            # cc = arcv2_32_jmps[xx]
2936  */
2937 u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2938 {
2939 	s32 disp;
2940 	u8 len = 0;
2941 
2942 	/*
2943 	 * Although this must have already been checked by "check_jmp_32()",
2944 	 * we're not going to risk accessing "arcv2_32_jmps" array without
2945 	 * the boundary check.
2946 	 */
2947 	if (cond >= ARC_CC_LAST) {
2948 #ifdef ARC_BPF_JIT_DEBUG
2949 		pr_err("32-bit jump condition is not known.");
2950 		BUG();
2951 #endif
2952 		return 0;
2953 	}
2954 
2955 	/* If there is a "condition", issue the "cmp" or "tst" first. */
2956 	if (cond != ARC_CC_AL) {
2957 		if (cond == ARC_CC_SET)
2958 			len = tst_r32(buf, rd, rs);
2959 		else
2960 			len = cmp_r32(buf, rd, rs);
2961 		/*
2962 		 * The issued instruction affects the "disp"lacement as
2963 		 * it alters the "curr_off" by its "len"gth. The "curr_off"
2964 		 * should always point to the jump instruction.
2965 		 */
2966 		disp = get_displacement(curr_off + len, targ_off);
2967 		len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
2968 	} else {
2969 		/* The straight forward unconditional jump. */
2970 		disp = get_displacement(curr_off, targ_off);
2971 		len = arc_b(buf, disp);
2972 	}
2973 
2974 	return len;
2975 }
2976 
2977 /*
2978  * Generate code for functions calls. There can be two types of calls:
2979  *
2980  * - Calling another BPF function
2981  * - Calling an in-kernel function which is compiled by ARC gcc
2982  *
2983  * In the later case, we must comply to ARCv2 ABI and handle arguments
2984  * and return values accordingly.
2985  */
2986 u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
2987 {
2988 	u8 len = 0;
2989 
2990 	/*
2991 	 * In case of an in-kernel function call, always push the 5th
2992 	 * argument onto the stack, because that's where the ABI dictates
2993 	 * it should be found. If the callee doesn't really use it, no harm
2994 	 * is done. The stack is readjusted either way after the call.
2995 	 */
2996 	if (external_func)
2997 		len += push_r64(BUF(buf, len), BPF_REG_5);
2998 
2999 	len += jump_and_link(BUF(buf, len), func_addr);
3000 
3001 	if (external_func)
3002 		len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
3003 
3004 	return len;
3005 }
3006