1 /* 2 * TLB Management (flush/create/diagnostics) for ARC700 3 * 4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * vineetg: Aug 2011 11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 12 * 13 * vineetg: May 2011 14 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 15 * some of the LMBench tests improved amazingly 16 * = page-fault thrice as fast (75 usec to 28 usec) 17 * = mmap twice as fast (9.6 msec to 4.6 msec), 18 * = fork (5.3 msec to 3.7 msec) 19 * 20 * vineetg: April 2011 : 21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 22 * helps avoid a shift when preparing PD0 from PTE 23 * 24 * vineetg: April 2011 : Preparing for MMU V3 25 * -MMU v2/v3 BCRs decoded differently 26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 27 * -tlb_entry_erase( ) can be void 28 * -local_flush_tlb_range( ): 29 * = need not "ceil" @end 30 * = walks MMU only if range spans < 32 entries, as opposed to 256 31 * 32 * Vineetg: Sept 10th 2008 33 * -Changes related to MMU v2 (Rel 4.8) 34 * 35 * Vineetg: Aug 29th 2008 36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 38 * it fails. Thus need to load it with ANY valid value before invoking 39 * TLBIVUTLB cmd 40 * 41 * Vineetg: Aug 21th 2008: 42 * -Reduced the duration of IRQ lockouts in TLB Flush routines 43 * -Multiple copies of TLB erase code seperated into a "single" function 44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 45 * in interrupt-safe region. 46 * 47 * Vineetg: April 23rd Bug #93131 48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to 49 * flush is more than the size of TLB itself. 50 * 51 * Rahul Trivedi : Codito Technologies 2004 52 */ 53 54 #include <linux/module.h> 55 #include <linux/bug.h> 56 #include <asm/arcregs.h> 57 #include <asm/setup.h> 58 #include <asm/mmu_context.h> 59 #include <asm/mmu.h> 60 61 /* Need for ARC MMU v2 62 * 63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 65 * map into same set, there would be contention for the 2 ways causing severe 66 * Thrashing. 67 * 68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 70 * Given this, the thrasing problem should never happen because once the 3 71 * J-TLB entries are created (even though 3rd will knock out one of the prev 72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 73 * 74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 75 * This is a simple design for keeping them in sync. So what do we do? 76 * The solution which James came up was pretty neat. It utilised the assoc 77 * of uTLBs by not invalidating always but only when absolutely necessary. 78 * 79 * - Existing TLB commands work as before 80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 81 * - New command (TLBIVUTLB) to invalidate uTLBs. 82 * 83 * The uTLBs need only be invalidated when pages are being removed from the 84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 85 * as a result of a miss, the removed entry is still allowed to exist in the 86 * uTLBs as it is still valid and present in the OS page table. This allows the 87 * full associativity of the uTLBs to hide the limited associativity of the main 88 * TLB. 89 * 90 * During a miss handler, the new "TLBWriteNI" command is used to load 91 * entries without clearing the uTLBs. 92 * 93 * When the OS page table is updated, TLB entries that may be associated with a 94 * removed page are removed (flushed) from the TLB using TLBWrite. In this 95 * circumstance, the uTLBs must also be cleared. This is done by using the 96 * existing TLBWrite command. An explicit IVUTLB is also required for those 97 * corner cases when TLBWrite was not executed at all because the corresp 98 * J-TLB entry got evicted/replaced. 99 */ 100 101 102 /* A copy of the ASID from the PID reg is kept in asid_cache */ 103 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 104 105 /* 106 * Utility Routine to erase a J-TLB entry 107 * Caller needs to setup Index Reg (manually or via getIndex) 108 */ 109 static inline void __tlb_entry_erase(void) 110 { 111 write_aux_reg(ARC_REG_TLBPD1, 0); 112 write_aux_reg(ARC_REG_TLBPD0, 0); 113 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 114 } 115 116 #if (CONFIG_ARC_MMU_VER < 4) 117 118 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 119 { 120 unsigned int idx; 121 122 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 123 124 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 125 idx = read_aux_reg(ARC_REG_TLBINDEX); 126 127 return idx; 128 } 129 130 static void tlb_entry_erase(unsigned int vaddr_n_asid) 131 { 132 unsigned int idx; 133 134 /* Locate the TLB entry for this vaddr + ASID */ 135 idx = tlb_entry_lkup(vaddr_n_asid); 136 137 /* No error means entry found, zero it out */ 138 if (likely(!