1 /* 2 * TLB Management (flush/create/diagnostics) for ARC700 3 * 4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * vineetg: Aug 2011 11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 12 * 13 * vineetg: May 2011 14 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 15 * some of the LMBench tests improved amazingly 16 * = page-fault thrice as fast (75 usec to 28 usec) 17 * = mmap twice as fast (9.6 msec to 4.6 msec), 18 * = fork (5.3 msec to 3.7 msec) 19 * 20 * vineetg: April 2011 : 21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 22 * helps avoid a shift when preparing PD0 from PTE 23 * 24 * vineetg: April 2011 : Preparing for MMU V3 25 * -MMU v2/v3 BCRs decoded differently 26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 27 * -tlb_entry_erase( ) can be void 28 * -local_flush_tlb_range( ): 29 * = need not "ceil" @end 30 * = walks MMU only if range spans < 32 entries, as opposed to 256 31 * 32 * Vineetg: Sept 10th 2008 33 * -Changes related to MMU v2 (Rel 4.8) 34 * 35 * Vineetg: Aug 29th 2008 36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 38 * it fails. Thus need to load it with ANY valid value before invoking 39 * TLBIVUTLB cmd 40 * 41 * Vineetg: Aug 21th 2008: 42 * -Reduced the duration of IRQ lockouts in TLB Flush routines 43 * -Multiple copies of TLB erase code seperated into a "single" function 44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 45 * in interrupt-safe region. 46 * 47 * Vineetg: April 23rd Bug #93131 48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to 49 * flush is more than the size of TLB itself. 50 * 51 * Rahul Trivedi : Codito Technologies 2004 52 */ 53 54 #include <linux/module.h> 55 #include <asm/arcregs.h> 56 #include <asm/setup.h> 57 #include <asm/mmu_context.h> 58 #include <asm/tlb.h> 59 60 /* Need for ARC MMU v2 61 * 62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 64 * map into same set, there would be contention for the 2 ways causing severe 65 * Thrashing. 66 * 67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 69 * Given this, the thrasing problem should never happen because once the 3 70 * J-TLB entries are created (even though 3rd will knock out one of the prev 71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 72 * 73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 74 * This is a simple design for keeping them in sync. So what do we do? 75 * The solution which James came up was pretty neat. It utilised the assoc 76 * of uTLBs by not invalidating always but only when absolutely necessary. 77 * 78 * - Existing TLB commands work as before 79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 80 * - New command (TLBIVUTLB) to invalidate uTLBs. 81 * 82 * The uTLBs need only be invalidated when pages are being removed from the 83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 84 * as a result of a miss, the removed entry is still allowed to exist in the 85 * uTLBs as it is still valid and present in the OS page table. This allows the 86 * full associativity of the uTLBs to hide the limited associativity of the main 87 * TLB. 88 * 89 * During a miss handler, the new "TLBWriteNI" command is used to load 90 * entries without clearing the uTLBs. 91 * 92 * When the OS page table is updated, TLB entries that may be associated with a 93 * removed page are removed (flushed) from the TLB using TLBWrite. In this 94 * circumstance, the uTLBs must also be cleared. This is done by using the 95 * existing TLBWrite command. An explicit IVUTLB is also required for those 96 * corner cases when TLBWrite was not executed at all because the corresp 97 * J-TLB entry got evicted/replaced. 