1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode. 4 * 5 * Copyright (c) 2024 Synopsys Inc. 6 * Author: Shahab Vahedi <shahab@synopsys.com> 7 */ 8 #include <linux/bug.h> 9 #include "bpf_jit.h" 10 11 /* ARC core registers. */ 12 enum { 13 ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5, 14 ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11, 15 ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17, 16 ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23, 17 ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK, 18 ARC_R_30, ARC_R_BLINK, 19 /* 20 * Having ARC_R_IMM encoded as source register means there is an 21 * immediate that must be interpreted from the next 4 bytes. If 22 * encoded as the destination register though, it implies that the 23 * output of the operation is not assigned to any register. The 24 * latter is helpful if we only care about updating the CPU status 25 * flags. 26 */ 27 ARC_R_IMM = 62 28 }; 29 30 /* 31 * Remarks about the rationale behind the chosen mapping: 32 * 33 * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to 34 * argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last 35 * argument register in the ABI. Therefore BPF_REG_5, as the fifth 36 * argument, must be pushed onto the stack. This is a must for calling 37 * in-kernel functions. 38 * 39 * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0) 40 * for 64-bit results. However, because they're already used for BPF_REG_1, 41 * the next available scratch registers, r8 and r9, are the best candidates 42 * for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result 43 * is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to 44 * (r1,r0). 45 * It is worth mentioning that scratch registers are the best choice for 46 * BPF_REG_0, because it is very popular in BPF instruction encoding. 47 * 48 * - JIT_REG_TMP is an artifact needed to translate some BPF instructions. 49 * Its life span is one single BPF instruction. Since during the 50 * analyze_reg_usage(), it is not known if temporary registers are used, 51 * it is mapped to ARC's scratch registers: r10 and r11. Therefore, they 52 * don't matter in analysing phase and don't need saving. This temporary 53 * register is added as yet another index in the bpf2arc array, so it will 54 * unfold like the rest of registers during the code generation process. 55 * 56 * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from 57 * (r15,r14) register pair. The (r13,r12) is not a good choice, because 58 * in ARCv2 ABI, r12 is not a callee-saved register and this can cause 59 * problem when calling an in-kernel function. Theoretically, the mapping 60 * could start from (r14,r13), but it is not a conventional ARCv2 register 61 * pair. To have a future proof design, I opted for this arrangement. 62 * If/when we decide to add ARCv2 instructions that do use register pairs, 63 * the mapping, hopefully, doesn't need to be revisited. 64 */ 65 const u8 bpf2arc[][2] = { 66 /* Return value from in-kernel function, and exit value from eBPF */ 67 [BPF_REG_0] = {ARC_R_8, ARC_R_9}, 68 /* Arguments from eBPF program to in-kernel function */ 69 [BPF_REG_1] = {ARC_R_0, ARC_R_1}, 70 [BPF_REG_2] = {ARC_R_2, ARC_R_3}, 71 [BPF_REG_3] = {ARC_R_4, ARC_R_5}, 72 [BPF_REG_4] = {ARC_R_6, ARC_R_7}, 73 /* Remaining arguments, to be passed on the stack per 32-bit ABI */ 74 [BPF_REG_5] = {ARC_R_22, ARC_R_23}, 75 /* Callee-saved registers that in-kernel function will preserve */ 76 [BPF_REG_6] = {ARC_R_14, ARC_R_15}, 77 [BPF_REG_7] = {ARC_R_16, ARC_R_17}, 78 [BPF_REG_8] = {ARC_R_18, ARC_R_19}, 79 [BPF_REG_9] = {ARC_R_20, ARC_R_21}, 80 /* Read-only frame pointer to access the eBPF stack. 32-bit only. */ 81 [BPF_REG_FP] = {ARC_R_FP, }, 82 /* Register for blinding constants */ 83 [BPF_REG_AX] = {ARC_R_24, ARC_R_25}, 84 /* Temporary registers for internal use */ 85 [JIT_REG_TMP] = {ARC_R_10, ARC_R_11} 86 }; 87 88 #define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13 89 #define ARC_CALLEE_SAVED_REG_LAST ARC_R_25 90 91 #define REG_LO(r) (bpf2arc[(r)][0]) 92 #define REG_HI(r) (bpf2arc[(r)][1]) 93 94 /* 95 * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which, 96 * the stack needs to be restored by ARG5_SIZE. 97 */ 98 #define ARG5_SIZE 8 99 100 /* Instruction lengths in bytes. */ 101 enum { 102 INSN_len_normal = 4, /* Normal instructions length. */ 103 INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */ 104 }; 105 106 /* ZZ defines the size of operation in encodings that it is used. */ 107 enum { 108 ZZ_1_byte = 1, 109 ZZ_2_byte = 2, 110 ZZ_4_byte = 0, 111 ZZ_8_byte = 3 112 }; 113 114 /* 115 * AA is mostly about address write back mode. It determines if the 116 * address in question should be updated before usage or after: 117 * addr += offset; data = *addr; 118 * data = *addr; addr += offset; 119 * 120 * In "scaling" mode, the effective address will become the sum 121 * of "address" + "index"*"size". The "size" is specified by the 122 * "ZZ" field. There is no write back when AA is set for scaling: 123 * data = *(addr + offset<<zz) 124 */ 125 enum { 126 AA_none = 0, 127 AA_pre = 1, /* in assembly known as "a/aw". */ 128 AA_post = 2, /* in assembly known as "ab". */ 129 AA_scale = 3 /* in assembly known as "as". */ 130 }; 131 132 /* X flag determines the mode of extension. */ 133 enum { 134 X_zero = 0, 135 X_sign = 1 136 }; 137 138 /* Condition codes. */ 139 enum { 140 CC_always = 0, /* condition is true all the time */ 141 CC_equal = 1, /* if status32.z flag is set */ 142 CC_unequal = 2, /* if status32.z flag is clear */ 143 CC_positive = 3, /* if status32.n flag is clear */ 144 CC_negative = 4, /* if status32.n flag is set */ 145 CC_less_u = 5, /* less than (unsigned) */ 146 CC_less_eq_u = 14, /* less than or equal (unsigned) */ 147 CC_great_eq_u = 6, /* greater than or equal (unsigned) */ 148 CC_great_u = 13, /* greater than (unsigned) */ 149 CC_less_s = 11, /* less than (signed) */ 150 CC_less_eq_s = 12, /* less than or equal (signed) */ 151 CC_great_eq_s = 10, /* greater than or equal (signed) */ 152 CC_great_s = 9 /* greater than (signed) */ 153 }; 154 155 #define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0) 156 #define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100) 157 #define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800) 158 #define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000) 159 #define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000) 160 161 /* Operands in most of the encodings. */ 162 #define OP_A(x) ((x) & 0x03f) 163 #define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9)) 164 #define OP_C(x) (((x) & 0x03f) << 6) 165 #define OP_IMM (OP_C(ARC_R_IMM)) 166 #define COND(x) (OP_A((x) & 31)) 167 #define FLAG(x) (((x) & 1) << 15) 168 169 /* 170 * The 4-byte encoding of "mov b,c": 171 * 172 * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000 173 * 174 * b: BBBbbb destination register 175 * c: cccccc source register 176 */ 177 #define OPC_MOV 0x200a0000 178 179 /* 180 * The 4-byte encoding of "mov b,s12" (used for moving small immediates): 181 * 182 * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS 183 * 184 * b: BBBbbb destination register 185 * s: SSSSSSssssss source immediate (signed) 186 */ 187 #define OPC_MOVI 0x208a0000 188 #define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6)) 189 190 /* 191 * The 4-byte encoding of "mov[.qq] b,u6", used for conditional 192 * moving of even smaller immediates: 193 * 194 * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq 195 * 196 * qq: qqqqq condition code 197 * i: If set, c is considered a 6-bit immediate, else a reg. 198 * 199 * b: BBBbbb destination register 200 * c: cccccc source 201 */ 202 #define OPC_MOV_CC 0x20ca0000 203 #define MOV_CC_I BIT(5) 204 #define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I) 205 206 /* 207 * The 4-byte encoding of "sexb b,c" (8-bit sign extension): 208 * 209 * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101 210 * 211 * b: BBBbbb destination register 212 * c: cccccc source register 213 */ 214 #define OPC_SEXB 0x202f0005 215 216 /* 217 * The 4-byte encoding of "sexh b,c" (16-bit sign extension): 218 * 219 * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110 220 * 221 * b: BBBbbb destination register 222 * c: cccccc source register 223 */ 224 #define OPC_SEXH 0x202f0006 225 226 /* 227 * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]": 228 * 229 * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc 230 * 231 * zz: size mode 232 * aa: address write back mode 233 * x: extension mode 234 * 235 * s9: S_ssss_ssss 9-bit signed number 236 * b: BBBbbb source reg for address 237 * c: cccccc destination register 238 */ 239 #define OPC_LOAD 0x10000000 240 #define LOAD_X(x) ((x) << 6) 241 #define LOAD_ZZ(x) ((x) << 7) 242 #define LOAD_AA(x) ((x) << 9) 243 #define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) 244 #define LOAD_C(x) ((x) & 0x03f) 245 /* Unsigned and signed loads. */ 246 #define OPC_LDU (OPC_LOAD | LOAD_X(X_zero)) 247 #define OPC_LDS (OPC_LOAD | LOAD_X(X_sign)) 248 /* 32-bit load. */ 249 #define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte)) 250 /* "pop reg" is merely a "ld.ab reg,[sp,4]". */ 251 #define OPC_POP \ 252 (OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP)) 253 254 /* 255 * The 4-byte encoding of "st[zz][.aa] c,[b,s9]": 256 * 257 * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0 258 * 259 * zz: zz size mode 260 * aa: aa address write back mode 261 * 262 * s9: S_ssss_ssss 9-bit signed number 263 * b: BBBbbb source reg for address 264 * c: cccccc source reg to be stored 265 */ 266 #define OPC_STORE 0x18000000 267 #define STORE_ZZ(x) ((x) << 1) 268 #define STORE_AA(x) ((x) << 3) 269 #define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) 270 /* 32-bit store. */ 271 #define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte)) 272 /* "push reg" is merely a "st.aw reg,[sp,-4]". */ 273 #define OPC_PUSH \ 274 (OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP)) 275 276 /* 277 * The 4-byte encoding of "add a,b,c": 278 * 279 * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa 280 * 281 * f: indicates if flags (carry, etc.) should be updated 282 * i: If set, c is considered a 6-bit immediate, else a reg. 283 * 284 * a: aaaaaa result 285 * b: BBBbbb the 1st input operand 286 * c: cccccc the 2nd input operand 287 */ 288 #define OPC_ADD 0x20000000 289 /* Addition with updating the pertinent flags in "status32" register. */ 290 #define OPC_ADDF (OPC_ADD | FLAG(1)) 291 #define ADDI BIT(22) 292 #define ADDI_U6(x) OP_C(x) 293 #define OPC_ADDI (OPC_ADD | ADDI) 294 #define OPC_ADDIF (OPC_ADDI | FLAG(1)) 295 #define OPC_ADD_I (OPC_ADD | OP_IMM) 296 297 /* 298 * The 4-byte encoding of "adc a,b,c" (addition with carry): 299 * 300 * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa 301 * 302 * i: if set, c is considered a 6-bit immediate, else a reg. 303 * 304 * a: aaaaaa result 305 * b: BBBbbb the 1st input operand 306 * c: cccccc the 2nd input operand 307 */ 308 #define OPC_ADC 0x20010000 309 #define ADCI BIT(22) 310 #define ADCI_U6(x) OP_C(x) 311 #define OPC_ADCI (OPC_ADC | ADCI) 312 313 /* 314 * The 4-byte encoding of "sub a,b,c": 315 * 316 * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa 317 * 318 * f: indicates if flags (carry, etc.) should be updated 319 * i: if set, c is considered a 6-bit immediate, else a reg. 320 * 321 * a: aaaaaa result 322 * b: BBBbbb the 1st input operand 323 * c: cccccc the 2nd input operand 324 */ 325 #define OPC_SUB 0x20020000 326 /* Subtraction with updating the pertinent flags in "status32" register. */ 327 #define OPC_SUBF (OPC_SUB | FLAG(1)) 328 #define SUBI BIT(22) 329 #define SUBI_U6(x) OP_C(x) 330 #define OPC_SUBI (OPC_SUB | SUBI) 331 #define OPC_SUB_I (OPC_SUB | OP_IMM) 332 333 /* 334 * The 4-byte encoding of "sbc a,b,c" (subtraction with carry): 335 * 336 * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa 337 * 338 * f: indicates if flags (carry, etc.) should be updated 339 * 340 * a: aaaaaa result 341 * b: BBBbbb the 1st input operand 342 * c: cccccc the 2nd input operand 343 */ 344 #define OPC_SBC 0x20030000 345 346 /* 347 * The 4-byte encoding of "cmp[.qq] b,c": 348 * 349 * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq 350 * 351 * qq: qqqqq condition code 352 * 353 * b: BBBbbb the 1st operand 354 * c: cccccc the 2nd operand 355 */ 356 #define OPC_CMP 0x20cc8000 357 358 /* 359 * The 4-byte encoding of "neg a,b": 360 * 361 * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa 362 * 363 * a: aaaaaa result 364 * b: BBBbbb input 365 */ 366 #define OPC_NEG 0x204e0000 367 368 /* 369 * The 4-byte encoding of "mpy a,b,c". 370 * mpy is the signed 32-bit multiplication with the lower 32-bit 371 * of the product as the result. 372 * 373 * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa 374 * 375 * a: aaaaaa result 376 * b: BBBbbb the 1st input operand 377 * c: cccccc the 2nd input operand 378 */ 379 #define OPC_MPY 0x201a0000 380 #define OPC_MPYI (OPC_MPY | OP_IMM) 381 382 /* 383 * The 4-byte encoding of "mpydu a,b,c". 384 * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of 385 * the product in register "a" and the higher 32-bit in register "a+1". 386 * 387 * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa 388 * 389 * a: aaaaaa 64-bit result in registers (R_a+1,R_a) 390 * b: BBBbbb the 1st input operand 391 * c: cccccc the 2nd input operand 392 */ 393 #define OPC_MPYDU 0x28190000 394 #define OPC_MPYDUI (OPC_MPYDU | OP_IMM) 395 396 /* 397 * The 4-byte encoding of "divu a,b,c" (unsigned division): 398 * 399 * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa 400 * 401 * a: aaaaaa result (quotient) 402 * b: BBBbbb the 1st input operand 403 * c: cccccc the 2nd input operand (divisor) 404 */ 405 #define OPC_DIVU 0x28050000 406 #define OPC_DIVUI (OPC_DIVU | OP_IMM) 407 408 /* 409 * The 4-byte encoding of "div a,b,c" (signed division): 410 * 411 * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa 412 * 413 * a: aaaaaa result (quotient) 414 * b: BBBbbb the 1st input operand 415 * c: cccccc the 2nd input operand (divisor) 416 */ 417 #define OPC_DIVS 0x28040000 418 #define OPC_DIVSI (OPC_DIVS | OP_IMM) 419 420 /* 421 * The 4-byte encoding of "remu a,b,c" (unsigned remainder): 422 * 423 * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa 424 * 425 * a: aaaaaa result (remainder) 426 * b: BBBbbb the 1st input operand 427 * c: cccccc the 2nd input operand (divisor) 428 */ 429 #define OPC_REMU 0x28090000 430 #define OPC_REMUI (OPC_REMU | OP_IMM) 431 432 /* 433 * The 4-byte encoding of "rem a,b,c" (signed remainder): 434 * 435 * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa 436 * 437 * a: aaaaaa result (remainder) 438 * b: BBBbbb the 1st input operand 439 * c: cccccc the 2nd input operand (divisor) 440 */ 441 #define OPC_REMS 0x28080000 442 #define OPC_REMSI (OPC_REMS | OP_IMM) 443 444 /* 445 * The 4-byte encoding of "and a,b,c": 446 * 447 * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa 448 * 449 * f: indicates if zero and negative flags should be updated 450 * 451 * a: aaaaaa result 452 * b: BBBbbb the 1st input operand 453 * c: cccccc the 2nd input operand 454 */ 455 #define OPC_AND 0x20040000 456 #define OPC_ANDI (OPC_AND | OP_IMM) 457 458 /* 459 * The 4-byte encoding of "tst[.qq] b,c". 460 * Checks if the two input operands have any bit set at the same 461 * position. 462 * 463 * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq 464 * 465 * qq: qqqqq condition code 466 * 467 * b: BBBbbb the 1st input operand 468 * c: cccccc the 2nd input operand 469 */ 470 #define OPC_TST 0x20cb8000 471 472 /* 473 * The 4-byte encoding of "or a,b,c": 474 * 475 * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa 476 * 477 * a: aaaaaa result 478 * b: BBBbbb the 1st input operand 479 * c: cccccc the 2nd input operand 480 */ 481 #define OPC_OR 0x20050000 482 #define OPC_ORI (OPC_OR | OP_IMM) 483 484 /* 485 * The 4-byte encoding of "xor a,b,c": 486 * 487 * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa 488 * 489 * a: aaaaaa result 490 * b: BBBbbb the 1st input operand 491 * c: cccccc the 2nd input operand 492 */ 493 #define OPC_XOR 0x20070000 494 #define OPC_XORI (OPC_XOR | OP_IMM) 495 496 /* 497 * The 4-byte encoding of "not b,c": 498 * 499 * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010 500 * 501 * b: BBBbbb result 502 * c: cccccc input 503 */ 504 #define OPC_NOT 0x202f000a 505 506 /* 507 * The 4-byte encoding of "btst b,u6": 508 * 509 * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000 510 * 511 * b: BBBbbb input number to check 512 * u6: uuuuuu 6-bit unsigned number specifying bit position to check 513 */ 514 #define OPC_BTSTU6 0x20518000 515 #define BTST_U6(x) (OP_C((x) & 63)) 516 517 /* 518 * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left): 519 * 520 * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa 521 * 522 * i: if set, c is considered a 5-bit immediate, else a reg. 523 * 524 * b: BBBbbb result and the first operand (number to be shifted) 525 * c: cccccc amount to be shifted 526 */ 527 #define OPC_ASL 0x28000000 528 #define ASL_I BIT(22) 529 #define ASLI_U6(x) OP_C((x) & 31) 530 #define OPC_ASLI (OPC_ASL | ASL_I) 531 532 /* 533 * The 4-byte encoding of "asr a,b,c" (arithmetic shift right): 534 * 535 * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa 536 * 537 * i: if set, c is considered a 6-bit immediate, else a reg. 538 * 539 * a: aaaaaa result 540 * b: BBBbbb first input: number to be shifted 541 * c: cccccc second input: amount to be shifted 542 */ 543 #define OPC_ASR 0x28020000 544 #define ASR_I ASL_I 545 #define ASRI_U6(x) ASLI_U6(x) 546 #define OPC_ASRI (OPC_ASR | ASR_I) 547 548 /* 549 * The 4-byte encoding of "lsr a,b,c" (logical shift right): 550 * 551 * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa 552 * 553 * i: if set, c is considered a 6-bit immediate, else a reg. 554 * 555 * a: aaaaaa result 556 * b: BBBbbb first input: number to be shifted 557 * c: cccccc second input: amount to be shifted 558 */ 559 #define OPC_LSR 0x28010000 560 #define LSR_I ASL_I 561 #define LSRI_U6(x) ASLI_U6(x) 562 #define OPC_LSRI (OPC_LSR | LSR_I) 563 564 /* 565 * The 4-byte encoding of "swape b,c": 566 * 567 * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001 568 * 569 * b: BBBbbb destination register 570 * c: cccccc source register 571 */ 572 #define OPC_SWAPE 0x282f0009 573 574 /* 575 * Encoding for jump to an address in register: 576 * j reg_c 577 * 578 * 0010_0000 1110_0000 0000_cccc cc00_0000 579 * 580 * c: cccccc register holding the destination address 581 */ 582 #define OPC_JMP 0x20e00000 583 /* Jump to "branch-and-link" register, which effectively is a "return". */ 584 #define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK)) 585 586 /* 587 * Encoding for jump-and-link to an address in register: 588 * jl reg_c 589 * 590 * 0010_0000 0010_0010 0000_cccc cc00_0000 591 * 592 * c: cccccc register holding the destination address 593 */ 594 #define OPC_JL 0x20220000 595 596 /* 597 * Encoding for (conditional) branch to an offset from the current location 598 * that is word aligned: (PC & 0xffff_fffc) + s21 599 * B[qq] s21 600 * 601 * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq 602 * 603 * qq: qqqqq condition code 604 * s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed) 605 * 606 * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, 607 * it should be a multiple of 2. Hence, there is an implied '0' bit at its 608 * LSB: S_SSSS SSSS_Ssss ssss_sss0 609 */ 610 #define OPC_BCC 0x00000000 611 #define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5)) 612 613 /* 614 * Encoding for unconditional branch to an offset from the current location 615 * that is word aligned: (PC & 0xffff_fffc) + s25 616 * B s25 617 * 618 * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT 619 * 620 * s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed) 621 * 622 * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, 623 * it should be a multiple of 2. Hence, there is an implied '0' bit at its 624 * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0 625 */ 626 #define OPC_B 0x00010000 627 #define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d)) 628 629 static inline void emit_2_bytes(u8 *buf, u16 bytes) 630 { 631 *((u16 *)buf) = bytes; 632 } 633 634 static inline void emit_4_bytes(u8 *buf, u32 bytes) 635 { 636 emit_2_bytes(buf, bytes >> 16); 637 emit_2_bytes(buf + 2, bytes & 0xffff); 638 } 639 640 static inline u8 bpf_to_arc_size(u8 size) 641 { 642 switch (size) { 643 case BPF_B: 644 return ZZ_1_byte; 645 case BPF_H: 646 return ZZ_2_byte; 647 case BPF_W: 648 return ZZ_4_byte; 649 case BPF_DW: 650 return ZZ_8_byte; 651 default: 652 return ZZ_4_byte; 653 } 654 } 655 656 /************** Encoders (Deal with ARC regs) ************/ 657 658 /* Move an immediate to register with a 4-byte instruction. */ 659 static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm) 660 { 661 const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm); 662 663 if (buf) 664 emit_4_bytes(buf, insn); 665 return INSN_len_normal; 666 } 667 668 /* rd <- rs */ 669 static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs) 670 { 671 const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs); 672 673 if (buf) 674 emit_4_bytes(buf, insn); 675 return INSN_len_normal; 676 } 677 678 /* The