(idx & TLB_LKUP_ERR))) { 139 __tlb_entry_erase(); 140 } else { 141 /* Duplicate entry error */ 142 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 143 vaddr_n_asid); 144 } 145 } 146 147 /**************************************************************************** 148 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 149 * 150 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 151 * 152 * utlb_invalidate ( ) 153 * -For v2 MMU calls Flush uTLB Cmd 154 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 155 * This is because in v1 TLBWrite itself invalidate uTLBs 156 ***************************************************************************/ 157 158 static void utlb_invalidate(void) 159 { 160 #if (CONFIG_ARC_MMU_VER >= 2) 161 162 #if (CONFIG_ARC_MMU_VER == 2) 163 /* MMU v2 introduced the uTLB Flush command. 164 * There was however an obscure hardware bug, where uTLB flush would 165 * fail when a prior probe for J-TLB (both totally unrelated) would 166 * return lkup err - because the entry didnt exist in MMU. 167 * The Workround was to set Index reg with some valid value, prior to 168 * flush. This was fixed in MMU v3 hence not needed any more 169 */ 170 unsigned int idx; 171 172 /* make sure INDEX Reg is valid */ 173 idx = read_aux_reg(ARC_REG_TLBINDEX); 174 175 /* If not write some dummy val */ 176 if (unlikely(idx & TLB_LKUP_ERR)) 177 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 178 #endif 179 180 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 181 #endif 182 183 } 184 185 static void tlb_entry_insert(unsigned int pd0, unsigned int pd1) 186 { 187 unsigned int idx; 188 189 /* 190 * First verify if entry for this vaddr+ASID already exists 191 * This also sets up PD0 (vaddr, ASID..) for final commit 192 */ 193 idx = tlb_entry_lkup(pd0); 194 195 /* 196 * If Not already present get a free slot from MMU. 197 * Otherwise, Probe would have located the entry and set INDEX Reg 198 * with existing location. This will cause Write CMD to over-write 199 * existing entry with new PD0 and PD1 200 */ 201 if (likely(idx & TLB_LKUP_ERR)) 202 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 203 204 /* setup the other half of TLB entry (pfn, rwx..) */ 205 write_aux_reg(ARC_REG_TLBPD1, pd1); 206 207 /* 208 * Commit the Entry to MMU 209 * It doesnt sound safe to use the TLBWriteNI cmd here 210 * which doesn't flush uTLBs. I'd rather be safe than sorry. 211 */ 212 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 213 } 214 215 #else /* CONFIG_ARC_MMU_VER >= 4) */ 216 217 static void utlb_invalidate(void) 218 { 219 /* No need since uTLB is always in sync with JTLB */ 220 } 221 222 static void tlb_entry_erase(unsigned int vaddr_n_asid) 223 { 224 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); 225 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); 226 } 227 228 static void tlb_entry_insert(unsigned int pd0, unsigned int pd1) 229 { 230 write_aux_reg(ARC_REG_TLBPD0, pd0); 231 write_aux_reg(ARC_REG_TLBPD1, pd1); 232 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); 233 } 234 235 #endif 236 237 /* 238 * Un-conditionally (without lookup) erase the entire MMU contents 239 */ 240 241 noinline void local_flush_tlb_all(void) 242 { 243 unsigned long flags; 244 unsigned int entry; 245 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 246 247 local_irq_save(flags); 248 249 /* Load PD0 and PD1 with template for a Blank Entry */ 250 write_aux_reg(ARC_REG_TLBPD1, 0); 251 write_aux_reg(ARC_REG_TLBPD0, 0); 252 253 for (entry = 0; entry < mmu->num_tlb; entry++) { 254 /* write this entry to the TLB */ 255 write_aux_reg(ARC_REG_TLBINDEX, entry); 256 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 257 } 258 259 utlb_invalidate(); 260 261 local_irq_restore(flags); 262 } 263 264 /* 265 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 266 */ 267 noinline void local_flush_tlb_mm(struct mm_struct *mm) 268 { 269 /* 270 * Small optimisation courtesy IA64 271 * flush_mm called during fork,exit,munmap etc, multiple times as well. 272 * Only for fork( ) do we need to move parent to a new MMU ctxt, 273 * all other cases are NOPs, hence this check. 