xref: /linux/arch/arc/mm/tlb.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * TLB Management (flush/create/diagnostics) for ARC700
3  *
4  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * vineetg: Aug 2011
11  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
12  *
13  * vineetg: May 2011
14  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
15  *   some of the LMBench tests improved amazingly
16  *      = page-fault thrice as fast (75 usec to 28 usec)
17  *      = mmap twice as fast (9.6 msec to 4.6 msec),
18  *      = fork (5.3 msec to 3.7 msec)
19  *
20  * vineetg: April 2011 :
21  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22  *      helps avoid a shift when preparing PD0 from PTE
23  *
24  * vineetg: April 2011 : Preparing for MMU V3
25  *  -MMU v2/v3 BCRs decoded differently
26  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27  *  -tlb_entry_erase( ) can be void
28  *  -local_flush_tlb_range( ):
29  *      = need not "ceil" @end
30  *      = walks MMU only if range spans < 32 entries, as opposed to 256
31  *
32  * Vineetg: Sept 10th 2008
33  *  -Changes related to MMU v2 (Rel 4.8)
34  *
35  * Vineetg: Aug 29th 2008
36  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38  *    it fails. Thus need to load it with ANY valid value before invoking
39  *    TLBIVUTLB cmd
40  *
41  * Vineetg: Aug 21th 2008:
42  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
43  *  -Multiple copies of TLB erase code seperated into a "single" function
44  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45  *       in interrupt-safe region.
46  *
47  * Vineetg: April 23rd Bug #93131
48  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
49  *              flush is more than the size of TLB itself.
50  *
51  * Rahul Trivedi : Codito Technologies 2004
52  */
53 
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <linux/mm_types.h>
57 
58 #include <asm/arcregs.h>
59 #include <asm/setup.h>
60 #include <asm/mmu_context.h>
61 #include <asm/mmu.h>
62 
63 /*			Need for ARC MMU v2
64  *
65  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
66  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
67  * map into same set, there would be contention for the 2 ways causing severe
68  * Thrashing.
69  *
70  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
71  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
72  * Given this, the thrasing problem should never happen because once the 3
73  * J-TLB entries are created (even though 3rd will knock out one of the prev
74  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
75  *
76  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
77  * This is a simple design for keeping them in sync. So what do we do?
78  * The solution which James came up was pretty neat. It utilised the assoc
79  * of uTLBs by not invalidating always but only when absolutely necessary.
80  *
81  * - Existing TLB commands work as before
82  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
83  * - New command (TLBIVUTLB) to invalidate uTLBs.
84  *
85  * The uTLBs need only be invalidated when pages are being removed from the
86  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
87  * as a result of a miss, the removed entry is still allowed to exist in the
88  * uTLBs as it is still valid and present in the OS page table. This allows the
89  * full associativity of the uTLBs to hide the limited associativity of the main
90  * TLB.
91  *
92  * During a miss handler, the new "TLBWriteNI" command is used to load
93  * entries without clearing the uTLBs.
94  *
95  * When the OS page table is updated, TLB entries that may be associated with a
96  * removed page are removed (flushed) from the TLB using TLBWrite. In this
97  * circumstance, the uTLBs must also be cleared. This is done by using the
98  * existing TLBWrite command. An explicit IVUTLB is also required for those
99  * corner cases when TLBWrite was not executed at all because the corresp
100  * J-TLB entry got evicted/replaced.