emitted code may have different sizes based on "imm". */ 679 static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm) 680 { 681 const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; 682 683 if (IN_S12_RANGE(imm)) 684 return arc_movi_r(buf, rd, imm); 685 686 if (buf) { 687 emit_4_bytes(buf, insn); 688 emit_4_bytes(buf + INSN_len_normal, imm); 689 } 690 return INSN_len_normal + INSN_len_imm; 691 } 692 693 /* The emitted code will always have the same size (8). */ 694 static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm) 695 { 696 const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; 697 698 if (buf) { 699 emit_4_bytes(buf, insn); 700 emit_4_bytes(buf + INSN_len_normal, imm); 701 } 702 return INSN_len_normal + INSN_len_imm; 703 } 704 705 /* Conditional move. */ 706 static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs) 707 { 708 const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc); 709 710 if (buf) 711 emit_4_bytes(buf, insn); 712 return INSN_len_normal; 713 } 714 715 /* Conditional move of a small immediate to rd. */ 716 static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm) 717 { 718 const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc); 719 720 if (buf) 721 emit_4_bytes(buf, insn); 722 return INSN_len_normal; 723 } 724 725 /* Sign extension from a byte. */ 726 static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs) 727 { 728 const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs); 729 730 if (buf) 731 emit_4_bytes(buf, insn); 732 return INSN_len_normal; 733 } 734 735 /* Sign extension from two bytes. */ 736 static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs) 737 { 738 const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs); 739 740 if (buf) 741 emit_4_bytes(buf, insn); 742 return INSN_len_normal; 743 } 744 745 /* st reg, [reg_mem, off] */ 746 static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) 747 { 748 const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) | 749 OP_B(reg_mem) | STORE_S9(off); 750 751 if (buf) 752 emit_4_bytes(buf, insn); 753 return INSN_len_normal; 754 } 755 756 /* st.aw reg, [sp, -4] */ 757 static u8 arc_push_r(u8 *buf, u8 reg) 758 { 759 const u32 insn = OPC_PUSH | OP_C(reg); 760 761 if (buf) 762 emit_4_bytes(buf, insn); 763 return INSN_len_normal; 764 } 765 766 /* ld reg, [reg_mem, off] (unsigned) */ 767 static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) 768 { 769 const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) | 770 OP_B(reg_mem) | LOAD_S9(off); 771 772 if (buf) 773 emit_4_bytes(buf, insn); 774 return INSN_len_normal; 775 } 776 777 /* ld.x reg, [reg_mem, off] (sign extend) */ 778 static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) 779 { 780 const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) | 781 OP_B(reg_mem) | LOAD_S9(off); 782 783 if (buf) 784 emit_4_bytes(buf, insn); 785 return INSN_len_normal; 786 } 787 788 /* ld.ab reg,[sp,4] */ 789 static u8 arc_pop_r(u8 *buf, u8 reg) 790 { 791 const u32 insn = OPC_POP | LOAD_C(reg); 792 793 if (buf) 794 emit_4_bytes(buf, insn); 795 return INSN_len_normal; 796 } 797 798 /* add Ra,Ra,Rc */ 799 static u8 arc_add_r(u8 *buf, u8 ra, u8 rc) 800 { 801 const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc); 802 803 if (buf) 804 emit_4_bytes(buf, insn); 805 return INSN_len_normal; 806 } 807 808 /* add.f Ra,Ra,Rc */ 809 static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc) 810 { 811 const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc); 812 813 if (buf) 814 emit_4_bytes(buf, insn); 815 return INSN_len_normal; 816 } 817 818 /* add.f Ra,Ra,u6 */ 819 static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6) 820 { 821 const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); 822 823 if (buf) 824 emit_4_bytes(buf, insn); 825 return INSN_len_normal; 826 } 827 828 /* add Ra,Ra,u6 */ 829 static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6) 830 { 831 const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); 832 833 if (buf) 834 emit_4_bytes(buf, insn); 835 return INSN_len_normal; 836 } 837 838 /* add Ra,Rb,imm */ 839 static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm) 840 { 841 const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb); 842 843 if (buf) { 844 emit_4_bytes(buf, insn); 845 emit_4_bytes(buf + INSN_len_normal, imm); 846 } 847 return INSN_len_normal + INSN_len_imm; 848 } 849 850 /* adc Ra,Ra,Rc */ 851 static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc) 852 { 853 const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc); 854 855 if (buf) 856 emit_4_bytes(buf, insn); 857 return INSN_len_normal; 858 } 859 860 /* adc Ra,Ra,u6 */ 861 static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6) 862 { 863 const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6); 864 865 if (buf) 866 emit_4_bytes(buf, insn); 867 return INSN_len_normal; 868 } 869 870 /* sub Ra,Ra,Rc */ 871 static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc) 872 { 873 const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc); 874 875 if (buf) 876 emit_4_bytes(buf, insn); 877 return INSN_len_normal; 878 } 879 880 /* sub.f Ra,Ra,Rc */ 881 static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc) 882 { 883 const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc); 884 885 if (buf) 886 emit_4_bytes(buf, insn); 887 return INSN_len_normal; 888 } 889 890 /* sub Ra,Ra,u6 */ 891 static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6) 892 { 893 const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6); 894 895 if (buf) 896 emit_4_bytes(buf, insn); 897 return INSN_len_normal; 898 } 899 900 /* sub Ra,Ra,imm */ 901 static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm) 902 { 903 const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra); 904 905 if (buf) { 906 emit_4_bytes(buf, insn); 907 emit_4_bytes(buf + INSN_len_normal, imm); 908 } 909 return INSN_len_normal + INSN_len_imm; 910 } 911 912 /* sbc Ra,Ra,Rc */ 913 static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc) 914 { 915 const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc); 916 917 if (buf) 918 emit_4_bytes(buf, insn); 919 return INSN_len_normal; 920 } 921 922 /* cmp Rb,Rc */ 923 static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc) 924 { 925 const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc); 926 927 if (buf) 928 emit_4_bytes(buf, insn); 929 return INSN_len_normal; 930 } 931 932 /* 933 * cmp.z Rb,Rc 934 * 935 * This "cmp.z" variant of compare instruction is used on lower 936 * 32-bits of register pairs after "cmp"ing their upper parts. If the 937 * upper parts are equal (z), then this one will proceed to check the 938 * rest. 939 */ 940 static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc) 941 { 942 const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal; 943 944 if (buf) 945 emit_4_bytes(buf, insn); 946 return INSN_len_normal; 947 } 948 949 /* neg Ra,Rb */ 950 static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb) 951 { 952 const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb); 953 954 if (buf) 955 emit_4_bytes(buf, insn); 956 return INSN_len_normal; 957 } 958 959 /* mpy Ra,Rb,Rc */ 960 static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc) 961 { 962 const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc); 963 964 if (buf) 965 emit_4_bytes(buf, insn); 966 return INSN_len_normal; 967 } 968 969 /* mpy Ra,Rb,imm */ 970 static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm) 971 { 972 const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb); 973 974 if (buf) { 975 emit_4_bytes(buf, insn); 976 emit_4_bytes(buf + INSN_len_normal, imm); 977 } 978 return INSN_len_normal + INSN_len_imm; 979 } 980 981 /* mpydu Ra,Ra,Rc */ 982 static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc) 983 { 984 const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc); 985 986 if (buf) 987 emit_4_bytes(buf, insn); 988 return INSN_len_normal; 989 } 990 991 /* mpydu Ra,Ra,imm */ 992 static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm) 993 { 994 const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra); 995 996 if (buf) { 997 emit_4_bytes(buf, insn); 998 emit_4_bytes(buf + INSN_len_normal, imm); 999 } 1000 return INSN_len_normal + INSN_len_imm; 1001 } 1002 1003 /* divu Rd,Rd,Rs */ 1004 static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs) 1005 { 1006 const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs); 1007 1008 if (buf) 1009 emit_4_bytes(buf, insn); 1010 return INSN_len_normal; 1011 } 1012 1013 /* divu Rd,Rd,imm */ 1014 static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm) 1015 { 1016 const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd); 1017 1018 if (buf) { 1019 emit_4_bytes(buf, insn); 1020 emit_4_bytes(buf + INSN_len_normal, imm); 1021 } 1022 return INSN_len_normal + INSN_len_imm; 1023 } 1024 1025 /* div Rd,Rd,Rs */ 1026 static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs) 1027 { 1028 const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs); 1029 1030 if (buf) 1031 emit_4_bytes(buf, insn); 1032 return INSN_len_normal; 1033 } 1034 1035 /* div Rd,Rd,imm */ 1036 static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm) 1037 { 1038 const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd); 1039 1040 if (buf) { 1041 emit_4_bytes(buf, insn); 1042 emit_4_bytes(buf + INSN_len_normal, imm); 1043 } 1044 return INSN_len_normal + INSN_len_imm; 1045 } 1046 1047 /* remu Rd,Rd,Rs */ 1048 static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs) 1049 { 1050 const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs); 1051 1052 if (buf) 1053 emit_4_bytes(buf, insn); 1054 return INSN_len_normal; 1055 } 1056 1057 /* remu Rd,Rd,imm */ 1058 static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm) 1059 { 1060 const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd); 1061 1062 if (buf) { 1063 emit_4_bytes(buf, insn); 1064 emit_4_bytes(buf + INSN_len_normal, imm); 1065 } 1066 return INSN_len_normal + INSN_len_imm; 1067 } 1068 1069 /* rem Rd,Rd,Rs */ 1070 static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs) 1071 { 1072 const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs); 1073 1074 if (buf) 1075 emit_4_bytes(buf, insn); 1076 return INSN_len_normal; 1077 } 1078 1079 /* rem Rd,Rd,imm */ 1080 static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm) 1081 { 1082 const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd); 1083 1084 if (buf) { 1085 emit_4_bytes(buf, insn); 1086 emit_4_bytes(buf + INSN_len_normal, imm); 1087 } 1088 return INSN_len_normal + INSN_len_imm; 1089 } 1090 1091 /* and Rd,Rd,Rs */ 1092 static u8 arc_and_r(u8 *buf, u8 rd, u8 rs) 1093 { 1094 