274 */ 275 if (atomic_read(&mm->mm_users) == 0) 276 return; 277 278 /* 279 * - Move to a new ASID, but only if the mm is still wired in 280 * (Android Binder ended up calling this for vma->mm != tsk->mm, 281 * causing h/w - s/w ASID to get out of sync) 282 * - Also get_new_mmu_context() new implementation allocates a new 283 * ASID only if it is not allocated already - so unallocate first 284 */ 285 destroy_context(mm); 286 if (current->mm == mm) 287 get_new_mmu_context(mm); 288 } 289 290 /* 291 * Flush a Range of TLB entries for userland. 292 * @start is inclusive, while @end is exclusive 293 * Difference between this and Kernel Range Flush is 294 * -Here the fastest way (if range is too large) is to move to next ASID 295 * without doing any explicit Shootdown 296 * -In case of kernel Flush, entry has to be shot down explictly 297 */ 298 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 299 unsigned long end) 300 { 301 const unsigned int cpu = smp_processor_id(); 302 unsigned long flags; 303 304 /* If range @start to @end is more than 32 TLB entries deep, 305 * its better to move to a new ASID rather than searching for 306 * individual entries and then shooting them down 307 * 308 * The calc above is rough, doesn't account for unaligned parts, 309 * since this is heuristics based anyways 310 */ 311 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 312 local_flush_tlb_mm(vma->vm_mm); 313 return; 314 } 315 316 /* 317 * @start moved to page start: this alone suffices for checking 318 * loop end condition below, w/o need for aligning @end to end 319 * e.g. 2000 to 4001 will anyhow loop twice 320 */ 321 start &= PAGE_MASK; 322 323 local_irq_save(flags); 324 325 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 326 while (start < end) { 327 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 328 start += PAGE_SIZE; 329 } 330 } 331 332 utlb_invalidate(); 333 334 local_irq_restore(flags); 335 } 336 337 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 338 * @start, @end interpreted as kvaddr 339 * Interestingly, shared TLB entries can also be flushed using just 340 * @start,@end alone (interpreted as user vaddr), although technically SASID 341 * is also needed. However our smart TLbProbe lookup takes care of that. 342 */ 343 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 344 { 345 unsigned long flags; 346 347 /* exactly same as above, except for TLB entry not taking ASID */ 348 349 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 350 local_flush_tlb_all(); 351 return; 352 } 353 354 start &= PAGE_MASK; 355 356 local_irq_save(flags); 357 while (start < end) { 358 tlb_entry_erase(start); 359 start += PAGE_SIZE; 360 } 361 362 utlb_invalidate(); 363 364 local_irq_restore(flags); 365 } 366 367 /* 368 * Delete TLB entry in MMU for a given page (??? address) 369 * NOTE One TLB entry contains translation for single PAGE 370 */ 371 372 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 373 { 374 const unsigned int cpu = smp_processor_id(); 375 unsigned long flags; 376 377 /* Note that it is critical that interrupts are DISABLED between 378 * checking the ASID and using it flush the TLB entry 379 */ 380 local_irq_save(flags); 381 382 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 383 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 384 utlb_invalidate(); 385 } 386 387 local_irq_restore(flags); 388 } 389 390 #ifdef CONFIG_SMP 391 392 struct tlb_args { 393 struct vm_area_struct *ta_vma; 394 unsigned long ta_start; 395 unsigned long ta_end; 396 }; 397 398 static inline void ipi_flush_tlb_page(void *arg) 399 { 400 struct tlb_args *ta = arg; 401 402 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 403 } 404 405 static inline void ipi_flush_tlb_range(void *arg) 406 { 407 struct tlb_args *ta = arg; 408 409 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 410 } 411 412 static inline void ipi_flush_tlb_kernel_range(void *arg) 413 { 414 struct tlb_args *ta = (struct tlb_args *)arg; 415 416 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 417 } 