101  */
102 
103 
104 /* A copy of the ASID from the PID reg is kept in asid_cache */
105 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
106 
107 /*
108  * Utility Routine to erase a J-TLB entry
109  * Caller needs to setup Index Reg (manually or via getIndex)
110  */
111 static inline void __tlb_entry_erase(void)
112 {
113 	write_aux_reg(ARC_REG_TLBPD1, 0);
114 
115 	if (is_pae40_enabled())
116 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
117 
118 	write_aux_reg(ARC_REG_TLBPD0, 0);
119 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
120 }
121 
122 #if (CONFIG_ARC_MMU_VER < 4)
123 
124 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
125 {
126 	unsigned int idx;
127 
128 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
129 
130 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
131 	idx = read_aux_reg(ARC_REG_TLBINDEX);
132 
133 	return idx;
134 }
135 
136 static void tlb_entry_erase(unsigned int vaddr_n_asid)
137 {
138 	unsigned int idx;
139 
140 	/* Locate the TLB entry for this vaddr + ASID */
141 	idx = tlb_entry_lkup(vaddr_n_asid);
142 
143 	/* No error means entry found, zero it out */
144 	if (likely(!(idx & TLB_LKUP_ERR))) {
145 		__tlb_entry_erase();
146 	} else {
147 		/* Duplicate entry error */
148 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
149 					   vaddr_n_asid);
150 	}
151 }
152 
153 /****************************************************************************
154  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
155  *
156  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
157  *
158  * utlb_invalidate ( )
159  *  -For v2 MMU calls Flush uTLB Cmd
160  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
161  *      This is because in v1 TLBWrite itself invalidate uTLBs
162  ***************************************************************************/
163 
164 static void utlb_invalidate(void)
165 {
166 #if (CONFIG_ARC_MMU_VER >= 2)
167 
168 #if (CONFIG_ARC_MMU_VER == 2)
169 	/* MMU v2 introduced the uTLB Flush command.
170 	 * There was however an obscure hardware bug, where uTLB flush would
171 	 * fail when a prior probe for J-TLB (both totally unrelated) would
172 	 * return lkup err - because the entry didn't exist in MMU.
173 	 * The Workround was to set Index reg with some valid value, prior to
174 	 * flush. This was fixed in MMU v3 hence not needed any more
175 	 */
176 	unsigned int idx;
177 
178 	/* make sure INDEX Reg is valid */
179 	idx = read_aux_reg(ARC_REG_TLBINDEX);
180 
181 	/* If not write some dummy val */
182 	if (unlikely(idx & TLB_LKUP_ERR))
183 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
184 #endif
185 
186 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
187 #endif
188 
189 }
190 
191 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
192 {
193 	unsigned int idx;
194 
195 	/*
196 	 * First verify if entry for this vaddr+ASID already exists
197 	 * This also sets up PD0 (vaddr, ASID..) for final commit
198 	 */
199 	idx = tlb_entry_lkup(pd0);
200 
201 	/*
202 	 * If Not already present get a free slot from MMU.
203 	 * Otherwise, Probe would have located the entry and set INDEX Reg
204 	 * with existing location. This will cause Write CMD to over-write
205 	 * existing entry with new PD0 and PD1
206 	 */
207 	if (likely(idx & TLB_LKUP_ERR))
208 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
209 
210 	/* setup the other half of TLB entry (pfn, rwx..) */
211 	write_aux_reg(ARC_REG_TLBPD1, pd1);
212 
213 	/*
214 	 * Commit the Entry to MMU
215 	 * It doesn't sound safe to use the TLBWriteNI cmd here
216 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
217 	 */
218 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
219 }
220 
221 #else	/* CONFIG_ARC_MMU_VER >= 4) */
222 
223 static void utlb_invalidate(void)
224 {
225 	/* No need since uTLB is always in sync with JTLB */
226 }
227 
228 static void tlb_entry_erase(unsigned int vaddr_n_asid)
229 {
230 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
231 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
232 }
233 
234 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
235 {
236 	write_aux_reg(ARC_REG_TLBPD0, pd0);
237 	write_aux_reg(ARC_REG_TLBPD1, pd1);
238 
239 	if (is_pae40_enabled())
240 		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
241 
242 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
243 }
244 
245 #endif
246 
247 /*
248  * Un-conditionally (without lookup) erase the entire MMU contents
249  */
250 
251 noinline void local_flush_tlb_all(void)
252 {
253 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
254 	unsigned long flags;
255 	unsigned int entry;
256 	int num_tlb = mmu->sets * mmu->ways;
257 
258 	local_irq_save(flags);
259 
260 	/* Load PD0 and PD1 with template for a Blank Entry */
261 	write_aux_reg(ARC_REG_TLBPD1, 0);
262 
263 	if (is_pae40_enabled())
264 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
265 
266 	write_aux_reg(ARC_REG_TLBPD0, 0);
267 
268 	for (entry = 0; entry < num_tlb; entry++) {
269 		/* write this entry to the TLB */
270 		write_aux_reg(ARC_REG_TLBINDEX, entry);
271 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
272 	}
273 
274 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
275 		const int stlb_idx = 0x800;
276 
277 		/* Blank sTLB entry */
278 		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
279 
280 		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
281 			write_aux_reg(ARC_REG_TLBINDEX, entry);
282 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
283 		}
284 	}
285 
286 	utlb_invalidate();
287 
288 	local_irq_restore(flags);
289 }
290 
291 /*
292  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
293  */
294 noinline void local_flush_tlb_mm(struct mm_struct *mm)
295 {
296 	/*
297 	 * Small optimisation courtesy IA64
298 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
299 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
300 	 * all other cases are NOPs, hence this check.