const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs); 1095 1096 if (buf) 1097 emit_4_bytes(buf, insn); 1098 return INSN_len_normal; 1099 } 1100 1101 /* and Rd,Rd,limm */ 1102 static u8 arc_and_i(u8 *buf, u8 rd, s32 imm) 1103 { 1104 const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd); 1105 1106 if (buf) { 1107 emit_4_bytes(buf, insn); 1108 emit_4_bytes(buf + INSN_len_normal, imm); 1109 } 1110 return INSN_len_normal + INSN_len_imm; 1111 } 1112 1113 /* tst Rd,Rs */ 1114 static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs) 1115 { 1116 const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs); 1117 1118 if (buf) 1119 emit_4_bytes(buf, insn); 1120 return INSN_len_normal; 1121 } 1122 1123 /* 1124 * This particular version, "tst.z ...", is meant to be used after a 1125 * "tst" on the low 32-bit of register pairs. If that "tst" is not 1126 * zero, then we don't need to test the upper 32-bits lest it sets 1127 * the zero flag. 1128 */ 1129 static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs) 1130 { 1131 const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal; 1132 1133 if (buf) 1134 emit_4_bytes(buf, insn); 1135 return INSN_len_normal; 1136 } 1137 1138 static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) 1139 { 1140 const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); 1141 1142 if (buf) 1143 emit_4_bytes(buf, insn); 1144 return INSN_len_normal; 1145 } 1146 1147 static u8 arc_or_i(u8 *buf, u8 rd, s32 imm) 1148 { 1149 const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd); 1150 1151 if (buf) { 1152 emit_4_bytes(buf, insn); 1153 emit_4_bytes(buf + INSN_len_normal, imm); 1154 } 1155 return INSN_len_normal + INSN_len_imm; 1156 } 1157 1158 static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs) 1159 { 1160 const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs); 1161 1162 if (buf) 1163 emit_4_bytes(buf, insn); 1164 return INSN_len_normal; 1165 } 1166 1167 static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm) 1168 { 1169 const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd); 1170 1171 if (buf) { 1172 emit_4_bytes(buf, insn); 1173 emit_4_bytes(buf + INSN_len_normal, imm); 1174 } 1175 return INSN_len_normal + INSN_len_imm; 1176 } 1177 1178 static u8 arc_not_r(u8 *buf, u8 rd, u8 rs) 1179 { 1180 const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs); 1181 1182 if (buf) 1183 emit_4_bytes(buf, insn); 1184 return INSN_len_normal; 1185 } 1186 1187 static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm) 1188 { 1189 const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm); 1190 1191 if (buf) 1192 emit_4_bytes(buf, insn); 1193 return INSN_len_normal; 1194 } 1195 1196 static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) 1197 { 1198 const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2); 1199 1200 if (buf) 1201 emit_4_bytes(buf, insn); 1202 return INSN_len_normal; 1203 } 1204 1205 static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm) 1206 { 1207 const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm); 1208 1209 if (buf) 1210 emit_4_bytes(buf, insn); 1211 return INSN_len_normal; 1212 } 1213 1214 static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) 1215 { 1216 const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); 1217 1218 if (buf) 1219 emit_4_bytes(buf, insn); 1220 return INSN_len_normal; 1221 } 1222 1223 static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm) 1224 { 1225 const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm); 1226 1227 if (buf) 1228 emit_4_bytes(buf, insn); 1229 return INSN_len_normal; 1230 } 1231 1232 static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) 1233 { 1234 const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); 1235 1236 if (buf) 1237 emit_4_bytes(buf, insn); 1238 return INSN_len_normal; 1239 } 1240 1241 static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm) 1242 { 1243 const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm); 1244 1245 if (buf) 1246 emit_4_bytes(buf, insn); 1247 return INSN_len_normal; 1248 } 1249 1250 static u8 arc_swape_r(u8 *buf, u8 r) 1251 { 1252 const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r); 1253 1254 if (buf) 1255 emit_4_bytes(buf, insn); 1256 return INSN_len_normal; 1257 } 1258 1259 static u8 arc_jmp_return(u8 *buf) 1260 { 1261 if (buf) 1262 emit_4_bytes(buf, OPC_J_BLINK); 1263 return INSN_len_normal; 1264 } 1265 1266 static u8 arc_jl(u8 *buf, u8 reg) 1267 { 1268 const u32 insn = OPC_JL | OP_C(reg); 1269 1270 if (buf) 1271 emit_4_bytes(buf, insn); 1272 return INSN_len_normal; 1273 } 1274 1275 /* 1276 * Conditional jump to an address that is max 21 bits away (signed). 1277 * 1278 * b<cc> s21 1279 */ 1280 static u8 arc_bcc(u8 *buf, u8 cc, int offset) 1281 { 1282 const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc); 1283 1284 if (buf) 1285 emit_4_bytes(buf, insn); 1286 return INSN_len_normal; 1287 } 1288 1289 /* 1290 * Unconditional jump to an address that is max 25 bits away (signed). 1291 * 1292 * b s25 1293 */ 1294 static u8 arc_b(u8 *buf, s32 offset) 1295 { 1296 const u32 insn = OPC_B | B_S25(offset); 1297 1298 if (buf) 1299 emit_4_bytes(buf, insn); 1300 return INSN_len_normal; 1301 } 1302 1303 /************* Packers (Deal with BPF_REGs) **************/ 1304 1305 inline u8 zext(u8 *buf, u8 rd) 1306 { 1307 if (rd != BPF_REG_FP) 1308 return arc_movi_r(buf, REG_HI(rd), 0); 1309 else 1310 return 0; 1311 } 1312 1313 u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext) 1314 { 1315 u8 len = 0; 1316 1317 if (sign_ext) { 1318 if (sign_ext == 8) 1319 len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs)); 1320 else if (sign_ext == 16) 1321 len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs)); 1322 else if (sign_ext == 32 && rd != rs) 1323 len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); 1324 1325 return len; 1326 } 1327 1328 /* Unsigned move. */ 1329 1330 if (rd != rs) 1331 len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); 1332 1333 return len; 1334 } 1335 1336 u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm) 1337 { 1338 return arc_mov_i(buf, REG_LO(reg), imm); 1339 } 1340 1341 u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext) 1342 { 1343 u8 len = 0; 1344 1345 if (sign_ext) { 1346 /* First handle the low 32-bit part. */ 1347 len = mov_r32(buf, rd, rs, sign_ext); 1348 1349 /* Now propagate the sign bit of LO to HI. */ 1350 if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) { 1351 len += arc_asri_r(BUF(buf, len), 1352 REG_HI(rd), REG_LO(rd), 31); 1353 } 1354 1355 return len; 1356 } 1357 1358 /* Unsigned move. */ 1359 1360 if (rd == rs) 1361 return 0; 1362 1363 len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); 1364 1365 if (rs != BPF_REG_FP) 1366 len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); 1367 /* BPF_REG_FP is mapped to 32-bit "fp" register. */ 1368 else 1369 len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0); 1370 1371 return len; 1372 } 1373 1374 /* Sign extend the 32-bit immediate into 64-bit register pair. */ 1375 u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm) 1376 { 1377 u8 len = 0; 1378 1379 len = arc_mov_i(buf, REG_LO(reg), imm); 1380 1381 /* BPF_REG_FP is mapped to 32-bit "fp" register. */ 1382 if (reg != BPF_REG_FP) { 1383 if (imm >= 0) 1384 len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0); 1385 else 1386 len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1); 1387 } 1388 1389 return len; 1390 } 1391 1392 /* 1393 * This is merely used for translation of "LD R, IMM64" instructions 1394 * of the BPF. These sort of instructions are sometimes used for 1395 * relocations. If during the normal pass, the relocation value is 1396 * not known, the BPF instruction may look something like: 1397 * 1398 * LD R <- 0x0000_0001_0000_0001 1399 * 1400 * Which will nicely translate to two 4-byte ARC instructions: 1401 * 1402 * mov R_lo, 1 # imm is small enough to be s12 1403 * mov R_hi, 1 # same 1404 * 1405 * However, during the extra pass, the IMM64 will have changed 1406 * to the resolved address and looks something like: 1407 * 1408 * LD R <- 0x0000_0000_1234_5678 1409 * 1410 * Now, the translated code will require 12 bytes: 1411 * 1412 * mov R_lo, 0x12345678 # this is an 8-byte instruction 1413 * mov R_hi, 0 # still 4 bytes 1414 * 1415 * Which in practice will result in overwriting the following 1416 * instruction. To avoid such cases, we will always emit codes 1417 * with fixed sizes. 1418 */ 1419 u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi) 1420 { 1421 u8 len; 1422 1423 len = arc_mov_i_fixed(buf, REG_LO(reg), lo); 1424 len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi); 1425 1426 return len; 1427 } 1428 1429 /* 1430 * If the "off"set is too big (doesn't encode as S9) for: 1431 * 1432 * {ld,st} r, [rm, off] 1433 * 1434 * Then emit: 1435 * 1436 * add r10, REG_LO(rm), off 1437 * 1438 * and make sure that r10 becomes the effective address: 1439 * 1440 * {ld,st} r, [r10, 0] 1441 */ 1442 static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size, 1443 u8 rm, u8 *arc_reg_mem) 1444 { 1445 u8 len = 0; 1446 *arc_reg_mem = REG_LO(rm); 1447 1448 if (!IN_S9_RANGE(*off) || 1449 (size == BPF_DW && !IN_S9_RANGE(*off + 4))) { 1450 len += arc_add_i(BUF(buf, len), 1451 REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off)); 1452 *arc_reg_mem = REG_LO(JIT_REG_TMP); 1453 *off = 0; 1454 } 1455 1456 return len; 1457 } 1458 1459 /* store rs, [rd, off] */ 1460 u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size) 1461 { 1462 u8 len, arc_reg_mem; 1463 1464 len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem); 1465 1466 if (size == BPF_DW) { 1467 len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem, 1468 off, ZZ_4_byte); 1469 len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem, 1470 off + 4, ZZ_4_byte); 1471 } else { 1472 u8 zz = bpf_to_arc_size(size); 1473 1474 len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem, 1475 off, zz); 1476 } 1477 1478 return len; 1479 } 1480 1481 /* 1482 * For {8,16,32}-bit stores: 1483 * mov r21, imm 1484 * st r21, [...] 1485 * For 64-bit stores: 1486 * mov r21, imm 1487 * st r21, [...] 1488 * mov r21, {0,-1} 1489 * st r21, [...+4] 1490 */ 1491 u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size) 1492 { 1493 u8 len, arc_reg_mem; 1494 /* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */ 1495 const u8 arc_rs = REG_HI(JIT_REG_TMP); 1496 1497 len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem); 1498 1499 if (size == BPF_DW) { 1500 len += arc_mov_i(BUF(buf, len), arc_rs, imm); 1501 len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, 1502 off, ZZ_4_byte); 1503 imm = (imm >= 0 ? 