418 419 void flush_tlb_all(void) 420 { 421 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 422 } 423 424 void flush_tlb_mm(struct mm_struct *mm) 425 { 426 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 427 mm, 1); 428 } 429 430 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 431 { 432 struct tlb_args ta = { 433 .ta_vma = vma, 434 .ta_start = uaddr 435 }; 436 437 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 438 } 439 440 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 441 unsigned long end) 442 { 443 struct tlb_args ta = { 444 .ta_vma = vma, 445 .ta_start = start, 446 .ta_end = end 447 }; 448 449 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 450 } 451 452 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 453 { 454 struct tlb_args ta = { 455 .ta_start = start, 456 .ta_end = end 457 }; 458 459 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 460 } 461 #endif 462 463 /* 464 * Routine to create a TLB entry 465 */ 466 void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 467 { 468 unsigned long flags; 469 unsigned int asid_or_sasid, rwx; 470 unsigned long pd0, pd1; 471 472 /* 473 * create_tlb() assumes that current->mm == vma->mm, since 474 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 475 * -completes the lazy write to SASID reg (again valid for curr tsk) 476 * 477 * Removing the assumption involves 478 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 479 * -Fix the TLB paranoid debug code to not trigger false negatives. 480 * -More importantly it makes this handler inconsistent with fast-path 481 * TLB Refill handler which always deals with "current" 482 * 483 * Lets see the use cases when current->mm != vma->mm and we land here 484 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 485 * Here VM wants to pre-install a TLB entry for user stack while 486 * current->mm still points to pre-execve mm (hence the condition). 487 * However the stack vaddr is soon relocated (randomization) and 488 * move_page_tables() tries to undo that TLB entry. 489 * Thus not creating TLB entry is not any worse. 490 * 491 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 492 * breakpoint in debugged task. Not creating a TLB now is not 493 * performance critical. 494 * 495 * Both the cases above are not good enough for code churn. 496 */ 497 if (current->active_mm != vma->vm_mm) 498 return; 499 500 local_irq_save(flags); 501 502 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), address); 503 504 address &= PAGE_MASK; 505 506 /* update this PTE credentials */ 507 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 508 509 /* Create HW TLB(PD0,PD1) from PTE */ 510 511 /* ASID for this task */ 512 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 513 514 pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 515 516 /* 517 * ARC MMU provides fully orthogonal access bits for K/U mode, 518 * however Linux only saves 1 set to save PTE real-estate 519 * Here we convert 3 PTE bits into 6 MMU bits: 520 * -Kernel only entries have Kr Kw Kx 0 0 0 521 * -User entries have mirrored K and U bits 522 */ 523 rwx = pte_val(*ptep) & PTE_BITS_RWX; 524 525 if (pte_val(*ptep) & _PAGE_GLOBAL) 526 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 527 else 528 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 529 530 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 531 532 tlb_entry_insert(pd0, pd1); 533 534 local_irq_restore(flags); 535 } 536 537 /* 538 * Called at the end of pagefault, for a userspace mapped page 539 * -pre-install the corresponding TLB entry into MMU 540 * -Finalize the delayed D-cache flush of kernel mapping of page due to 541 * flush_dcache_page(), copy_user_page() 542 * 543 * Note that flush (when done) involves both WBACK - so physical page is 544 * in sync as well as INV - so any non-congruent aliases don't remain 545 */ 546 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 547 pte_t *ptep) 548 { 549 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 550 unsigned long paddr = pte_val(*ptep) & PAGE_MASK; 551 struct page *page = pfn_to_page(pte_pfn(*ptep)); 552 553 create_tlb(vma, vaddr, ptep); 554 555 if (page == ZERO_PAGE(0)) { 556 return; 557 } 558 559 /* 560 * Exec page : Independent of aliasing/page-color considerations, 561 * since icache doesn't snoop dcache on ARC, any dirty 562 * K-mapping of a code page needs to be wback+inv so that 563 * icache fetch by userspace sees code correctly. 