98 */ 99 100 /* A copy of the ASID from the PID reg is kept in asid_cache */ 101 int asid_cache = FIRST_ASID; 102 103 /* ASID to mm struct mapping. We have one extra entry corresponding to 104 * NO_ASID to save us a compare when clearing the mm entry for old asid 105 * see get_new_mmu_context (asm-arc/mmu_context.h) 106 */ 107 struct mm_struct *asid_mm_map[NUM_ASID + 1]; 108 109 /* 110 * Utility Routine to erase a J-TLB entry 111 * The procedure is to look it up in the MMU. If found, ERASE it by 112 * issuing a TlbWrite CMD with PD0 = PD1 = 0 113 */ 114 115 static void __tlb_entry_erase(void) 116 { 117 write_aux_reg(ARC_REG_TLBPD1, 0); 118 write_aux_reg(ARC_REG_TLBPD0, 0); 119 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 120 } 121 122 static void tlb_entry_erase(unsigned int vaddr_n_asid) 123 { 124 unsigned int idx; 125 126 /* Locate the TLB entry for this vaddr + ASID */ 127 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 128 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 129 idx = read_aux_reg(ARC_REG_TLBINDEX); 130 131 /* No error means entry found, zero it out */ 132 if (likely(!(idx & TLB_LKUP_ERR))) { 133 __tlb_entry_erase(); 134 } else { /* Some sort of Error */ 135 136 /* Duplicate entry error */ 137 if (idx & 0x1) { 138 /* TODO we need to handle this case too */ 139 pr_emerg("unhandled Duplicate flush for %x\n", 140 vaddr_n_asid); 141 } 142 /* else entry not found so nothing to do */ 143 } 144 } 145 146 /**************************************************************************** 147 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 148 * 149 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 150 * 151 * utlb_invalidate ( ) 152 * -For v2 MMU calls Flush uTLB Cmd 153 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 154 * This is because in v1 TLBWrite itself invalidate uTLBs 155 ***************************************************************************/ 156 157 static void utlb_invalidate(void) 158 { 159 #if (CONFIG_ARC_MMU_VER >= 2) 160 161 #if (CONFIG_ARC_MMU_VER < 3) 162 /* MMU v2 introduced the uTLB Flush command. 163 * There was however an obscure hardware bug, where uTLB flush would 164 * fail when a prior probe for J-TLB (both totally unrelated) would 165 * return lkup err - because the entry didnt exist in MMU. 166 * The Workround was to set Index reg with some valid value, prior to 167 * flush. This was fixed in MMU v3 hence not needed any more 168 */ 169 unsigned int idx; 170 171 /* make sure INDEX Reg is valid */ 172 idx = read_aux_reg(ARC_REG_TLBINDEX); 173 174 /* If not write some dummy val */ 175 if (unlikely(idx & TLB_LKUP_ERR)) 176 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 177 #endif 178 179 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 180 #endif 181 182 } 183 184 /* 185 * Un-conditionally (without lookup) erase the entire MMU contents 186 */ 187 188 noinline void local_flush_tlb_all(void) 189 { 190 unsigned long flags; 191 unsigned int entry; 192 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 193 194 local_irq_save(flags); 195 196 /* Load PD0 and PD1 with template for a Blank Entry */ 197 write_aux_reg(ARC_REG_TLBPD1, 0); 198 write_aux_reg(ARC_REG_TLBPD0, 0); 199 200 for (entry = 0; entry < mmu->num_tlb; entry++) { 201 /* write this entry to the TLB */ 202 write_aux_reg(ARC_REG_TLBINDEX, entry); 203 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 204 } 205 206 utlb_invalidate(); 207 208 local_irq_restore(flags); 209 } 210 211 /* 212 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 213 */ 214 noinline void local_flush_tlb_mm(struct mm_struct *mm) 215 { 216 /* 217 * Small optimisation courtesy IA64 218 * flush_mm called during fork,exit,munmap etc, multiple times as well. 219 * Only for fork( ) do we need to move parent to a new MMU ctxt, 220 * all other cases are NOPs, hence this check. 