0 : -1); 1504 len += arc_mov_i(BUF(buf, len), arc_rs, imm); 1505 len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, 1506 off + 4, ZZ_4_byte); 1507 } else { 1508 u8 zz = bpf_to_arc_size(size); 1509 1510 len += arc_mov_i(BUF(buf, len), arc_rs, imm); 1511 len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz); 1512 } 1513 1514 return len; 1515 } 1516 1517 /* 1518 * For the calling convention of a little endian machine, the LO part 1519 * must be on top of the stack. 1520 */ 1521 static u8 push_r64(u8 *buf, u8 reg) 1522 { 1523 u8 len = 0; 1524 1525 #ifdef __LITTLE_ENDIAN 1526 /* BPF_REG_FP is mapped to 32-bit "fp" register. */ 1527 if (reg != BPF_REG_FP) 1528 len += arc_push_r(BUF(buf, len), REG_HI(reg)); 1529 len += arc_push_r(BUF(buf, len), REG_LO(reg)); 1530 #else 1531 len += arc_push_r(BUF(buf, len), REG_LO(reg)); 1532 if (reg != BPF_REG_FP) 1533 len += arc_push_r(BUF(buf, len), REG_HI(reg)); 1534 #endif 1535 1536 return len; 1537 } 1538 1539 /* load rd, [rs, off] */ 1540 u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext) 1541 { 1542 u8 len, arc_reg_mem; 1543 1544 len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem); 1545 1546 if (size == BPF_B || size == BPF_H || size == BPF_W) { 1547 const u8 zz = bpf_to_arc_size(size); 1548 1549 /* Use LD.X only if the data size is less than 32-bit. */ 1550 if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) { 1551 len += arc_ldx_r(BUF(buf, len), REG_LO(rd), 1552 arc_reg_mem, off, zz); 1553 } else { 1554 len += arc_ld_r(BUF(buf, len), REG_LO(rd), 1555 arc_reg_mem, off, zz); 1556 } 1557 1558 if (sign_ext) { 1559 /* Propagate the sign bit to the higher reg. */ 1560 len += arc_asri_r(BUF(buf, len), 1561 REG_HI(rd), REG_LO(rd), 31); 1562 } else { 1563 len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0); 1564 } 1565 } else if (size == BPF_DW) { 1566 /* 1567 * We are about to issue 2 consecutive loads: 1568 * 1569 * ld rx, [rb, off+0] 1570 * ld ry, [rb, off+4] 1571 * 1572 * If "rx" and "rb" are the same registers, then the order 1573 * should change to guarantee that "rb" remains intact 1574 * during these 2 operations: 1575 * 1576 * ld ry, [rb, off+4] 1577 * ld rx, [rb, off+0] 1578 */ 1579 if (REG_LO(rd) != arc_reg_mem) { 1580 len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem, 1581 off, ZZ_4_byte); 1582 len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem, 1583 off + 4, ZZ_4_byte); 1584 } else { 1585 len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem, 1586 off + 4, ZZ_4_byte); 1587 len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem, 1588 off, ZZ_4_byte); 1589 } 1590 } 1591 1592 return len; 1593 } 1594 1595 u8 add_r32(u8 *buf, u8 rd, u8 rs) 1596 { 1597 return arc_add_r(buf, REG_LO(rd), REG_LO(rs)); 1598 } 1599 1600 u8 add_r32_i32(u8 *buf, u8 rd, s32 imm) 1601 { 1602 if (IN_U6_RANGE(imm)) 1603 return arc_addi_r(buf, REG_LO(rd), imm); 1604 else 1605 return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm); 1606 } 1607 1608 u8 add_r64(u8 *buf, u8 rd, u8 rs) 1609 { 1610 u8 len; 1611 1612 len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs)); 1613 len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); 1614 return len; 1615 } 1616 1617 u8 add_r64_i32(u8 *buf, u8 rd, s32 imm) 1618 { 1619 u8 len; 1620 1621 if (IN_U6_RANGE(imm)) { 1622 len = arc_addif_r(buf, REG_LO(rd), imm); 1623 len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0); 1624 } else { 1625 len = mov_r64_i32(buf, JIT_REG_TMP, imm); 1626 len += add_r64(BUF(buf, len), rd, JIT_REG_TMP); 1627 } 1628 return len; 1629 } 1630 1631 u8 sub_r32(u8 *buf, u8 rd, u8 rs) 1632 { 1633 return arc_sub_r(buf, REG_LO(rd), REG_LO(rs)); 1634 } 1635 1636 u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm) 1637 { 1638 if (IN_U6_RANGE(imm)) 1639 return arc_subi_r(buf, REG_LO(rd), imm); 1640 else 1641 return arc_sub_i(buf, REG_LO(rd), imm); 1642 } 1643 1644 u8 sub_r64(u8 *buf, u8 rd, u8 rs) 1645 { 1646 u8 len; 1647 1648 len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs)); 1649 len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); 1650 return len; 1651 } 1652 1653 u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm) 1654 { 1655 u8 len; 1656 1657 len = mov_r64_i32(buf, JIT_REG_TMP, imm); 1658 len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP); 1659 return len; 1660 } 1661 1662 static u8 cmp_r32(u8 *buf, u8 rd, u8 rs) 1663 { 1664 return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs)); 1665 } 1666 1667 u8 neg_r32(u8 *buf, u8 r) 1668 { 1669 return arc_neg_r(buf, REG_LO(r), REG_LO(r)); 1670 } 1671 1672 /* In a two's complement system, -r is (~r + 1). */ 1673 u8 neg_r64(u8 *buf, u8 r) 1674 { 1675 u8 len; 1676 1677 len = arc_not_r(buf, REG_LO(r), REG_LO(r)); 1678 len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r)); 1679 len += add_r64_i32(BUF(buf, len), r, 1); 1680 return len; 1681 } 1682 1683 u8 mul_r32(u8 *buf, u8 rd, u8 rs) 1684 { 1685 return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); 1686 } 1687 1688 u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm) 1689 { 1690 return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm); 1691 } 1692 1693 /* 1694 * MUL B, C 1695 * -------- 1696 * mpy t0, B_hi, C_lo 1697 * mpy t1, B_lo, C_hi 1698 * mpydu B_lo, B_lo, C_lo 1699 * add B_hi, B_hi, t0 1700 * add B_hi, B_hi, t1 1701 */ 1702 u8 mul_r64(u8 *buf, u8 rd, u8 rs) 1703 { 1704 const u8 t0 = REG_LO(JIT_REG_TMP); 1705 const u8 t1 = REG_HI(JIT_REG_TMP); 1706 const u8 C_lo = REG_LO(rs); 1707 const u8 C_hi = REG_HI(rs); 1708 const u8 B_lo = REG_LO(rd); 1709 const u8 B_hi = REG_HI(rd); 1710 u8 len; 1711 1712 len = arc_mpy_r(buf, t0, B_hi, C_lo); 1713 len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi); 1714 len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo); 1715 len += arc_add_r(BUF(buf, len), B_hi, t0); 1716 len += arc_add_r(BUF(buf, len), B_hi, t1); 1717 1718 return len; 1719 } 1720 1721 /* 1722 * MUL B, imm 1723 * ---------- 1724 * 1725 * To get a 64-bit result from a signed 64x32 multiplication: 1726 * 1727 * B_hi B_lo * 1728 * sign imm 1729 * ----------------------------- 1730 * HI(B_lo*imm) LO(B_lo*imm) + 1731 * B_hi*imm + 1732 * B_lo*sign 1733 * ----------------------------- 1734 * res_hi res_lo 1735 * 1736 * mpy t1, B_lo, sign(imm) 1737 * mpy t0, B_hi, imm 1738 * mpydu B_lo, B_lo, imm 1739 * add B_hi, B_hi, t0 1740 * add B_hi, B_hi, t1 1741 * 1742 * Note: We can't use signed double multiplication, "mpyd", instead of an 1743 * unsigned version, "mpydu", and then get rid of the sign adjustments 1744 * calculated in "t1". The signed multiplication, "mpyd", will consider 1745 * both operands, "B_lo" and "imm", as signed inputs. However, for this 1746 * 64x32 multiplication, "B_lo" must be treated as an unsigned number. 1747 */ 1748 u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm) 1749 { 1750 const u8 t0 = REG_LO(JIT_REG_TMP); 1751 const u8 t1 = REG_HI(JIT_REG_TMP); 1752 const u8 B_lo = REG_LO(rd); 1753 const u8 B_hi = REG_HI(rd); 1754 u8 len = 0; 1755 1756 if (imm == 1) 1757 return 0; 1758 1759 /* Is the sign-extension of the immediate "-1"? */ 1760 if (imm < 0) 1761 len += arc_neg_r(BUF(buf, len), t1, B_lo); 1762 1763 len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm); 1764 len += arc_mpydu_i(BUF(buf, len), B_lo, imm); 1765 len += arc_add_r(BUF(buf, len), B_hi, t0); 1766 1767 /* Add the "sign*B_lo" part, if necessary. */ 1768 if (imm < 0) 1769 len += arc_add_r(BUF(buf, len), B_hi, t1); 1770 1771 return len; 1772 } 1773 1774 u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) 1775 { 1776 if (sign_ext) 1777 return arc_divs_r(buf, REG_LO(rd), REG_LO(rs)); 1778 else 1779 return arc_divu_r(buf, REG_LO(rd), REG_LO(rs)); 1780 } 1781 1782 u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) 1783 { 1784 if (imm == 0) 1785 return 0; 1786 1787 if (sign_ext) 1788 return arc_divs_i(buf, REG_LO(rd), imm); 1789 else 1790 return arc_divu_i(buf, REG_LO(rd), imm); 1791 } 1792 1793 u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) 1794 { 1795 if (sign_ext) 1796 return arc_rems_r(buf, REG_LO(rd), REG_LO(rs)); 1797 else 1798 return arc_remu_r(buf, REG_LO(rd), REG_LO(rs)); 1799 } 1800 1801 u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) 1802 { 1803 if (imm == 0) 1804 return 0; 1805 1806 if (sign_ext) 1807 return arc_rems_i(buf, REG_LO(rd), imm); 1808 else 1809 return arc_remu_i(buf, REG_LO(rd), imm); 1810 } 1811 1812 u8 and_r32(u8 *buf, u8 rd, u8 rs) 1813 { 1814 return arc_and_r(buf, REG_LO(rd), REG_LO(rs)); 1815 } 1816 1817 u8 and_r32_i32(u8 *buf, u8 rd, s32 imm) 1818 { 1819 return arc_and_i(buf, REG_LO(rd), imm); 1820 } 1821 1822 u8 and_r64(u8 *buf, u8 rd, u8 rs) 1823 { 1824 u8 len; 1825 1826 len = arc_and_r(buf, REG_LO(rd), REG_LO(rs)); 1827 len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); 1828 return len; 1829 } 1830 1831 u8 and_r64_i32(u8 *buf, u8 rd, s32 imm) 1832 { 1833 u8 len; 1834 1835 len = mov_r64_i32(buf, JIT_REG_TMP, imm); 1836 len += and_r64(BUF(buf, len), rd, JIT_REG_TMP); 1837 return len; 1838 } 1839 1840 static u8 tst_r32(u8 *buf, u8 rd, u8 rs) 1841 { 1842 return arc_tst_r(buf, REG_LO(rd), REG_LO(rs)); 1843 } 1844 1845 u8 or_r32(u8 *buf, u8 rd, u8 rs) 1846 { 1847 return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); 1848 } 1849 1850 u8 or_r32_i32(u8 *buf, u8 rd, s32 imm) 1851 { 1852 return arc_or_i(buf, REG_LO(rd), imm); 1853 } 1854 1855 u8 or_r64(u8 *buf, u8 rd, u8 rs) 1856 { 1857 u8 len; 1858 1859 len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); 1860 len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs)); 1861 return len; 1862 } 1863 1864 u8 or_r64_i32(u8 *buf, u8 rd, s32 imm) 1865 { 1866 u8 len; 1867 1868 len = mov_r64_i32(buf, JIT_REG_TMP, imm); 1869 len += or_r64(BUF(buf, len), rd, JIT_REG_TMP); 1870 return len; 1871 } 1872 1873 u8 xor_r32(u8 *buf, u8 rd, u8 rs) 1874 { 1875 return arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); 1876 } 1877 1878 u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm) 1879 { 1880 return arc_xor_i(buf, REG_LO(rd), imm); 1881 } 1882 1883 u8 xor_r64(u8 *buf, u8 rd, u8 rs) 1884 { 1885 u8 len; 1886 1887 len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); 1888 len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); 1889 return len; 1890 } 1891 1892 u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm) 1893 { 1894 u8 len; 1895 1896 len = mov_r64_i32(buf, JIT_REG_TMP, imm); 1897 len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP); 1898 return len; 1899 } 1900 1901 /* "asl a,b,c" --> "a = (b << (c & 31))". */ 1902 u8 lsh_r32(u8 *buf, u8 rd, u8 rs) 1903 { 1904 return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); 1905 } 1906 1907 u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm) 1908 { 1909 return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm); 1910 } 1911 1912 /* 1913 * algorithm 1914 * --------- 1915 * if (n <= 32) 1916 * to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width. 