301 	 */
302 	if (atomic_read(&mm->mm_users) == 0)
303 		return;
304 
305 	/*
306 	 * - Move to a new ASID, but only if the mm is still wired in
307 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
308 	 *    causing h/w - s/w ASID to get out of sync)
309 	 * - Also get_new_mmu_context() new implementation allocates a new
310 	 *   ASID only if it is not allocated already - so unallocate first
311 	 */
312 	destroy_context(mm);
313 	if (current->mm == mm)
314 		get_new_mmu_context(mm);
315 }
316 
317 /*
318  * Flush a Range of TLB entries for userland.
319  * @start is inclusive, while @end is exclusive
320  * Difference between this and Kernel Range Flush is
321  *  -Here the fastest way (if range is too large) is to move to next ASID
322  *      without doing any explicit Shootdown
323  *  -In case of kernel Flush, entry has to be shot down explictly
324  */
325 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
326 			   unsigned long end)
327 {
328 	const unsigned int cpu = smp_processor_id();
329 	unsigned long flags;
330 
331 	/* If range @start to @end is more than 32 TLB entries deep,
332 	 * its better to move to a new ASID rather than searching for
333 	 * individual entries and then shooting them down
334 	 *
335 	 * The calc above is rough, doesn't account for unaligned parts,
336 	 * since this is heuristics based anyways
337 	 */
338 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
339 		local_flush_tlb_mm(vma->vm_mm);
340 		return;
341 	}
342 
343 	/*
344 	 * @start moved to page start: this alone suffices for checking
345 	 * loop end condition below, w/o need for aligning @end to end
346 	 * e.g. 2000 to 4001 will anyhow loop twice
347 	 */
348 	start &= PAGE_MASK;
349 
350 	local_irq_save(flags);
351 
352 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
353 		while (start < end) {
354 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
355 			start += PAGE_SIZE;
356 		}
357 	}
358 
359 	utlb_invalidate();
360 
361 	local_irq_restore(flags);
362 }
363 
364 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
365  *  @start, @end interpreted as kvaddr
366  * Interestingly, shared TLB entries can also be flushed using just
367  * @start,@end alone (interpreted as user vaddr), although technically SASID
368  * is also needed. However our smart TLbProbe lookup takes care of that.