564 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 565 * so userspace sees the right data. 566 * (Avoids the flush for Non-exec + congruent mapping case) 567 */ 568 if ((vma->vm_flags & VM_EXEC) || 569 addr_not_cache_congruent(paddr, vaddr)) { 570 571 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 572 if (dirty) { 573 /* wback + inv dcache lines */ 574 __flush_dcache_page(paddr, paddr); 575 576 /* invalidate any existing icache lines */ 577 if (vma->vm_flags & VM_EXEC) 578 __inv_icache_page(paddr, vaddr); 579 } 580 } 581 } 582 583 /* Read the Cache Build Confuration Registers, Decode them and save into 584 * the cpuinfo structure for later use. 585 * No Validation is done here, simply read/convert the BCRs 586 */ 587 void read_decode_mmu_bcr(void) 588 { 589 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 590 unsigned int tmp; 591 struct bcr_mmu_1_2 { 592 #ifdef CONFIG_CPU_BIG_ENDIAN 593 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; 594 #else 595 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; 596 #endif 597 } *mmu2; 598 599 struct bcr_mmu_3 { 600 #ifdef CONFIG_CPU_BIG_ENDIAN 601 unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4, 602 u_itlb:4, u_dtlb:4; 603 #else 604 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4, 605 ways:4, ver:8; 606 #endif 607 } *mmu3; 608 609 struct bcr_mmu_4 { 610 #ifdef CONFIG_CPU_BIG_ENDIAN 611 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, 612 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; 613 #else 614 /* DTLB ITLB JES JE JA */ 615 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, 616 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; 617 #endif 618 } *mmu4; 619 620 tmp = read_aux_reg(ARC_REG_MMU_BCR); 621 mmu->ver = (tmp >> 24); 622 623 if (mmu->ver <= 2) { 624 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 625 mmu->pg_sz_k = TO_KB(PAGE_SIZE); 626 mmu->sets = 1 << mmu2->sets; 627 mmu->ways = 1 << mmu2->ways; 628 mmu->u_dtlb = mmu2->u_dtlb; 629 mmu->u_itlb = mmu2->u_itlb; 630 } else if (mmu->ver == 3) { 631 mmu3 = (struct bcr_mmu_3 *)&tmp; 632 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); 633 mmu->sets = 1 << mmu3->sets; 634 mmu->ways = 1 << mmu3->ways; 635 mmu->u_dtlb = mmu3->u_dtlb; 636 mmu->u_itlb = mmu3->u_itlb; 637 } else { 638 mmu4 = (struct bcr_mmu_4 *)&tmp; 639 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); 640 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); 641 mmu->sets = 64 << mmu4->n_entry; 642 mmu->ways = mmu4->n_ways * 2; 643 mmu->u_dtlb = mmu4->u_dtlb * 4; 644 mmu->u_itlb = mmu4->u_itlb * 4; 645 } 646 647 mmu->num_tlb = mmu->sets * mmu->ways; 648 } 649 650 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 651 { 652 int n = 0; 653 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 654 char super_pg[64] = ""; 655 656 if (p_mmu->s_pg_sz_m) 657 scnprintf(super_pg, 64, "%dM Super Page%s, ", 658 p_mmu->s_pg_sz_m, " (not used)"); 659 660 n += scnprintf(buf + n, len - n, 661 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d %s\n", 662 p_mmu->ver, p_mmu->pg_sz_k, super_pg, 663 p_mmu->num_tlb, p_mmu->sets, p_mmu->ways, 664 p_mmu->u_dtlb, p_mmu->u_itlb, 665 IS_ENABLED(CONFIG_ARC_MMU_SASID) ? ",SASID" : ""); 666 667 return buf; 668 } 669 670 void arc_mmu_init(void) 671 { 672 char str[256]; 673 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 674 675 printk(arc_mmu_mumbojumbo(0, str, sizeof(str))); 676 677 /* For efficiency sake, kernel is compile time built for a MMU ver 678 * This must match the hardware it is running on. 679 * Linux built for MMU V2, if run on MMU V1 will break down because V1 680 * hardware doesn't understand cmds such as WriteNI, or IVUTLB 681 * On the other hand, Linux built for V1 if run on MMU V2 will do 682 * un-needed workarounds to prevent memcpy thrashing. 683 * Similarly MMU V3 has new features which won't work on older MMU 684 */ 685 if (mmu->ver != CONFIG_ARC_MMU_VER) { 686 panic("MMU ver %d doesn't match kernel built for %d...