1917 * lo <<= n 1918 * hi <<= n 1919 * hi |= to_hi 1920 * else 1921 * hi = lo << (n-32) 1922 * lo = 0 1923 * 1924 * assembly translation for "LSH B, C" 1925 * (heavily influenced by ARC gcc) 1926 * ----------------------------------- 1927 * not t0, C_lo # The first 3 lines are almost the same as: 1928 * lsr t1, B_lo, 1 # neg t0, C_lo 1929 * lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi" 1930 * mov t0, C_lo* # with one important difference. In "neg" 1931 * asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while 1932 * asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead, 1933 * or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically 1934 * btst t0, 5 # setting it to 0 when C_lo=0. 1935 * mov.ne B_hi, B_lo** 1936 * mov.ne B_lo, 0 1937 * 1938 * *The "mov t0, C_lo" is necessary to cover the cases that C is the same 1939 * register as B. 1940 * 1941 * **ARC performs a shift in this manner: B <<= (C & 31) 1942 * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and 1943 * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and 1944 * "B << 3" are the same. 1945 * 1946 * The behaviour is undefined for n >= 64. 1947 */ 1948 u8 lsh_r64(u8 *buf, u8 rd, u8 rs) 1949 { 1950 const u8 t0 = REG_LO(JIT_REG_TMP); 1951 const u8 t1 = REG_HI(JIT_REG_TMP); 1952 const u8 C_lo = REG_LO(rs); 1953 const u8 B_lo = REG_LO(rd); 1954 const u8 B_hi = REG_HI(rd); 1955 u8 len; 1956 1957 len = arc_not_r(buf, t0, C_lo); 1958 len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1); 1959 len += arc_lsr_r(BUF(buf, len), t1, t1, t0); 1960 len += arc_mov_r(BUF(buf, len), t0, C_lo); 1961 len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0); 1962 len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0); 1963 len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1); 1964 len += arc_btst_i(BUF(buf, len), t0, 5); 1965 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo); 1966 len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0); 1967 1968 return len; 1969 } 1970 1971 /* 1972 * if (n < 32) 1973 * to_hi = B_lo >> 32-n # extract upper n bits 1974 * lo <<= n 1975 * hi <<=n 1976 * hi |= to_hi 1977 * else if (n < 64) 1978 * hi = lo << n-32 1979 * lo = 0 1980 */ 1981 u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm) 1982 { 1983 const u8 t0 = REG_LO(JIT_REG_TMP); 1984 const u8 B_lo = REG_LO(rd); 1985 const u8 B_hi = REG_HI(rd); 1986 const u8 n = (u8)imm; 1987 u8 len = 0; 1988 1989 if (n == 0) { 1990 return 0; 1991 } else if (n <= 31) { 1992 len = arc_lsri_r(buf, t0, B_lo, 32 - n); 1993 len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n); 1994 len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n); 1995 len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0); 1996 } else if (n <= 63) { 1997 len = arc_asli_r(buf, B_hi, B_lo, n - 32); 1998 len += arc_movi_r(BUF(buf, len), B_lo, 0); 1999 } 2000 /* n >= 64 is undefined behaviour. */ 2001 2002 return len; 2003 } 2004 2005 /* "lsr a,b,c" --> "a = (b >> (c & 31))". */ 2006 u8 rsh_r32(u8 *buf, u8 rd, u8 rs) 2007 { 2008 return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); 2009 } 2010 2011 u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm) 2012 { 2013 return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm); 2014 } 2015 2016 /* 2017 * For better commentary, see lsh_r64(). 2018 * 2019 * algorithm 2020 * --------- 2021 * if (n <= 32) 2022 * to_lo = hi << (32-n) 2023 * hi >>= n 2024 * lo >>= n 2025 * lo |= to_lo 2026 * else 2027 * lo = hi >> (n-32) 2028 * hi = 0 2029 * 2030 * RSH B,C 2031 * ---------- 2032 * not t0, C_lo 2033 * asl t1, B_hi, 1 2034 * asl t1, t1, t0 2035 * mov t0, C_lo 2036 * lsr B_hi, B_hi, t0 2037 * lsr B_lo, B_lo, t0 2038 * or B_lo, B_lo, t1 2039 * btst t0, 5 2040 * mov.ne B_lo, B_hi 2041 * mov.ne B_hi, 0 2042 */ 2043 u8 rsh_r64(u8 *buf, u8 rd, u8 rs) 2044 { 2045 const u8 t0 = REG_LO(JIT_REG_TMP); 2046 const u8 t1 = REG_HI(JIT_REG_TMP); 2047 const u8 C_lo = REG_LO(rs); 2048 const u8 B_lo = REG_LO(rd); 2049 const u8 B_hi = REG_HI(rd); 2050 u8 len; 2051 2052 len = arc_not_r(buf, t0, C_lo); 2053 len += arc_asli_r(BUF(buf, len), t1, B_hi, 1); 2054 len += arc_asl_r(BUF(buf, len), t1, t1, t0); 2055 len += arc_mov_r(BUF(buf, len), t0, C_lo); 2056 len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0); 2057 len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0); 2058 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1); 2059 len += arc_btst_i(BUF(buf, len), t0, 5); 2060 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi); 2061 len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0); 2062 2063 return len; 2064 } 2065 2066 /* 2067 * if (n < 32) 2068 * to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s 2069 * lo >>=n 2070 * hi >>=n 2071 * hi |= to_lo 2072 * else if (n < 64) 2073 * lo = hi >> n-32 2074 * hi = 0 2075 */ 2076 u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm) 2077 { 2078 const u8 t0 = REG_LO(JIT_REG_TMP); 2079 const u8 B_lo = REG_LO(rd); 2080 const u8 B_hi = REG_HI(rd); 2081 const u8 n = (u8)imm; 2082 u8 len = 0; 2083 2084 if (n == 0) { 2085 return 0; 2086 } else if (n <= 31) { 2087 len = arc_asli_r(buf, t0, B_hi, 32 - n); 2088 len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n); 2089 len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n); 2090 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0); 2091 } else if (n <= 63) { 2092 len = arc_lsri_r(buf, B_lo, B_hi, n - 32); 2093 len += arc_movi_r(BUF(buf, len), B_hi, 0); 2094 } 2095 /* n >= 64 is undefined behaviour. */ 2096 2097 return len; 2098 } 2099 2100 /* "asr a,b,c" --> "a = (b s>> (c & 31))". */ 2101 u8 arsh_r32(u8 *buf, u8 rd, u8 rs) 2102 { 2103 return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); 2104 } 2105 2106 u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm) 2107 { 2108 return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm); 2109 } 2110 2111 /* 2112 * For comparison, see rsh_r64(). 2113 * 2114 * algorithm 2115 * --------- 2116 * if (n <= 32) 2117 * to_lo = hi << (32-n) 2118 * hi s>>= n 2119 * lo >>= n 2120 * lo |= to_lo 2121 * else 2122 * hi_sign = hi s>>31 2123 * lo = hi s>> (n-32) 2124 * hi = hi_sign 2125 * 2126 * ARSH B,C 2127 * ---------- 2128 * not t0, C_lo 2129 * asl t1, B_hi, 1 2130 * asl t1, t1, t0 2131 * mov t0, C_lo 2132 * asr B_hi, B_hi, t0 2133 * lsr B_lo, B_lo, t0 2134 * or B_lo, B_lo, t1 2135 * btst t0, 5 2136 * asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign 2137 * mov.ne B_lo, B_hi 2138 * mov.ne B_hi, t0 2139 */ 2140 u8 arsh_r64(u8 *buf, u8 rd, u8 rs) 2141 { 2142 const u8 t0 = REG_LO(JIT_REG_TMP); 2143 const u8 t1 = REG_HI(JIT_REG_TMP); 2144 const u8 C_lo = REG_LO(rs); 2145 const u8 B_lo = REG_LO(rd); 2146 const u8 B_hi = REG_HI(rd); 2147 u8 len; 2148 2149 len = arc_not_r(buf, t0, C_lo); 2150 len += arc_asli_r(BUF(buf, len), t1, B_hi, 1); 2151 len += arc_asl_r(BUF(buf, len), t1, t1, t0); 2152 len += arc_mov_r(BUF(buf, len), t0, C_lo); 2153 len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0); 2154 len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0); 2155 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1); 2156 len += arc_btst_i(BUF(buf, len), t0, 5); 2157 len += arc_asri_r(BUF(buf, len), t0, B_hi, 31); 2158 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi); 2159 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0); 2160 2161 return len; 2162 } 2163 2164 /* 2165 * if (n < 32) 2166 * to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s 2167 * lo >>=n 2168 * hi s>>=n 2169 * hi |= to_lo 2170 * else if (n < 64) 2171 * lo = hi s>> n-32 2172 * hi = (lo[msb] ? -1 : 0) 2173 */ 2174 u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm) 2175 { 2176 const u8 t0 = REG_LO(JIT_REG_TMP); 2177 const u8 B_lo = REG_LO(rd); 2178 const u8 B_hi = REG_HI(rd); 2179 const u8 n = (u8)imm; 2180 u8 len = 0; 2181 2182 if (n == 0) { 2183 return 0; 2184 } else if (n <= 31) { 2185 len = arc_asli_r(buf, t0, B_hi, 32 - n); 2186 len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n); 2187 len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n); 2188 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0); 2189 } else if (n <= 63) { 2190 len = arc_asri_r(buf, B_lo, B_hi, n - 32); 2191 len += arc_movi_r(BUF(buf, len), B_hi, -1); 2192 len += arc_btst_i(BUF(buf, len), B_lo, 31); 2193 len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0); 2194 } 2195 /* n >= 64 is undefined behaviour. */ 2196 2197 return len; 2198 } 2199 2200 u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext) 2201 { 2202 u8 len = 0; 2203 #ifdef __BIG_ENDIAN 2204 const u8 host_endian = BPF_FROM_BE; 2205 #else 2206 const u8 host_endian = BPF_FROM_LE; 2207 #endif 2208 if (host_endian != endian || force) { 2209 switch (size) { 2210 case 16: 2211 /* 2212 * r = B4B3_B2B1 << 16 --> r = B2B1_0000 2213 * then, swape(r) would become the desired 0000_B1B2 2214 */ 2215 len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16); 2216 fallthrough; 2217 case 32: 2218 len += arc_swape_r(BUF(buf, len), REG_LO(rd)); 2219 if (do_zext) 2220 len += zext(BUF(buf, len), rd); 2221 break; 2222 case 64: 2223 /* 2224 * swap "hi" and "lo": 2225 * hi ^= lo; 2226 * lo ^= hi; 2227 * hi ^= lo; 2228 * and then swap the bytes in "hi" and "lo". 2229 */ 2230 len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd)); 2231 len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd)); 2232 len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd)); 2233 len += arc_swape_r(BUF(buf, len), REG_LO(rd)); 2234 len += arc_swape_r(BUF(buf, len), REG_HI(rd)); 2235 break; 2236 default: 2237 /* The caller must have handled this. */ 2238 } 2239 } else { 2240 /* 2241 * If the same endianness, there's not much to do other 2242 * than zeroing out the upper bytes based on the "size". 2243 */ 2244 switch (size) { 2245 case 16: 2246 len = arc_and_i(buf, REG_LO(rd), 0xffff); 2247 fallthrough; 2248 case 32: 2249 if (do_zext) 2250 len += zext(BUF(buf, len), rd); 2251 break; 2252 case 64: 2253 break; 2254 default: 2255 /* The caller must have handled this. */ 2256 } 2257 } 2258 2259 return len; 2260 } 2261 2262 /* 2263 * To create a frame, all that is needed is: 2264 * 2265 * push fp 2266 * mov fp, sp 2267 * sub sp, <frame_size> 2268 * 2269 * "push fp" is taken care of separately while saving the clobbered registers. 