369  */
370 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
371 {
372 	unsigned long flags;
373 
374 	/* exactly same as above, except for TLB entry not taking ASID */
375 
376 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
377 		local_flush_tlb_all();
378 		return;
379 	}
380 
381 	start &= PAGE_MASK;
382 
383 	local_irq_save(flags);
384 	while (start < end) {
385 		tlb_entry_erase(start);
386 		start += PAGE_SIZE;
387 	}
388 
389 	utlb_invalidate();
390 
391 	local_irq_restore(flags);
392 }
393 
394 /*
395  * Delete TLB entry in MMU for a given page (??? address)
396  * NOTE One TLB entry contains translation for single PAGE
397  */
398 
399 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
400 {
401 	const unsigned int cpu = smp_processor_id();
402 	unsigned long flags;
403 
404 	/* Note that it is critical that interrupts are DISABLED between
405 	 * checking the ASID and using it flush the TLB entry
406 	 */
407 	local_irq_save(flags);
408 
409 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
410 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
411 		utlb_invalidate();
412 	}
413 
414 	local_irq_restore(flags);
415 }
416 
417 #ifdef CONFIG_SMP
418 
419 struct tlb_args {
420 	struct vm_area_struct *ta_vma;
421 	unsigned long ta_start;
422 	unsigned long ta_end;
423 };
424 
425 static inline void ipi_flush_tlb_page(void *arg)
426 {
427 	struct tlb_args *ta = arg;
428 
429 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
430 }
431 
432 static inline void ipi_flush_tlb_range(void *arg)
433 {
434 	struct tlb_args *ta = arg;
435 
436 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
437 }
438 
439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
440 static inline void ipi_flush_pmd_tlb_range(void *arg)
441 {
442 	struct tlb_args *ta = arg;
443 
444 	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
445 }
446 #endif
447 
448 static inline void ipi_flush_tlb_kernel_range(void *arg)
449 {
450 	struct tlb_args *ta = (struct tlb_args *)arg;
451 
452 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
453 }
454 
455 void flush_tlb_all(void)
456 {
457 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
458 }
459 
460 void flush_tlb_mm(struct mm_struct *mm)
461 {
462 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
463 			 mm, 1);
464 }
465 
466 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
467 {
468 	struct tlb_args ta = {
469 		.ta_vma = vma,
470 		.ta_start = uaddr
471 	};
472 
473 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
474 }
475 
476 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
477 		     unsigned long end)
478 {
479 	struct tlb_args ta = {
480 		.ta_vma = vma,
481 		.ta_start = start,
482 		.ta_end = end
483 	};
484 
485 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
486 }
487 
488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
489 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
490 			 unsigned long end)
491 {
492 	struct tlb_args ta = {
493 		.ta_vma = vma,
494 		.ta_start = start,
495 		.ta_end = end
496 	};
497 
498 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
499 }
500 #endif
501 
502 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
503 {
504 	struct tlb_args ta = {
505 		.ta_start = start,
506 		.ta_end = end
507 	};
508 
509 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
510 }
511 #endif
512 
513 /*
514  * Routine to create a TLB entry
515  */
516 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
517 {
518 	unsigned long flags;
519 	unsigned int asid_or_sasid, rwx;
520 	unsigned long pd0;
521 	pte_t pd1;
522 
523 	/*
524 	 * create_tlb() assumes that current->mm == vma->mm, since
525 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
526 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
527 	 *
528 	 * Removing the assumption involves
529 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
530 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
531 	 * -More importantly it makes this handler inconsistent with fast-path
532 	 *  TLB Refill handler which always deals with "current"
533 	 *
534 	 * Lets see the use cases when current->mm != vma->mm and we land here
535 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
536 	 *     Here VM wants to pre-install a TLB entry for user stack while
537 	 *     current->mm still points to pre-execve mm (hence the condition).
538 	 *     However the stack vaddr is soon relocated (randomization) and
539 	 *     move_page_tables() tries to undo that TLB entry.
540 	 *     Thus not creating TLB entry is not any worse.
541 	 *
542 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
543 	 *     breakpoint in debugged task. Not creating a TLB now is not
544 	 *     performance critical.
545 	 *
546 	 * Both the cases above are not good enough for code churn.