221 */ 222 if (atomic_read(&mm->mm_users) == 0) 223 return; 224 225 /* 226 * Workaround for Android weirdism: 227 * A binder VMA could end up in a task such that vma->mm != tsk->mm 228 * old code would cause h/w - s/w ASID to get out of sync 229 */ 230 if (current->mm != mm) 231 destroy_context(mm); 232 else 233 get_new_mmu_context(mm); 234 } 235 236 /* 237 * Flush a Range of TLB entries for userland. 238 * @start is inclusive, while @end is exclusive 239 * Difference between this and Kernel Range Flush is 240 * -Here the fastest way (if range is too large) is to move to next ASID 241 * without doing any explicit Shootdown 242 * -In case of kernel Flush, entry has to be shot down explictly 243 */ 244 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 245 unsigned long end) 246 { 247 unsigned long flags; 248 unsigned int asid; 249 250 /* If range @start to @end is more than 32 TLB entries deep, 251 * its better to move to a new ASID rather than searching for 252 * individual entries and then shooting them down 253 * 254 * The calc above is rough, doesn't account for unaligned parts, 255 * since this is heuristics based anyways 256 */ 257 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 258 local_flush_tlb_mm(vma->vm_mm); 259 return; 260 } 261 262 /* 263 * @start moved to page start: this alone suffices for checking 264 * loop end condition below, w/o need for aligning @end to end 265 * e.g. 2000 to 4001 will anyhow loop twice 266 */ 267 start &= PAGE_MASK; 268 269 local_irq_save(flags); 270 asid = vma->vm_mm->context.asid; 271 272 if (asid != NO_ASID) { 273 while (start < end) { 274 tlb_entry_erase(start | (asid & 0xff)); 275 start += PAGE_SIZE; 276 } 277 } 278 279 utlb_invalidate(); 280 281 local_irq_restore(flags); 282 } 283 284 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 285 * @start, @end interpreted as kvaddr 286 * Interestingly, shared TLB entries can also be flushed using just 287 * @start,@end alone (interpreted as user vaddr), although technically SASID 288 * is also needed. However our smart TLbProbe lookup takes care of that. 289 */ 290 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 291 { 292 unsigned long flags; 293 294 /* exactly same as above, except for TLB entry not taking ASID */ 295 296 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 297 local_flush_tlb_all(); 298 return; 299 } 300 301 start &= PAGE_MASK; 302 303 local_irq_save(flags); 304 while (start < end) { 305 tlb_entry_erase(start); 306 start += PAGE_SIZE; 307 } 308 309 utlb_invalidate(); 310 311 local_irq_restore(flags); 312 } 313 314 /* 315 * Delete TLB entry in MMU for a given page (??? address) 316 * NOTE One TLB entry contains translation for single PAGE 317 */ 318 319 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 320 { 321 unsigned long flags; 322 323 /* Note that it is critical that interrupts are DISABLED between 324 * checking the ASID and using it flush the TLB entry 325 */ 326 local_irq_save(flags); 327 328 if (vma->vm_mm->context.asid != NO_ASID) { 329 tlb_entry_erase((page & PAGE_MASK) | 330 (vma->vm_mm->context.asid & 0xff)); 331 utlb_invalidate(); 332 } 333 334 local_irq_restore(flags); 335 } 336 337 /* 338 * Routine to create a TLB entry 339 */ 340 void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 341 { 342 unsigned long flags; 343 unsigned int idx, asid_or_sasid; 344 unsigned long pd0_flags; 345 346 /* 347 * create_tlb() assumes that current->mm == vma->mm, since 348 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 349 * -completes the lazy write to SASID reg (again valid for curr tsk) 350 * 351 * Removing the assumption involves 352 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 353 * -Fix the TLB paranoid debug code to not trigger false negatives. 354 * -More importantly it makes this handler inconsistent with fast-path 355 * TLB Refill handler which always deals with "current" 356 * 357 * Lets see the use cases when current->mm != vma->mm and we land here 358 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 359 * Here VM wants to pre-install a TLB entry for user stack while 360 * current->mm still points to pre-execve mm (hence the condition). 