2270 * All that remains is copying SP value to FP and shrinking SP's address space 2271 * for any possible function call to come. 2272 */ 2273 static inline u8 frame_create(u8 *buf, u16 size) 2274 { 2275 u8 len; 2276 2277 len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP); 2278 if (IN_U6_RANGE(size)) 2279 len += arc_subi_r(BUF(buf, len), ARC_R_SP, size); 2280 else 2281 len += arc_sub_i(BUF(buf, len), ARC_R_SP, size); 2282 return len; 2283 } 2284 2285 /* 2286 * mov sp, fp 2287 * 2288 * The value of SP upon entering was copied to FP. 2289 */ 2290 static inline u8 frame_restore(u8 *buf) 2291 { 2292 return arc_mov_r(buf, ARC_R_SP, ARC_R_FP); 2293 } 2294 2295 /* 2296 * Going from a JITed code to the native caller: 2297 * 2298 * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8 2299 * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9 2300 */ 2301 static u8 bpf_to_arc_return(u8 *buf) 2302 { 2303 u8 len; 2304 2305 len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0)); 2306 len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0)); 2307 return len; 2308 } 2309 2310 /* 2311 * Coming back from an external (in-kernel) function to the JITed code: 2312 * 2313 * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0 2314 * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1 2315 */ 2316 u8 arc_to_bpf_return(u8 *buf) 2317 { 2318 u8 len; 2319 2320 len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0); 2321 len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1); 2322 return len; 2323 } 2324 2325 /* 2326 * This translation leads to: 2327 * 2328 * mov r10, addr # always an 8-byte instruction 2329 * jl [r10] 2330 * 2331 * The length of the "mov" must be fixed (8), otherwise it may diverge 2332 * during the normal and extra passes: 2333 * 2334 * normal pass extra pass 2335 * 2336 * 180: mov r10,0 | 180: mov r10,0x700578d8 2337 * 184: jl [r10] | 188: jl [r10] 2338 * 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0 2339 * 18c: adc r17,r17,0 | 2340 * 2341 * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8" 2342 * has led to an increase in the length of the "mov" instruction. 2343 * Inadvertently, that caused the loss of the "add.f" instruction. 2344 */ 2345 static u8 jump_and_link(u8 *buf, u32 addr) 2346 { 2347 u8 len; 2348 2349 len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr); 2350 len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP)); 2351 return len; 2352 } 2353 2354 /* 2355 * This function determines which ARC registers must be saved and restored. 2356 * It does so by looking into: 2357 * 2358 * "bpf_reg": The clobbered (destination) BPF register 2359 * "is_call": Indicator if the current instruction is a call 2360 * 2361 * When a register of interest is clobbered, its corresponding bit position 2362 * in return value, "usage", is set to true. 2363 */ 2364 u32 mask_for_used_regs(u8 bpf_reg, bool is_call) 2365 { 2366 u32 usage = 0; 2367 2368 /* BPF registers that must be saved. */ 2369 if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) { 2370 usage |= BIT(REG_LO(bpf_reg)); 2371 usage |= BIT(REG_HI(bpf_reg)); 2372 /* 2373 * Using the frame pointer register implies that it should 2374 * be saved and reinitialised with the current frame data. 2375 */ 2376 } else if (bpf_reg == BPF_REG_FP) { 2377 usage |= BIT(REG_LO(BPF_REG_FP)); 2378 /* Could there be some ARC registers that must to be saved? */ 2379 } else { 2380 if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && 2381 REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) 2382 usage |= BIT(REG_LO(bpf_reg)); 2383 2384 if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && 2385 REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) 2386 usage |= BIT(REG_HI(bpf_reg)); 2387 } 2388 2389 /* A "call" indicates that ARC's "blink" reg must be saved. */ 2390 usage |= is_call ? BIT(ARC_R_BLINK) : 0; 2391 2392 return usage; 2393 } 2394 2395 /* 2396 * push blink # if blink is marked as clobbered 2397 * push r[0-n] # if r[i] is marked as clobbered 2398 * push fp # if fp is marked as clobbered 2399 * mov fp, sp # if frame_size > 0 (clobbers fp) 2400 * sub sp, <frame_size> # same as above 2401 */ 2402 u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size) 2403 { 2404 u8 len = 0; 2405 u32 gp_regs = 0; 2406 2407 /* Deal with blink first. */ 2408 if (usage & BIT(ARC_R_BLINK)) 2409 len += arc_push_r(BUF(buf, len), ARC_R_BLINK); 2410 2411 gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); 2412 while (gp_regs) { 2413 u8 reg = __builtin_ffs(gp_regs) - 1; 2414 2415 len += arc_push_r(BUF(buf, len), reg); 2416 gp_regs &= ~BIT(reg); 2417 } 2418 2419 /* Deal with fp last. */ 2420 if ((usage & BIT(ARC_R_FP)) || frame_size > 0) 2421 len += arc_push_r(BUF(buf, len), ARC_R_FP); 2422 2423 if (frame_size > 0) 2424 len += frame_create(BUF(buf, len), frame_size); 2425 2426 #ifdef ARC_BPF_JIT_DEBUG 2427 if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { 2428 pr_err("FP is being saved while there is no frame."); 2429 BUG(); 2430 } 2431 #endif 2432 2433 return len; 2434 } 2435 2436 /* 2437 * mov sp, fp # if frame_size > 0 2438 * pop fp # if fp is marked as clobbered 2439 * pop r[n-0] # if r[i] is marked as clobbered 2440 * pop blink # if blink is marked as clobbered 2441 * mov r0, r8 # always: ABI_return <- BPF_return 2442 * mov r1, r9 # continuation of above 2443 * j [blink] # always 2444 * 2445 * "fp being marked as clobbered" and "frame_size > 0" are the two sides of 2446 * the same coin. 2447 */ 2448 u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size) 2449 { 2450 u32 len = 0; 2451 u32 gp_regs = 0; 2452 2453 #ifdef ARC_BPF_JIT_DEBUG 2454 if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { 2455 pr_err("FP is being saved while there is no frame."); 2456 BUG(); 2457 } 2458 #endif 2459 2460 if (frame_size > 0) 2461 len += frame_restore(BUF(buf, len)); 2462 2463 /* Deal with fp first. */ 2464 if ((usage & BIT(ARC_R_FP)) || frame_size > 0) 2465 len += arc_pop_r(BUF(buf, len), ARC_R_FP); 2466 2467 gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); 2468 while (gp_regs) { 2469 /* "usage" is 32-bit, each bit indicating an ARC register. */ 2470 u8 reg = 31 - __builtin_clz(gp_regs); 2471 2472 len += arc_pop_r(BUF(buf, len), reg); 2473 gp_regs &= ~BIT(reg); 2474 } 2475 2476 /* Deal with blink last. */ 2477 if (usage & BIT(ARC_R_BLINK)) 2478 len += arc_pop_r(BUF(buf, len), ARC_R_BLINK); 2479 2480 /* Wrap up the return value and jump back to the caller. */ 2481 len += bpf_to_arc_return(BUF(buf, len)); 2482 len += arc_jmp_return(BUF(buf, len)); 2483 2484 return len; 2485 } 2486 2487 /* 2488 * For details on the algorithm, see the comments of "gen_jcc_64()". 2489 * 2490 * This data structure is holding information for jump translations. 2491 * 2492 * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs 2493 * cond: The condition that the ARC branch instruction must use 2494 * 2495 * e.g.: 2496 * 2497 * BPF_JGE R1, R0, @target 2498 * ------------------------ 2499 * | 2500 * v 2501 * 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn 2502 * 0x1004: bhi @target # first jump (branch higher) 2503 * 0x1008: blo @end # second jump acting as a skip (end is 0x1014) 2504 * 0x100C: cmp r2, r0 # the lower 32 bits are evaluated 2505 * 0x1010: bhs @target # third jump (branch higher or same) 2506 * 0x1014: ... 2507 * 2508 * The jit_off(set) of the "bhi" is 4 bytes. 2509 * The cond(ition) for the "bhi" is "CC_great_u". 2510 * 2511 * The jit_off(set) is necessary for calculating the exact displacement 2512 * to the "target" address: 2513 * 2514 * jit_address + jit_off(set) - @target 2515 * 0x1000 + 4 - @target 2516 */ 2517 #define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */ 2518 #define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */ 2519 #define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */ 2520 const struct { 2521 /* 2522 * "jit_off" is common between all "jmp[]" and is coupled with 2523 * "cond" of each "jmp[]" instance. e.g.: 2524 * 2525 * arcv2_64_jccs.jit_off[1] 2526 * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1] 2527 * 2528 * Are indicating that the second jump in JITed code of "UGT" 2529 * is at offset "jit_off[1]" while its condition is "cond[1]". 2530 */ 2531 u8 jit_off[JCC64_NR_OF_JMPS]; 2532 2533 struct { 2534 u8 cond[JCC64_NR_OF_JMPS]; 2535 } jmp[ARC_CC_SLE + 1]; 2536 } arcv2_64_jccs = { 2537 .jit_off = { 2538 INSN_len_normal * 1, 2539 INSN_len_normal * 2, 2540 INSN_len_normal * 4 2541 }, 2542 /* 2543 * cmp rd_hi, rs_hi 2544 * bhi @target # 1: u> 2545 * blo @end # 2: u< 2546 * cmp rd_lo, rs_lo 2547 * bhi @target # 3: u> 2548 * end: 2549 */ 2550 .jmp[ARC_CC_UGT] = { 2551 .cond = {CC_great_u, CC_less_u, CC_great_u} 2552 }, 2553 /* 2554 * cmp rd_hi, rs_hi 2555 * bhi @target # 1: u> 2556 * blo @end # 2: u< 2557 * cmp rd_lo, rs_lo 2558 * bhs @target # 3: u>= 2559 * end: 2560 */ 2561 .jmp[ARC_CC_UGE] = { 2562 .cond = {CC_great_u, CC_less_u, CC_great_eq_u} 2563 }, 2564 /* 2565 * cmp rd_hi, rs_hi 2566 * blo @target # 1: u< 2567 * bhi @end # 2: u> 2568 * cmp rd_lo, rs_lo 2569 * blo @target # 3: u< 2570 * end: 2571 */ 2572 .jmp[ARC_CC_ULT] = { 2573 .cond = {CC_less_u, CC_great_u, CC_less_u} 2574 }, 2575 /* 2576 * cmp rd_hi, rs_hi 2577 * blo @target # 1: u< 2578 * bhi @end # 2: u> 2579 * cmp rd_lo, rs_lo 2580 * bls @target # 3: u<= 2581 * end: 2582 */ 2583 .jmp[ARC_CC_ULE] = { 2584 .cond = {CC_less_u, CC_great_u, CC_less_eq_u} 2585 }, 2586 /* 2587 * cmp rd_hi, rs_hi 2588 * bgt @target # 1: s> 2589 * blt @end # 2: s< 2590 * cmp rd_lo, rs_lo 2591 * bhi @target # 3: u> 2592 * end: 2593 */ 2594 .jmp[ARC_CC_SGT] = { 2595 .cond = {CC_great_s, CC_less_s, CC_great_u} 2596 }, 2597 /* 2598 * cmp rd_hi, rs_hi 2599 * bgt @target # 1: s> 2600 * blt @end # 2: s< 2601 * cmp rd_lo, rs_lo 2602 * bhs @target # 3: u>= 2603 * end: 2604 */ 2605 .jmp[ARC_CC_SGE] = { 2606 .cond = {CC_great_s, CC_less_s, CC_great_eq_u} 2607 }, 2608 /* 2609 * cmp rd_hi, rs_hi 2610 * blt @target # 1: s< 2611 * bgt @end # 2: s> 2612 * cmp rd_lo, rs_lo 2613 * blo @target # 3: u< 2614 * end: 2615 */ 2616 .jmp[ARC_CC_SLT] = { 2617 .cond = {CC_less_s, CC_great_s, CC_less_u} 2618 }, 2619 /* 2620 * cmp rd_hi, rs_hi 2621 * blt @target # 1: s< 2622 * bgt @end # 2: s> 2623 * cmp rd_lo, rs_lo 2624 * bls @target # 3: u<= 2625 * end: 2626 */ 2627 .jmp[ARC_CC_SLE] = { 2628 .cond = {CC_less_s, CC_great_s, CC_less_eq_u} 2629 } 2630 }; 2631 2632 /* 2633 * The displacement (offset) for ARC's "b"ranch instruction is the distance 2634 * from the aligned version of _current_ instruction (PCL) to the target 2635 * instruction: 2636 * 2637 * DISP = TARGET - PCL # PCL is the word aligned PC 2638 */ 2639 static inline s32 get_displacement(u32 curr_off, u32 targ_off) 2640 { 2641 return (s32)(targ_off - (curr_off & ~3L)); 2642 } 2643 2644 /* 2645 * "disp"lacement should be: 2646 * 2647 * 1. 