547 	 */
548 	if (current->active_mm != vma->vm_mm)
549 		return;
550 
551 	local_irq_save(flags);
552 
553 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
554 
555 	vaddr &= PAGE_MASK;
556 
557 	/* update this PTE credentials */
558 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
559 
560 	/* Create HW TLB(PD0,PD1) from PTE  */
561 
562 	/* ASID for this task */
563 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
564 
565 	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
566 
567 	/*
568 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
569 	 * however Linux only saves 1 set to save PTE real-estate
570 	 * Here we convert 3 PTE bits into 6 MMU bits:
571 	 * -Kernel only entries have Kr Kw Kx 0 0 0
572 	 * -User entries have mirrored K and U bits
573 	 */
574 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
575 
576 	if (pte_val(*ptep) & _PAGE_GLOBAL)
577 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
578 	else
579 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
580 
581 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
582 
583 	tlb_entry_insert(pd0, pd1);
584 
585 	local_irq_restore(flags);
586 }
587 
588 /*
589  * Called at the end of pagefault, for a userspace mapped page
590  *  -pre-install the corresponding TLB entry into MMU
591  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
592  *  	flush_dcache_page(), copy_user_page()
593  *
594  * Note that flush (when done) involves both WBACK - so physical page is
595  * in sync as well as INV - so any non-congruent aliases don't remain
596  */
597 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
598 		      pte_t *ptep)
599 {
600 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
601 	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
602 	struct page *page = pfn_to_page(pte_pfn(*ptep));
603 
604 	create_tlb(vma, vaddr, ptep);
605 
606 	if (page == ZERO_PAGE(0)) {
607 		return;
608 	}
609 
610 	/*
611 	 * Exec page : Independent of aliasing/page-color considerations,
612 	 *	       since icache doesn't snoop dcache on ARC, any dirty
613 	 *	       K-mapping of a code page needs to be wback+inv so that
614 	 *	       icache fetch by userspace sees code correctly.
615 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
616 	 *	       so userspace sees the right data.
617 	 *  (Avoids the flush for Non-exec + congruent mapping case)
618 	 */
619 	if ((vma->vm_flags & VM_EXEC) ||
620 	     addr_not_cache_congruent(paddr, vaddr)) {
621 
622 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
623 		if (dirty) {
624 			/* wback + inv dcache lines (K-mapping) */
625 			__flush_dcache_page(paddr, paddr);
626 
627 			/* invalidate any existing icache lines (U-mapping) */
628 			if (vma->vm_flags & VM_EXEC)
629 				__inv_icache_page(paddr, vaddr);
630 		}
631 	}
632 }
633 
634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
635 
636 /*
637  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
638  * support.
639  *
640  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
641  * new bit "SZ" in TLB page descriptor to distinguish between them.
642  * Super Page size is configurable in hardware (4K to 16M), but fixed once
643  * RTL builds.
644  *
645  * The exact THP size a Linx configuration will support is a function of:
646  *  - MMU page size (typical 8K, RTL fixed)
647  *  - software page walker address split between PGD:PTE:PFN (typical
648  *    11:8:13, but can be changed with 1 line)
649  * So for above default, THP size supported is 8K * (2^8) = 2M
650  *
651  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
652  * reduces to 1 level (as PTE is folded into PGD and canonically referred
653  * to as PMD).
654  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
655  */
656 
657 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
658 				 pmd_t *pmd)
659 {
660 	pte_t pte = __pte(pmd_val(*pmd));
661 	update_mmu_cache(vma, addr, &pte);
662 }
663 
664 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
665 				pgtable_t pgtable)
666 {
667 	struct list_head *lh = (struct list_head *) pgtable;
668 
669 	assert_spin_locked(&mm->page_table_lock);
670 
671 	/* FIFO */
672 	if (!pmd_huge_pte(mm, pmdp))
673 		INIT_LIST_HEAD(lh);
674 	else
675 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
676 	pmd_huge_pte(mm, pmdp) = pgtable;
677 }
678 
679 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
680 {
681 	struct list_head *lh;
682 	pgtable_t pgtable;
683 
684 	assert_spin_locked(&mm->page_table_lock);
685 
686 	pgtable = pmd_huge_pte(mm, pmdp);
687 	lh = (struct list_head *) pgtable;
688 	if (list_empty(lh))
689 		pmd_huge_pte(mm, pmdp) = NULL;
690 	else {
691 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
692 		list_del(lh);
693 	}
694 
695 	pte_val(pgtable[0]) = 0;
696 	pte_val(pgtable[1]) = 0;
697 
698 	return pgtable;
699 }
700 
701 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
702 			       unsigned long end)
703 {
704 	unsigned int cpu;
705 	unsigned long flags;
706 
707 	local_irq_save(flags);
708 
709 	cpu = smp_processor_id();
710 
711 	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
712 		unsigned int asid = hw_pid(vma->vm_mm, cpu);
713 
714 		/* No need to loop here: this will always be for 1 Huge Page */
715 		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
716 	}
717 
718 	local_irq_restore(flags);
719 }
720 
721 #endif
722 
723 /* Read the Cache Build Confuration Registers, Decode them and save into
724  * the cpuinfo structure for later use.