361 * However the stack vaddr is soon relocated (randomization) and 362 * move_page_tables() tries to undo that TLB entry. 363 * Thus not creating TLB entry is not any worse. 364 * 365 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 366 * breakpoint in debugged task. Not creating a TLB now is not 367 * performance critical. 368 * 369 * Both the cases above are not good enough for code churn. 370 */ 371 if (current->active_mm != vma->vm_mm) 372 return; 373 374 local_irq_save(flags); 375 376 tlb_paranoid_check(vma->vm_mm->context.asid, address); 377 378 address &= PAGE_MASK; 379 380 /* update this PTE credentials */ 381 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 382 383 /* Create HW TLB entry Flags (in PD0) from PTE Flags */ 384 #if (CONFIG_ARC_MMU_VER <= 2) 385 pd0_flags = ((pte_val(*ptep) & PTE_BITS_IN_PD0) >> 1); 386 #else 387 pd0_flags = ((pte_val(*ptep) & PTE_BITS_IN_PD0)); 388 #endif 389 390 /* ASID for this task */ 391 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 392 393 write_aux_reg(ARC_REG_TLBPD0, address | pd0_flags | asid_or_sasid); 394 395 /* Load remaining info in PD1 (Page Frame Addr and Kx/Kw/Kr Flags) */ 396 write_aux_reg(ARC_REG_TLBPD1, (pte_val(*ptep) & PTE_BITS_IN_PD1)); 397 398 /* First verify if entry for this vaddr+ASID already exists */ 399 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 400 idx = read_aux_reg(ARC_REG_TLBINDEX); 401 402 /* 403 * If Not already present get a free slot from MMU. 404 * Otherwise, Probe would have located the entry and set INDEX Reg 405 * with existing location. This will cause Write CMD to over-write 406 * existing entry with new PD0 and PD1 407 */ 408 if (likely(idx & TLB_LKUP_ERR)) 409 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 410 411 /* 412 * Commit the Entry to MMU 413 * It doesnt sound safe to use the TLBWriteNI cmd here 414 * which doesn't flush uTLBs. I'd rather be safe than sorry. 415 */ 416 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 417 418 local_irq_restore(flags); 419 } 420 421 /* arch hook called by core VM at the end of handle_mm_fault( ), 422 * when a new PTE is entered in Page Tables or an existing one 423 * is modified. We aggresively pre-install a TLB entry 424 */ 425 426 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddress, 427 pte_t *ptep) 428 { 429 430 create_tlb(vma, vaddress, ptep); 431 } 432 433 /* Read the Cache Build Confuration Registers, Decode them and save into 434 * the cpuinfo structure for later use. 435 * No Validation is done here, simply read/convert the BCRs 436 */ 437 void __init read_decode_mmu_bcr(void) 438 { 439 unsigned int tmp; 440 struct bcr_mmu_1_2 *mmu2; /* encoded MMU2 attr */ 441 struct bcr_mmu_3 *mmu3; /* encoded MMU3 attr */ 442 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 443 444 tmp = read_aux_reg(ARC_REG_MMU_BCR); 445 mmu->ver = (tmp >> 24); 446 447 if (mmu->ver <= 2) { 448 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 449 mmu->pg_sz = PAGE_SIZE; 450 mmu->sets = 1 << mmu2->sets; 451 mmu->ways = 1 << mmu2->ways; 452 mmu->u_dtlb = mmu2->u_dtlb; 453 mmu->u_itlb = mmu2->u_itlb; 454 } else { 455 mmu3 = (struct bcr_mmu_3 *)&tmp; 456 mmu->pg_sz = 512 << mmu3->pg_sz; 457 mmu->sets = 1 << mmu3->sets; 458 mmu->ways = 1 << mmu3->ways; 459 mmu->u_dtlb = mmu3->u_dtlb; 460 mmu->u_itlb = mmu3->u_itlb; 461 } 462 463 mmu->num_tlb = mmu->sets * mmu->ways; 464 } 465 466 void __init arc_mmu_init(void) 467 { 468 /* 469 * ASID mgmt data structures are compile time init 470 * asid_cache = FIRST_ASID and asid_mm_map[] all zeroes 471 */ 472 473 local_flush_tlb_all(); 474 475 /* Enable the MMU */ 476 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 477 } 478 479 /* 480 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 481 * The mapping is Column-first. 