\n", 687 mmu->ver, CONFIG_ARC_MMU_VER); 688 } 689 690 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) 691 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 692 693 /* Enable the MMU */ 694 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 695 696 /* In smp we use this reg for interrupt 1 scratch */ 697 #ifndef CONFIG_SMP 698 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ 699 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); 700 #endif 701 } 702 703 /* 704 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 705 * The mapping is Column-first. 706 * --------------------- ----------- 707 * |way0|way1|way2|way3| |way0|way1| 708 * --------------------- ----------- 709 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 710 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 711 * ~ ~ ~ ~ 712 * [set127] | 508| 509| 510| 511| | 254| 255| 713 * --------------------- ----------- 714 * For normal operations we don't(must not) care how above works since 715 * MMU cmd getIndex(vaddr) abstracts that out. 716 * However for walking WAYS of a SET, we need to know this 717 */ 718 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 719 720 /* Handling of Duplicate PD (TLB entry) in MMU. 721 * -Could be due to buggy customer tapeouts or obscure kernel bugs 722 * -MMU complaints not at the time of duplicate PD installation, but at the 723 * time of lookup matching multiple ways. 724 * -Ideally these should never happen - but if they do - workaround by deleting 725 * the duplicate one. 726 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 727 */ 728 volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */ 729 730 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 731 struct pt_regs *regs) 732 { 733 int set, way, n; 734 unsigned long flags, is_valid; 735 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 736 unsigned int pd0[mmu->ways], pd1[mmu->ways]; 737 738 local_irq_save(flags); 739 740 /* re-enable the MMU */ 741 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID)); 742 743 /* loop thru all sets of TLB */ 744 for (set = 0; set < mmu->sets; set++) { 745 746 /* read out all the ways of current set */ 747 for (way = 0, is_valid = 0; way < mmu->ways; way++) { 748 write_aux_reg(ARC_REG_TLBINDEX, 749 SET_WAY_TO_IDX(mmu, set, way)); 750 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 751 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 752 pd1[way] = read_aux_reg(ARC_REG_TLBPD1); 753 is_valid |= pd0[way] & _PAGE_PRESENT; 754 } 755 756 /* If all the WAYS in SET are empty, skip to next SET */ 757 if (!is_valid) 758 continue; 759 760 /* Scan the set for duplicate ways: needs a nested loop */ 761 for (way = 0; way < mmu->ways - 1; way++) { 762 if (!pd0[way]) 763 continue; 764 765 for (n = way + 1; n < mmu->ways; n++) { 766 if ((pd0[way] & PAGE_MASK) == 767 (pd0[n] & PAGE_MASK)) { 768 769 if (dup_pd_verbose) { 770 pr_info("Duplicate PD's @" 771 "[%d:%d]/[%d:%d]\n", 772 set, way, set, n); 773 pr_info("TLBPD0[%u]: %08x\n", 774 way, pd0[way]); 775 } 776 777 /* 778 * clear entry @way and not @n. This is 779 * critical to our optimised loop 780 */ 781 pd0[way] = pd1[way] = 0; 782 write_aux_reg(ARC_REG_TLBINDEX, 783 SET_WAY_TO_IDX(mmu, set, way)); 784 __tlb_entry_erase(); 785 } 786 } 787 } 788 } 789 790 local_irq_restore(flags); 791 } 792 793 /*********************************************************************** 794 * Diagnostic Routines 795 * -Called from Low Level TLB Hanlders if things don;t look good 796 **********************************************************************/ 797 798 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 799 800 /* 801 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 802 * don't match 803 */ 804 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) 805 { 806 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 807 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); 808 809 __asm__ __volatile__("flag 1"); 810 } 811 812 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) 813 { 814 unsigned int mmu_asid; 815 816 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; 817 818 /* 819 * At the time of a TLB miss/installation 820 * - HW version needs to match SW version 821 * - SW needs to have a valid ASID 822 */ 823 if (addr < 0x70000000 && 824 ((mm_asid == MM_CTXT_NO_ASID) || 825 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) 826 print_asid_mismatch(mm_asid, mmu_asid, 0); 827 } 828 #endif 829