725  * No Validation is done here, simply read/convert the BCRs
726  */
727 void read_decode_mmu_bcr(void)
728 {
729 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
730 	unsigned int tmp;
731 	struct bcr_mmu_1_2 {
732 #ifdef CONFIG_CPU_BIG_ENDIAN
733 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
734 #else
735 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
736 #endif
737 	} *mmu2;
738 
739 	struct bcr_mmu_3 {
740 #ifdef CONFIG_CPU_BIG_ENDIAN
741 	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
742 		     u_itlb:4, u_dtlb:4;
743 #else
744 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
745 		     ways:4, ver:8;
746 #endif
747 	} *mmu3;
748 
749 	struct bcr_mmu_4 {
750 #ifdef CONFIG_CPU_BIG_ENDIAN
751 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
752 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
753 #else
754 	/*           DTLB      ITLB      JES        JE         JA      */
755 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
756 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
757 #endif
758 	} *mmu4;
759 
760 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
761 	mmu->ver = (tmp >> 24);
762 
763 	if (mmu->ver <= 2) {
764 		mmu2 = (struct bcr_mmu_1_2 *)&tmp;
765 		mmu->pg_sz_k = TO_KB(0x2000);
766 		mmu->sets = 1 << mmu2->sets;
767 		mmu->ways = 1 << mmu2->ways;
768 		mmu->u_dtlb = mmu2->u_dtlb;
769 		mmu->u_itlb = mmu2->u_itlb;
770 	} else if (mmu->ver == 3) {
771 		mmu3 = (struct bcr_mmu_3 *)&tmp;
772 		mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
773 		mmu->sets = 1 << mmu3->sets;
774 		mmu->ways = 1 << mmu3->ways;
775 		mmu->u_dtlb = mmu3->u_dtlb;
776 		mmu->u_itlb = mmu3->u_itlb;
777 		mmu->sasid = mmu3->sasid;
778 	} else {
779 		mmu4 = (struct bcr_mmu_4 *)&tmp;
780 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
781 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
782 		mmu->sets = 64 << mmu4->n_entry;
783 		mmu->ways = mmu4->n_ways * 2;
784 		mmu->u_dtlb = mmu4->u_dtlb * 4;
785 		mmu->u_itlb = mmu4->u_itlb * 4;
786 		mmu->sasid = mmu4->sasid;
787 		mmu->pae = mmu4->pae;
788 	}
789 }
790 
791 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
792 {
793 	int n = 0;
794 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
795 	char super_pg[64] = "";
796 
797 	if (p_mmu->s_pg_sz_m)
798 		scnprintf(super_pg, 64, "%dM Super Page %s",
799 			  p_mmu->s_pg_sz_m,
800 			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
801 
802 	n += scnprintf(buf + n, len - n,
803 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
804 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
805 		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
806 		       p_mmu->u_dtlb, p_mmu->u_itlb,
807 		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
808 
809 	return buf;
810 }
811 
812 void arc_mmu_init(void)
813 {
814 	char str[256];
815 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
816 
817 	printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
818 
819 	/*
820 	 * Can't be done in processor.h due to header include depenedencies
821 	 */
822 	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
823 
824 	/*
825 	 * stack top size sanity check,
826 	 * Can't be done in processor.h due to header include depenedencies
827 	 */
828 	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
829 
830 	/* For efficiency sake, kernel is compile time built for a MMU ver
831 	 * This must match the hardware it is running on.
832 	 * Linux built for MMU V2, if run on MMU V1 will break down because V1
833 	 *  hardware doesn't understand cmds such as WriteNI, or IVUTLB
834 	 * On the other hand, Linux built for V1 if run on MMU V2 will do
835 	 *   un-needed workarounds to prevent memcpy thrashing.