482 * --------------------- ----------- 483 * |way0|way1|way2|way3| |way0|way1| 484 * --------------------- ----------- 485 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 486 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 487 * ~ ~ ~ ~ 488 * [set127] | 508| 509| 510| 511| | 254| 255| 489 * --------------------- ----------- 490 * For normal operations we don't(must not) care how above works since 491 * MMU cmd getIndex(vaddr) abstracts that out. 492 * However for walking WAYS of a SET, we need to know this 493 */ 494 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 495 496 /* Handling of Duplicate PD (TLB entry) in MMU. 497 * -Could be due to buggy customer tapeouts or obscure kernel bugs 498 * -MMU complaints not at the time of duplicate PD installation, but at the 499 * time of lookup matching multiple ways. 500 * -Ideally these should never happen - but if they do - workaround by deleting 501 * the duplicate one. 502 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 503 */ 504 volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */ 505 506 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 507 struct pt_regs *regs) 508 { 509 int set, way, n; 510 unsigned int pd0[4], pd1[4]; /* assume max 4 ways */ 511 unsigned long flags, is_valid; 512 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 513 514 local_irq_save(flags); 515 516 /* re-enable the MMU */ 517 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID)); 518 519 /* loop thru all sets of TLB */ 520 for (set = 0; set < mmu->sets; set++) { 521 522 /* read out all the ways of current set */ 523 for (way = 0, is_valid = 0; way < mmu->ways; way++) { 524 write_aux_reg(ARC_REG_TLBINDEX, 525 SET_WAY_TO_IDX(mmu, set, way)); 526 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 527 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 528 pd1[way] = read_aux_reg(ARC_REG_TLBPD1); 529 is_valid |= pd0[way] & _PAGE_PRESENT; 530 } 531 532 /* If all the WAYS in SET are empty, skip to next SET */ 533 if (!is_valid) 534 continue; 535 536 /* Scan the set for duplicate ways: needs a nested loop */ 537 for (way = 0; way < mmu->ways; way++) { 538 if (!pd0[way]) 539 continue; 540 541 for (n = way + 1; n < mmu->ways; n++) { 542 if ((pd0[way] & PAGE_MASK) == 543 (pd0[n] & PAGE_MASK)) { 544 545 if (dup_pd_verbose) { 546 pr_info("Duplicate PD's @" 547 "[%d:%d]/[%d:%d]\n", 548 set, way, set, n); 549 pr_info("TLBPD0[%u]: %08x\n", 550 way, pd0[way]); 551 } 552 553 /* 554 * clear entry @way and not @n. This is 555 * critical to our optimised loop 556 */ 557 pd0[way] = pd1[way] = 0; 558 write_aux_reg(ARC_REG_TLBINDEX, 559 SET_WAY_TO_IDX(mmu, set, way)); 560 __tlb_entry_erase(); 561 } 562 } 563 } 564 } 565 566 local_irq_restore(flags); 567 } 568 569 /*********************************************************************** 570 * Diagnostic Routines 571 * -Called from Low Level TLB Hanlders if things don;t look good 572 **********************************************************************/ 573 574 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 575 576 /* 577 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 578 * don't match 579 */ 580 void print_asid_mismatch(int is_fast_path) 581 { 582 int pid_sw, pid_hw; 583 pid_sw = current->active_mm->context.asid; 584 pid_hw = read_aux_reg(ARC_REG_PID) & 0xff; 585 586 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 587 is_fast_path ? "Fast" : "Slow", pid_sw, pid_hw); 588 589 __asm__ __volatile__("flag 1"); 590 } 591 592 void tlb_paranoid_check(unsigned int pid_sw, unsigned long addr) 593 { 594 unsigned int pid_hw; 595 596 pid_hw = read_aux_reg(ARC_REG_PID) & 0xff; 597 598 if (addr < 0x70000000 && ((pid_hw != pid_sw) || (pid_sw == NO_ASID))) 599 print_asid_mismatch(0); 600 } 601 #endif 602