16-bit aligned. 2648 * 2. fit in S25, because no "condition code" is supposed to be encoded. 2649 */ 2650 static inline bool is_valid_far_disp(s32 disp) 2651 { 2652 return (!(disp & 1) && IN_S25_RANGE(disp)); 2653 } 2654 2655 /* 2656 * "disp"lacement should be: 2657 * 2658 * 1. 16-bit aligned. 2659 * 2. fit in S21, because "condition code" is supposed to be encoded too. 2660 */ 2661 static inline bool is_valid_near_disp(s32 disp) 2662 { 2663 return (!(disp & 1) && IN_S21_RANGE(disp)); 2664 } 2665 2666 /* 2667 * cmp rd_hi, rs_hi 2668 * cmp.z rd_lo, rs_lo 2669 * b{eq,ne} @target 2670 * | | 2671 * | `--> "eq" param is false (JNE) 2672 * `-----> "eq" param is true (JEQ) 2673 */ 2674 static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq, 2675 u32 curr_off, u32 targ_off) 2676 { 2677 s32 disp; 2678 u8 len = 0; 2679 2680 len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); 2681 len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); 2682 disp = get_displacement(curr_off + len, targ_off); 2683 len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp); 2684 2685 return len; 2686 } 2687 2688 /* 2689 * tst rd_hi, rs_hi 2690 * tst.z rd_lo, rs_lo 2691 * bne @target 2692 */ 2693 static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off) 2694 { 2695 u8 len = 0; 2696 s32 disp; 2697 2698 len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); 2699 len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); 2700 disp = get_displacement(curr_off + len, targ_off); 2701 len += arc_bcc(BUF(buf, len), CC_unequal, disp); 2702 2703 return len; 2704 } 2705 2706 /* 2707 * Verify if all the jumps for a JITed jcc64 operation are valid, 2708 * by consulting the data stored at "arcv2_64_jccs". 2709 */ 2710 static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond) 2711 { 2712 size_t i; 2713 2714 if (cond >= ARC_CC_LAST) 2715 return false; 2716 2717 for (i = 0; i < JCC64_NR_OF_JMPS; i++) { 2718 u32 from, to; 2719 2720 from = curr_off + arcv2_64_jccs.jit_off[i]; 2721 /* for the 2nd jump, we jump to the end of block. */ 2722 if (i != JCC64_SKIP_JMP) 2723 to = targ_off; 2724 else 2725 to = from + (JCC64_INSNS_TO_END * INSN_len_normal); 2726 /* There is a "cc" in the instruction, so a "near" jump. */ 2727 if (!is_valid_near_disp(get_displacement(from, to))) 2728 return false; 2729 } 2730 2731 return true; 2732 } 2733 2734 /* Can the jump from "curr_off" to "targ_off" actually happen? */ 2735 bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond) 2736 { 2737 s32 disp; 2738 2739 switch (cond) { 2740 case ARC_CC_UGT: 2741 case ARC_CC_UGE: 2742 case ARC_CC_ULT: 2743 case ARC_CC_ULE: 2744 case ARC_CC_SGT: 2745 case ARC_CC_SGE: 2746 case ARC_CC_SLT: 2747 case ARC_CC_SLE: 2748 return check_jcc_64(curr_off, targ_off, cond); 2749 case ARC_CC_EQ: 2750 case ARC_CC_NE: 2751 case ARC_CC_SET: 2752 /* 2753 * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the 2754 * 3rd instruction. See comments of "gen_j{set,_eq}_64()". 2755 */ 2756 curr_off += 2 * INSN_len_normal; 2757 disp = get_displacement(curr_off, targ_off); 2758 /* There is a "cc" field in the issued instruction. */ 2759 return is_valid_near_disp(disp); 2760 case ARC_CC_AL: 2761 disp = get_displacement(curr_off, targ_off); 2762 return is_valid_far_disp(disp); 2763 default: 2764 return false; 2765 } 2766 } 2767 2768 /* 2769 * The template for the 64-bit jumps with the following BPF conditions 2770 * 2771 * u< u<= u> u>= s< s<= s> s>= 2772 * 2773 * Looks like below: 2774 * 2775 * cmp rd_hi, rs_hi 2776 * b<c1> @target 2777 * b<c2> @end 2778 * cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal 2779 * b<c3> @target 2780 * end: 2781 * 2782 * "c1" is the condition that JIT is handling minus the equality part. 2783 * For instance if we have to translate an "unsigned greater or equal", 2784 * then "c1" will be "unsigned greater". We won't know about equality 2785 * until all 64-bits of data (higeher and lower registers) are processed. 2786 * 2787 * "c2" is the counter logic of "c1". For instance, if "c1" is originated 2788 * from "s>", then "c2" would be "s<". Notice that equality doesn't play 2789 * a role here either, because the lower 32 bits are not processed yet. 2790 * 2791 * "c3" is the unsigned version of "c1", no matter if the BPF condition 2792 * was signed or unsigned. An unsigned version is necessary, because the 2793 * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit 2794 * scheme. Otherwise, 64-bit comparisons like 2795 * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000) 2796 * would yield an incorrect result. Finally, if there is an equality 2797 * check in the BPF condition, it will be reflected in "c3". 2798 * 2799 * You can find all the instances of this template where the 2800 * "arcv2_64_jccs" is getting initialised. 2801 */ 2802 static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond, 2803 u32 curr_off, u32 targ_off) 2804 { 2805 s32 disp; 2806 u32 end_off; 2807 const u8 *cc = arcv2_64_jccs.jmp[cond].cond; 2808 u8 len = 0; 2809 2810 /* cmp rd_hi, rs_hi */ 2811 len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs)); 2812 2813 /* b<c1> @target */ 2814 disp = get_displacement(curr_off + len, targ_off); 2815 len += arc_bcc(BUF(buf, len), cc[0], disp); 2816 2817 /* b<c2> @end */ 2818 end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal); 2819 disp = get_displacement(curr_off + len, end_off); 2820 len += arc_bcc(BUF(buf, len), cc[1], disp); 2821 2822 /* cmp rd_lo, rs_lo */ 2823 len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); 2824 2825 /* b<c3> @target */ 2826 disp = get_displacement(curr_off + len, targ_off); 2827 len += arc_bcc(BUF(buf, len), cc[2], disp); 2828 2829 return len; 2830 } 2831 2832 /* 2833 * This function only applies the necessary logic to make the proper 2834 * translations. All the sanity checks must have already been done 2835 * by calling the check_jmp_64(). 2836 */ 2837 u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) 2838 { 2839 u8 len = 0; 2840 bool eq = false; 2841 s32 disp; 2842 2843 switch (cond) { 2844 case ARC_CC_AL: 2845 disp = get_displacement(curr_off, targ_off); 2846 len = arc_b(buf, disp); 2847 break; 2848 case ARC_CC_UGT: 2849 case ARC_CC_UGE: 2850 case ARC_CC_ULT: 2851 case ARC_CC_ULE: 2852 case ARC_CC_SGT: 2853 case ARC_CC_SGE: 2854 case ARC_CC_SLT: 2855 case ARC_CC_SLE: 2856 len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off); 2857 break; 2858 case ARC_CC_EQ: 2859 eq = true; 2860 fallthrough; 2861 case ARC_CC_NE: 2862 len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off); 2863 break; 2864 case ARC_CC_SET: 2865 len = gen_jset_64(buf, rd, rs, curr_off, targ_off); 2866 break; 2867 default: 2868 #ifdef ARC_BPF_JIT_DEBUG 2869 pr_err("64-bit jump condition is not known."); 2870 BUG(); 2871 #endif 2872 } 2873 return len; 2874 } 2875 2876 /* 2877 * The condition codes to use when generating JIT instructions 2878 * for 32-bit jumps. 2879 * 2880 * The "ARC_CC_AL" index is not really used by the code, but it 2881 * is here for the sake of completeness. 2882 * 2883 * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst" 2884 * instruction that precedes the conditional branch. 2885 */ 2886 const u8 arcv2_32_jmps[ARC_CC_LAST] = { 2887 [ARC_CC_UGT] = CC_great_u, 2888 [ARC_CC_UGE] = CC_great_eq_u, 2889 [ARC_CC_ULT] = CC_less_u, 2890 [ARC_CC_ULE] = CC_less_eq_u, 2891 [ARC_CC_SGT] = CC_great_s, 2892 [ARC_CC_SGE] = CC_great_eq_s, 2893 [ARC_CC_SLT] = CC_less_s, 2894 [ARC_CC_SLE] = CC_less_eq_s, 2895 [ARC_CC_AL] = CC_always, 2896 [ARC_CC_EQ] = CC_equal, 2897 [ARC_CC_NE] = CC_unequal, 2898 [ARC_CC_SET] = CC_unequal 2899 }; 2900 2901 /* Can the jump from "curr_off" to "targ_off" actually happen? */ 2902 bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond) 2903 { 2904 u8 addendum; 2905 s32 disp; 2906 2907 if (cond >= ARC_CC_LAST) 2908 return false; 2909 2910 /* 2911 * The unconditional jump happens immediately, while the rest 2912 * are either preceded by a "cmp" or "tst" instruction. 2913 */ 2914 addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal; 2915 disp = get_displacement(curr_off + addendum, targ_off); 2916 2917 if (ARC_CC_AL) 2918 return is_valid_far_disp(disp); 2919 else 2920 return is_valid_near_disp(disp); 2921 } 2922 2923 /* 2924 * The JITed code for 32-bit (conditional) branches: 2925 * 2926 * ARC_CC_AL @target 2927 * b @jit_targ_addr 2928 * 2929 * ARC_CC_SET rd, rs, @target 2930 * tst rd, rs 2931 * bnz @jit_targ_addr 2932 * 2933 * ARC_CC_xx rd, rs, @target 2934 * cmp rd, rs 2935 * b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx] 2936 */ 2937 u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) 2938 { 2939 s32 disp; 2940 u8 len = 0; 2941 2942 /* 2943 * Although this must have already been checked by "check_jmp_32()", 2944 * we're not going to risk accessing "arcv2_32_jmps" array without 2945 * the boundary check. 2946 */ 2947 if (cond >= ARC_CC_LAST) { 2948 #ifdef ARC_BPF_JIT_DEBUG 2949 pr_err("32-bit jump condition is not known."); 2950 BUG(); 2951 #endif 2952 return 0; 2953 } 2954 2955 /* If there is a "condition", issue the "cmp" or "tst" first. */ 2956 if (cond != ARC_CC_AL) { 2957 if (cond == ARC_CC_SET) 2958 len = tst_r32(buf, rd, rs); 2959 else 2960 len = cmp_r32(buf, rd, rs); 2961 /* 2962 * The issued instruction affects the "disp"lacement as 2963 * it alters the "curr_off" by its "len"gth. The "curr_off" 2964 * should always point to the jump instruction. 2965 */ 2966 disp = get_displacement(curr_off + len, targ_off); 2967 len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp); 2968 } else { 2969 /* The straight forward unconditional jump. */ 2970 disp = get_displacement(curr_off, targ_off); 2971 len = arc_b(buf, disp); 2972 } 2973 2974 return len; 2975 } 2976 2977 /* 2978 * Generate code for functions calls. There can be two types of calls: 2979 * 2980 * - Calling another BPF function 2981 * - Calling an in-kernel function which is compiled by ARC gcc 2982 * 2983 * In the later case, we must comply to ARCv2 ABI and handle arguments 2984 * and return values accordingly. 2985 */ 2986 u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func) 2987 { 2988 u8 len = 0; 2989 2990 /* 2991 * In case of an in-kernel function call, always push the 5th 2992 * argument onto the stack, because that's where the ABI dictates 2993 * it should be found. If the callee doesn't really use it, no harm 2994 * is done. The stack is readjusted either way after the call. 2995 */ 2996 if (external_func) 2997 len += push_r64(BUF(buf, len), BPF_REG_5); 2998 2999 len += jump_and_link(BUF(buf, len), func_addr); 3000 3001 if (external_func) 3002 len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE); 3003 3004 return len; 3005 } 3006