836 	 * Similarly MMU V3 has new features which won't work on older MMU
837 	 */
838 	if (mmu->ver != CONFIG_ARC_MMU_VER) {
839 		panic("MMU ver %d doesn't match kernel built for %d...\n",
840 		      mmu->ver, CONFIG_ARC_MMU_VER);
841 	}
842 
843 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
844 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
845 
846 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
847 	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
848 		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
849 		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
850 
851 	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
852 		panic("Hardware doesn't support PAE40\n");
853 
854 	/* Enable the MMU */
855 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
856 
857 	/* In smp we use this reg for interrupt 1 scratch */
858 #ifndef CONFIG_SMP
859 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
860 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
861 #endif
862 }
863 
864 /*
865  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
866  * The mapping is Column-first.
867  *		---------------------	-----------
868  *		|way0|way1|way2|way3|	|way0|way1|
869  *		---------------------	-----------
870  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
871  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
872  *		~		    ~	~	  ~
873  * [set127]	| 508| 509| 510| 511|	| 254| 255|
874  *		---------------------	-----------
875  * For normal operations we don't(must not) care how above works since
876  * MMU cmd getIndex(vaddr) abstracts that out.
877  * However for walking WAYS of a SET, we need to know this
878  */
879 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
880 
881 /* Handling of Duplicate PD (TLB entry) in MMU.
882  * -Could be due to buggy customer tapeouts or obscure kernel bugs
883  * -MMU complaints not at the time of duplicate PD installation, but at the
884  *      time of lookup matching multiple ways.
885  * -Ideally these should never happen - but if they do - workaround by deleting
886  *      the duplicate one.
887  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
888  */
889 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
890 
891 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
892 			  struct pt_regs *regs)
893 {
894 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
895 	unsigned int pd0[mmu->ways];
896 	unsigned long flags;
897 	int set;
898 
899 	local_irq_save(flags);
900 
901 	/* re-enable the MMU */
902 	write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
903 
904 	/* loop thru all sets of TLB */
905 	for (set = 0; set < mmu->sets; set++) {
906 
907 		int is_valid, way;
908 
909 		/* read out all the ways of current set */
910 		for (way = 0, is_valid = 0; way < mmu->ways; way++) {
911 			write_aux_reg(ARC_REG_TLBINDEX,
912 					  SET_WAY_TO_IDX(mmu, set, way));
913 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
914 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
915 			is_valid |= pd0[way] & _PAGE_PRESENT;
916 			pd0[way] &= PAGE_MASK;
917 		}
918 
919 		/* If all the WAYS in SET are empty, skip to next SET */
920 		if (!is_valid)
921 			continue;
922 
923 		/* Scan the set for duplicate ways: needs a nested loop */
924 		for (way = 0; way < mmu->ways - 1; way++) {
925 
926 			int n;
927 
928 			if (!pd0[way])
929 				continue;
930 
931 			for (n = way + 1; n < mmu->ways; n++) {
932 				if (pd0[way] != pd0[n])
933 					continue;
934 
935 				if (!dup_pd_silent)
936 					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
937 						pd0[way], set, way, n);
938 
939 				/*
940 				 * clear entry @way and not @n.
941 				 * This is critical to our optimised loop
942 				 */
943 				pd0[way] = 0;
944 				write_aux_reg(ARC_REG_TLBINDEX,
945 						SET_WAY_TO_IDX(mmu, set, way));
946 				__tlb_entry_erase();
947 			}
948 		}
949 	}
950 
951 	local_irq_restore(flags);
952 }
953 
954 /***********************************************************************
955  * Diagnostic Routines
956  *  -Called from Low Level TLB Hanlders if things don;t look good
957  **********************************************************************/
958 
959 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
960 
961 /*
962  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
963  * don't match
964  */
965 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
966 {
967 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
968 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
969 
970 	__asm__ __volatile__("flag 1");
971 }
972 
973 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
974 {
975 	unsigned int mmu_asid;
976 
977 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
978 
979 	/*
980 	 * At the time of a TLB miss/installation
981 	 *   - HW version needs to match SW version
982 	 *   - SW needs to have a valid ASID
983 	 */
984 	if (addr < 0x70000000 &&
985 	    ((mm_asid == MM_CTXT_NO_ASID) ||
986 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
987 		print_asid_mismatch(mm_asid, mmu_asid, 0);
988 }
989 #endif
990